首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used the regional climate model RegCM3 to investigate the role of the swamps of southern Sudan in affecting the climate of the surrounding region. Towards this end, we first assessed the performance of a high resolution version of the model over northern Africa. RegCM3 shows a good skill in simulating the climatology of rainfall and temperature patterns as well as the related circulation features during the summer season, outperforming previous coarser resolution applications of the model over this region. Sensitivity experiments reveal that, relative to bare soil conditions, the swamps act to locally modify the surface energy budget primarily through an increase of surface latent heat flux. Existence of the swamps leads to lower ground temperature (up to 2 °C), a larger north–south temperature gradient, and increased local rainfall (up to 40 %). Of particular importance is the impact on rainfall in the surrounding regions. The swamps have almost no impact on the rainfall over the source region of the Nile in Ethiopia or in the Sahel region; however, they favor wetter conditions over central Sudan (up to 15 %) in comparison to the bare desert soil conditions.  相似文献   

2.
基于南海夏季风季节内振荡的降水延伸预报试验   总被引:3,自引:2,他引:1       下载免费PDF全文
利用代表南海夏季风季节内振荡特征的850 hPa纬向风EOF分解的前两个主成分,定义南海夏季风季节内振荡指数,并利用美国国家环境预测中心第2代气候预报系统 (NCEP Climate Forecast System Version 2, NCEP/CFSv2) 提供的1982—2009年逐日回算预报场计算了南海夏季风季节内振荡指数的预报值,用于我国南方地区持续性强降水的预报试验。试验结果表明:利用南海夏季风季节内振荡实时监测指数与模式直接预报降水量相结合的统计动力延伸预报方法,能够有效提高季节内降水分量的预报效果。同时,该方法能够避免末端数据损失,修正了对模式预报降水直接进行带通滤波而导致的负相关现象,并起到消除模式系统误差的作用。  相似文献   

3.
Interannual variability over South America (SA) is mainly controlled by the El Niño-Southern Oscillation (ENSO) phenomenon. This study investigates the ENSO precipitation signal during austral spring (September–October–November-SON) over SA. Three global circulation models-GCMs-(MPI, GFDL and HadGEM2) are used for RegCM4 (Regional Climate Model version 4) downscaling of the present (1975–2005) near-future (2020–2050) and far-future (2070–2098) climates using two greenhouse gas stabilization scenarios (RCP4.5 and RCP8.5). For the present climate, only HadGEM2 simulates a frequency of El Niño (EN) and La Niña (LN) years similar to the observations. In terms of ENSO frequency changes, only in the far-future RCP8.5 climate there is greater agreement among GCMs, indicating an increase (decrease) of EN (LN) years. In the present climate, validation indicates that only the RegCM4 ensemble mean provides acceptable precipitation biases (smaller than ±20 %) in the two investigated regions. In this period, the GCMs and RegCM4 agree on the relationship between ENSO and precipitation in SA, i.e., both are able to capture the observed regions of positive/negative rainfall anomalies during EN years, with RegCM4 improving on the GCMs’ signal over southeastern SA. For the near and far future climates, in general, the projections indicate an increase (decrease) of precipitation over southeastern SA (northern-northeastern SA). However, the relationship between ENSO and rainfall in most of RegCM4 and GCM members is weaker in the near and far future climates than in the present day climate. This is likely connected with the GCMs’ projection of the more intense ENSO signal displaced to the central basin of Pacific Ocean in the far future compared to present climate.  相似文献   

4.
Simulation of Indian summer monsoon circulation and rainfall using RegCM3   总被引:5,自引:2,他引:5  
Summary The Regional Climate Model RegCM3 has been used to examine its suitability in simulating the Indian summer monsoon circulation features and associated rainfall. The model is integrated at 55 km horizontal resolution over a South Asia domain for the period April–September of the years 1993 to 1996. The characteristics of wind at 850 hPa and 200 hPa, temperature at 500 hPa, surface pressure and rainfall simulated by the model over the Indian region are examined for two convective schemes (a Kuo-type and a mass flux scheme). The monsoon circulation features simulated by RegCM3 are compared with those of the NCEP/NCAR reanalysis and the simulated rainfall is validated against observations from the Global Precipitation Climatology Centre (GPCC) and the India Meteorological Department (IMD). Validation of the wind and temperature fields shows that the use of the Grell convection scheme yields results close to the NCEP/NCAR reanalysis. Similarly, the Indian Summer Monsoon Rainfall (ISMR) simulated by the model with the Grell convection scheme is close to the corresponding observed values. In order to test the model response to land surface changes such as the Tibetan snow depth, a sensitivity study has also been conducted. For such sensitivity experiment, NIMBUS-7 SMMR snow depth data in spring are used as initial conditions in the RegCM3. Preliminary results indicate that RegCM3 is very much sensitive to Tibetan snow. The model simulated Indian summer monsoon circulation becomes weaker and the associated rainfall is reduced by about 30% with the introduction of 10 cm of snow over the Tibetan region in the month of April.  相似文献   

5.
Regional climate models, such as RegCM3, generally show large biases in the simulation of western North Pacific (WNP) summer monsoon (WNPSM). In this study, the authors improved the simulation of WNPSM by applying the convection suppression criterion based on the averaged relative humidity from cloud base to cloud top. The simulated rainfall and monsoon circulation are significantly improved. The suppressed convective heating associated with the decrease in convective rainfall simulates a low-level anomalous anticyclone to its north. The anomalous anticyclone reduces the intensity of low-level southwesterly flow and the wind speed at 10 m. The reduction in wind speed at 10 m decreases the evaporation at sea surface. The less supply of water vapor from underlying ocean in turn favors less convective rainfall. The overestimation of simulated convective percentages and the cold bias of 2 m air temperature are also reduced. The different effects of convection suppression criterion in stand-alone RegCM3 and corresponding regional air–sea coupled model are also discussed.  相似文献   

6.
Interannual variability of both SW monsoon (June-September) and NE monsoon (October-December) rainfall over subdivisions of Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu have been examined in relation to monthly zonal wind anomaly for 10 hPa, 30 hPa and 50 hPa at Balboa (9°N, 80°W) for the 29 year period (1958-1986). Correlations of zonal wind anomalies to SW monsoon rainfall (r = 0.57, significant at 1% level) is highest with the longer lead time (August of the previous year) at 10 hPa level suggesting some predictive value for Coastal Andhra Pradesh. The probabilities estimated from the contingency table reveal non-occurrence of flood during easterly wind anomalies and near non-occurrence of drought during westerly anomalies for August of the previous year at 10 hPa which provides information for forecasting of performance of SW monsoon over Coastal Andhra Pradesh. However, NE monsoon has a weak relationship with zonal wind anomalies of 10 hPa, 30 hPa and 50 hPa for Coastal Andhra Pradesh, Raya  相似文献   

7.
Spring rainfall secular variability is studied using observations, reanalysis, and model simulations. The joint coherent spatio-temporal secular variability of gridded monthly gauge rainfall over Ethiopia, ERA-Interim atmospheric variables and sea surface temperature (SST) from Hadley Centre Sea Ice and SST (HadISST) data set is extracted using multi-taper method singular value decomposition (MTM-SVD). The contemporaneous associations are further examined using partial Granger causality to determine presence of causal linkage between any of the climate variables. This analysis reveals that only the northwestern Indian Ocean secular SST anomaly has direct causal links with spring rainfall over Ethiopia and mean sea level pressure (MSLP) over Africa inspite of the strong secular covariance of spring rainfall, SST in parts of subtropical Pacific, Atlantic, Indian Ocean and MSLP. High secular rainfall variance and statistically significant linear trend show consistently that there is a massive decline in spring rain over southern Ethiopia. This happened concurrently with significant buildup of MSLP over East Africa, northeastern Africa including parts of the Arabian Peninsula, some parts of central Africa and SST warming over all ocean basins with the exception of the ENSO regions. The east-west pressure gradient in response to the Indian Ocean warming led to secular southeasterly winds over the Arabian Sea, easterly over central Africa and equatorial Atlantic. These flows weakened climatological northeasterly flow over the Arabian Sea and southwesterly flow over equatorial Atlantic and Congo basins which supply moisture into the eastern Africa regions in spring. The secular divergent flow at low level is concurrent with upper level convergence due to the easterly secular anomalous flow. The mechanisms through which the northwestern Indian Ocean secular SST anomaly modulates rainfall are further explored in the context of East Africa using a simplified atmospheric general circulation model (AGCM) coupled to mixed-layer oceanic model. The rainfall anomaly (with respect to control simulation), forced by the northwestern Indian Ocean secular SST anomaly and averaged over the 30-year period, exhibits prevalence of dry conditions over East and equatorial Africa in agreement with observation. The atmospheric response to secular SST warming anomaly led to divergent flow at low levels and subsidence at the upper troposphere over regions north of 5° S on the continent and vice versa over the Indian Ocean. This surface difluence over East Africa, in addition to its role in suppressing convective activity, deprives the region of moisture supply from the Indian Ocean as well as the Atlantic and Congo basins.  相似文献   

8.
段安民  吴国雄 《气象学报》2003,61(4):447-456
对1958~1999年的7月份NCEP/NCAR再分析资料中青藏高原区域大气热源强度(整层气柱的总非绝热加热率)做旋转经验正交函数分析,结果表明该区域内大气热源强度的空间分布特征复杂,各地差异显著。前4个REOF型的加热中心位于高原东北部、高原西南部、克什米尔地区以及高原东南部地区上空。小波分析还表明各空间型都有2~4a的变化周期。文中计算了前4个RPC与东亚中、低空纬向风(U)、经向风(V)、纬向水汽通量(Q_u)、经向水汽通量(Q_v)的相关系数,并用这些相关系数构造矢量,进而分析其流场和水汽通量散度场,发现高原不同区域的大气加热异常所对应的东亚大气环流形势及降水也大不相同,由此表明,在研究高原加热对中国气候的影响时,应注意加热的空间分布特征。  相似文献   

9.
西江流域面雨量与区域大气环流型关系   总被引:2,自引:1,他引:1       下载免费PDF全文
利用Lamb-Jenkinson大气环流分型方法,对西江流域1971—2015年逐日平均850 hPa和500 hPa高度场进行环流客观分型,分析流域降水天气环流型出现概率及主导环流型变化特征,探讨主导环流型对西江流域总面雨量和子流域面雨量的贡献率及环流型配置与降水的关系。结果表明:当850 hPa为西南风型、500 hPa为西风型时,流域出现降水天气的概率最大;850 hPa气旋型和500 hPa西风型对年总面雨量和各子流域面雨量的贡献率均为最大,且对东部子流域面雨量的贡献率大于西部子流域,850 hPa南风型与500 hPa反气旋型的环流配置是西部子流域秋季降水偏多的主导环流型配置;春季850 hPa气旋型与500 hPa西风型、夏季850 hPa气旋型与500 hPa西风型、秋季850 hPa南风型与500 hPa反气旋型、冬季850 hPa西南风型与500 hPa西风型的环流配置时,出现强降水天气的概率分别为18.7%,21.1%,4.0%和2.0%,即夏季最大,其次为春季,冬季最小。近45年,850 hPa气旋型、500 hPa西风型对流域年总面雨量的贡献率呈增加趋势,是西江流域面雨量呈偏多趋势的主导环流型。  相似文献   

10.
The skill of a regional climate model (RegCM4) in capturing the mean patterns, interannual variability and extreme statistics of daily-scale temperature and precipitation events over Mexico is assessed through a comparison of observations and a 27-year long simulation driven by reanalyses of observations covering the Central America CORDEX domain. The analysis also includes the simulation of tropical cyclones. It is found that RegCM4 reproduces adequately the mean spatial patterns of seasonal precipitation and temperature, along with the associated interannual variability characteristics. The main model bias is an overestimation of precipitation in mountainous regions. The 5 and 95 percentiles of daily temperature, as well as the maximum dry spell length are realistically simulated. The simulated distribution of precipitation events as well as the 95 percentile of precipitation shows a wet bias in topographically complex regions. Based on a simple detection method, the model produces realistic tropical cyclone distributions even at its relatively coarse resolution (dx = 50 km), although the number of cyclone days is underestimated over the Pacific and somewhat overestimated over the Atlantic and Caribbean basins. Overall, it is assessed that the performance of RegCM4 over Mexico is of sufficient quality to study not only mean precipitation and temperature patterns, but also higher order climate statistics.  相似文献   

11.
We present the first tree-ring based reconstruction of rainfall for the Lake Tay region of southern Western Australia. We examined the response of Callitris columellaris to rainfall, the southern oscillation index (SOI), the southern annular mode (SAM) and surface sea temperature (SST) anomalies in the southern Indian Ocean. The 350-year chronology was most strongly correlated with rainfall averaged over the autumn-winter period (March–September; r = ?0.70, < 0.05) and SOI values averaged over June–August (r = 0.25, < 0.05). The chronology was not correlated with SAM or SSTs. We reconstructed autumn-winter rainfall back to 1655, where current and previous year tree-ring indices explained 54% of variation in rainfall over the 1902–2005 calibration period. Some variability in rainfall was lost during the reconstruction: variability of actual rainfall (expressed as normalized values) over the calibration period was 0.78, while variability of the normalized reconstructed values over the same period was 0.44. Nevertheless, the reconstruction, combined with spectral analysis, revealed that rainfall naturally varies from relatively dry periods lasting to 20–30 years to 15-year long periods of above average rainfall. This variability in rainfall may reflect low-frequency variation in the El Niño-Southern Oscillation rather than the effect of SAM or SSTs.  相似文献   

12.
Using the latest daily observational rainfall datasets for the period 1961–2008, the present study investigates the interannual variability of June–September (JJAS) mean rainfall in northern China. The regional characteristics of JJAS mean rainfall are revealed by a rotated empirical orthogonal function (REOF) analysis. The analysis identifies three regions of large interannual variability of JJAS rainfall: North China (NC), Northeast China (NEC), and the Taklimakan Desert in Northwest China (TDNWC). Summer rainfall over NC is shown to have displayed a remarkable dry period from the late 1990s; while over NEC, decadal-scale variation with a significant decreasing trend in the last two decades is found, and over TDNWC, evidence of large interannual variability is revealed. Results also show that the interannual variability of JJAS rainfall in northern China is closely associated with the Northern Hemisphere circumglobal teleconnection (CGT). Correlation coefficients between the CGT index and regional-averaged JJAS mean rainfall over NC and NEC were calculated, revealing values of up to 0.50 and 0.53, respectively, both of which exceeded the 99% confidence level.  相似文献   

13.
鞠丽霞  郎咸梅 《气象学报》2012,70(2):244-252
将区域气候模式RegCM3与中国科学院大气物理研究所全球大气环流模式IAP9L-AGCM进行单向嵌套,建立嵌套区域气候模式RegCM3_IAP9L-AGCM,并利用该嵌套模式对1982—2001年中国夏季短期气候进行了跨季度集合回报试验。结果表明,RegCM3_IAP9L-AGCM对高空气候变量(500hPa位势高度场、200和850hPa纬向风场)的回报结果与实况距平相关系数(ACC)基本为正,其回报效果好于单独使用IAP9L-AGCM的结果。除850hPa纬向风场外,其他两个变量场回报与实况正相关的区域基本呈纬向带状分布且通过90%信度检验。在中国大部分地区(除长江下游、东北北部和西北北部外),嵌套区域气候模式回报的降水距平百分率与实况基本为正相关。RegCM3_IAP9L-AGCM和IAP9L-AGCM对中国不同区域的夏季降水回报效果不同,前者对华南降水的回报效果明显好于后者。  相似文献   

14.
Regional coupled modeling is one of the frontiers of regional climate modeling, but intercomparison has not been well coordinated. In this study, a community regional climate model, WRF4, with a resolution of 15 km, was coupled with a high-resolution(0.1°) North Pacific Ocean model(LICOM_np). The performance of the regional coupled model,WRF4_LICOM, was compared to that of another regional coupled model, RegCM4_LICOM, which was a coupling of version 4 of the Regional Climate Model(RegCM4) with LICOM_np. The analysis focused on the 2005 western North Pacific summer monsoon rainfall. The results showed that the regional coupled models with either RegCM4 or WRF4 as their atmospheric model component simulated the broad features over the WNP reasonably well. Quantitative intercomparison of the regional coupled simulations exhibited different biases for different climate variables.RegCM4_LICOM exhibited smaller biases in its simulation of the averaged June–July–August SST and rainfall, while WRF4_LICOM better captured the tropical cyclone(TC) intensity, the percentage contributions of rainfall induced by TCs to the total rainfall, and the diurnal cycle of rainfall and stratiform percentages, especially over land areas. The different behaviors in rainfall simulated by the two models were partly ascribed to the behaviors in the simulated western North Pacific subtropical high(WNPSH). The stronger(weaker) WNPSH in WRF4_LICOM(RegCM4_LICOM) was driven by overestimated(underestimated) diabatic heating, which peaked at approximately 450 hPa over the region around the Philippines in association with different condensation–radiation processes. Coupling of WRF4 with LIOCM is a crucial step towards the development of the next generation of regional earth system models at the Chinese Academy of Sciences.  相似文献   

15.
RegCM3对中国淮河流域降水模拟能力的检验及分析   总被引:2,自引:0,他引:2  
宗培书  王会军 《气象学报》2012,70(2):253-260
检验了区域气候模式RegCM3(Regional Climate Model version3)对中国淮河流域(30°55′—36°36′N,111°55′—121°25′E)1982—2001年夏季降水及大尺度环流场的模拟能力,并选取降水明显偏多的2003年夏季为个例,评估了RegCM3模式对该年淮河流域夏季降水的集合模拟能力。模拟的20a降水的空间分布与实测资料对比表明,RegCM3成功地模拟出了淮河流域夏季降水的空间分布和年际变化;通过分析对比RegCM3模拟出的低层850hPa流场结构和水汽输送状况与实测情况,可知RegCM3能模拟出低层流场结构的大致分布和水汽输送特点,但模拟所得风速和湿度均比实况偏大。对2003年淮河流域夏季降水的集合模拟结果表明,RegCM3对中小尺度极端强降水的降水量和降水中心的模拟能力尚有待进一步提高。  相似文献   

16.
选取中国大陆均匀分布的80个测站1951—1994年历年5—6月月总降水量标准化距平资料,利用EOF和REOF方法对春末夏初降水量异常的空间结构及时间演变规律作了研究。结果表明,中国春末夏初降水异常在空间上主要表现为南北相反变化的差异(LV)。旋转载荷向量场(RLV)反映出11个主要降水异常类型区。旋转主分量(RPC)揭示了44年来春末夏初降水的时间演变特征:江淮和江南地区降水量减少,东北和南疆地区降水量增多;河套东部、华南、北疆、华北地区呈多雨—少雨—多雨的抛物线型,而河套西部、西南地区呈少雨—多雨—少雨的反抛物线型。  相似文献   

17.
The summer monsoon onset over southern Vietnam is determined through a new criterion based on both in situ daily rainfall at six selected stations provided by the Institute of Meteorology and Hydrology, Vietnam, and the zonal component of the wind at 1,000 hPa from the National Center for Environmental Prediction/Department of Energy Reanalysis 2. Over the period 1979–2004, the summer monsoon onset mean date is on 12 May, with a standard deviation of 11.6 days. The temporal and spatial structures of the atmospheric conditions prevailing during the onset period are detailed. Clear changes are seen in the zonal wind (strengthened over the Bay of Bengal and changed from negative to positive over South Vietnam) and in convection (deeper), in association with an intensification of the meridional gradients of sea level pressure at 1,000 hPa and of moist static energy at 2 m over Southeast Asia. The predictability of onset dates is then assessed. Cross-validated hindcasts based upon four predictors linked to robust signals in the atmospheric dynamics are then provided. They are highly significant when compared to observations (56% of common variance). Basically, late (early) onsets are preceded in March–April by higher (lower) sea level pressure over the East China Sea, stronger (weaker) southeasterly winds over southern Vietnam, decreasing (increasing) deep convection over the Bay of Bengal, and the reverse situation over Indonesia (120–140°E, 0–10°S).  相似文献   

18.
Based on the 1958-1999 monthly averaged NCEP/NCAR reanalysis data,the REOF analysis is applied to obtain the main spatial modes of normalized atmospheric heating source over the Tibetan Plateau(TP) in July.Results show that the four leading modes are located over the northeast TP,southwest TP.Kashmir and southeast TP respectively,and the cumulative variances are no more than one third of the total.It indicates that the heating source distribution is very complicated over the TP in July.In other words.it is difficult to depict the heating spatial distribution with a few modes.By using wavelet analysis,a 2-4-year variation period is identified in these modes.Moreover,correlation coefficients between each RPC and zonal wind U, meridional wind V.zonal moisture flux Qv,meridional moisture flux Qv,and precipitation rate over East Asia are calculated to construct correlation fields,Results show that different heating modes over the TP correspond to different circulation,moisture flux as well as precipitation patterns,Precipitation over North China(or Kashmir) is negatively(or positively) correlated with REOF1.Similarly.notable negative(or positive) correlation can be found between the rainfall over south part of Southwest China.South China,and the Philippines(or Japan) and the REOF3. Due to high localization of diabatic heating over the TP.it is not enough to study the influence of TP thermal forcing on the climate with an area averaged heating index.  相似文献   

19.
The uncertainties in the regional climate models (RCMs) are evaluated by analyzing the driving global data of ERA40 reanalysis and ECHAM5 general circulation models, and the downscaled data of two RCMs (RegCM4 and PRECIS) over South-Asia for the present day simulation (1971–2000) of South-Asian summer monsoon. The differences between the observational datasets over South-Asia are also analyzed. The spatial and the quantitative analysis over the selected climatic regions of South-Asia for the mean climate and the inter-annual variability of temperature, precipitation and circulation show that the RCMs have systematic biases which are independent from different driving datasets and seems to come from the physics parameterization of the RCMs. The spatial gradients and topographically-induced structure of climate are generally captured and simulated values are within a few degrees of the observed values. The biases in the RCMs are not consistent with the biases in the driving fields and the models show similar spatial patterns after downscaling different global datasets. The annual cycle of temperature and rainfall is well simulated by the RCMs, however the RCMs are not able to capture the inter-annual variability. ECHAM5 is also downscaled for the future (2071–2100) climate under A1B emission scenario. The climate change signal is consistent between ECHAM5 and RCMs. There is warming over all the regions of South-Asia associated with increasing greenhouse gas concentrations and the increase in summer mean surface air temperature by the end of the century ranges from 2.5 to 5 °C, with maximum warming over north western parts of the domain and 30 % increase in rainfall over north eastern India, Bangladesh and Myanmar.  相似文献   

20.
The spatial and temporal structures of the intraseasonal atmospheric variability over central Africa is investigated using 2.5°?×?2.5° daily outgoing longwave radiation (OLR) and National Centers for Environmental Prediction (NCEP) Reanalysis zonal winds for the period 1980–2010. The study begins with an overview of the Central African rainfall regime, noting in particular the contrast amongst Western and Eastern parts, with different topography and surface conditions features. The annual mean rainfall and OLR over the region revealed a zone of intense convective activity centered on the equator near 30°E, which extends southward and covers almost all the Congo forest. The annual cycle of rainfall reflects the classical bi-annual shift of Inter-Tropical Convergence Zone across the equatorial belt, between 10°S and 10°N. The result of the empirical orthogonal functions (EOFs) analysis has shown that the three leading EOF modes explain about 45?% of total intraseasonal variability. The power spectra of all the three corresponding principal components (PCs) peak around 45–50?days, indicating a Madden–Julian Oscillation (MJO) signal. The first mode exhibits high positive loadings over Northern Congo, the second over Southern Ethiopia and the third over Southwestern Tanzania. The PCs time series revealed less interannual modulation of intraseasonal oscillations for the Congo mode, while Ethiopian and Tanzanian modes exhibit strong interannual variations. H?vmoller plots of OLR, 200 and 850?hPa NCEP zonal winds found the eastward propagating features to be the dominant pattern in all the three times series, but this propagation is less pronounced in the OLR than in the 850 and 200?hpa zonal wind anomalies. An index of MJO strength was built by averaging the 30–50?day power for each day. A plot of MJO indices and El Ni?o Southern Oscillation (ENSO) cycle confirm a strong interannual modulation of MJO over Eastern central Africa partially linked with the ENSO events (El Ni?o and La Ni?a). Strong MJO activity is observed during La Ni?a years or during ENSO-neutral years, while weak or absent MJO activity is typically associated with strong El Ni?o episodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号