首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesothermal gold mineralization at the Samdong mine (5.5–13.5 g/ton Au), Youngdong mining district, is situated in massive quartz veins up to 1.2 m wide which fill fault fractures within upper amphibolite to epidote-amphibolite facies, Precambrian-banded biotite gneiss. The veins are mineralogically simple, consisting of iron- and base-metal sulfides and electrum, and are associated with weak hydrothermal alteration zones (<0.5 m wide) characterized by silicification and sericitization. Fluid inclusion data and equilibrium thermodynamic interpretation of mineral assemblages indicate that the quartz veins were formed at temperatures between 425 and 190°C from relatively dilute aqueous fluids (4.5–13.8 wt. % equiv NaCl) containing variable amounts of CO2 and CH4. Evidence of fluid unmixing (CO2 effervescence) during the early vein formation indicates approximate pressures of 1.3–1.9 kbars, corresponding to minimum depths of 5–7 km under a purely lithostatic pressure regime. Gold deposition occurred mainly at temperatures between 345 and 240 °C, likely due to decreases in sulfur activity accompanying fluid unmixing. The 34S values of sulfide minerals (-3.0 to 5.3 ), and the measured and calculated O-H isotope compositions of ore fluids (18O = 5.7 to 7.6; = –74 to –80) indicate that mesothermal gold mineralization at the Samdong mine may have formed from dominantly magmatic hydrothermal fluids, possibly related to intrusion of the nearby ilmenite-series, Kimcheon Granite of Late Jurassic age.  相似文献   

2.
The discrepancy between the tabulated Gibbs Energies of Formation for Al2SiO5 and corundum relative to muscovite and kaolinite is considered to lie principally with the latter two minerals. New values for heat of formation of gibbsite [Gbs] will affect the tabulated H f 0 , G f(298,1) 0 for the other aluminous minerals which are referred to gibbsite as calorimetric aluminum reference. Gibbs Energy Difference Functions, calculated from phase equilibria in the system CaO-Al2O3-SiO2-(H2O-CO2), can be used to estimate consistent H f 0 , G f(298,1) 0 values for aluminous minerals. A self consistent data set is presented referred to G f(298,1) 0 [Corundum]=–378.08 kcal mol–1. Two independent values for G f(298,1) 0 [Anorthite]=–961.52 and –960.29 kcal, from a recalculation of the H f 0 [Anor] based upon the revised H f(298,1) 0 [Gbs]=–309.325 kcal mol–1 and from measurement of silica activity on the anorthite-saturated part of the CaO-Al2O3-SiO2 liquidus, respectively, are considered to show the magnitude of the discrepancy and are used in the calculations.  相似文献   

3.
Within the Bergen Arcs of W Norway, Caledonian eclogite facies assemblages (T650°C, P15 kbar) have formed from Grenvillian granulites (T= 800–900°C, P10 kbar) along shear zones and fluid pathways. Garnets in the granulites (grtI: Pyr56–40 Alm45–25Gro19–14) are unzoned or display a weak (ca. 1 wt% FeO over 1000m) zoning. The eclogite facies rocks contain garnets inherited from their granulite facies protoliths. These relict garnets have certain areas with compositions identical to the garnets in their nearby granulite, but can be crosscut by bands of a more Almrich composition (grtII: Pyr31–41Alm40–47Gro17–21) formed during the eclogite facies event. These bands, orientated preferentially parallel or perpendicular to the eclogite foliation, may contain mineral filled veins or trails of eclogite-facies minerals (omphacite, amphibole, white mica, kyanite, quartz and dolomite). Steep compositional gradients (up to 9 wt% FeO over 40 m) separate the two generations of garnets, indicating limited volume diffusion. The bands are interpreted as fluid rich channels where element mobility must have been infinitely greater than it was for the temperature controlled volume diffusion at mineral interfaces in the granulites. The re-equilibration of granulite facies garnets during the eclogite facies event must, therefore, be a function of fracture density (deformation) and fluid availability. The results cast doubts on modern petrological and geochronological methods that assume pure temperature controlled chemical re-equilibration of garnets.  相似文献   

4.
Fluoride-hydroxyl exchange equilibria between phlogopite-pargasite and phlogopite-tremolite mineral pairs were experimentally determined at 1,173K, 500 bars and 1,073–1,173 K, 500 bars respectively. The distribution of fluorine between phlogopite and pargasite was found to favor phlogopite slightly, G ex . (1,173 K)=–1.71 kJ anion–1, while in the case of phlogopite-tremolite, fluorine was preferentially incorporated in the mica, G ex . (1,073)=– 5.67 kJ anion–1 and G ex . (1,173K)=–5.84 kJ anion–1. These results have yielded new values of entropy and Gibbs energy of formation for fluortremolite, S f =–2,293.4±16.0JK–1 mol–1 and G f = –11,779.3±25.0 kJ mol–1, respectively. In addition, F-OH mineral exchange equilibria support a recent molten oxide calorimetric value for the Gibbs energy of fluorphlogopite, G f =–6,014.0±7.0 kJ mol–1, which is approximately 40 kJ mol–1 more exothermic than the tabulated value.This work performed in part at Sandia National Laboratories supported by the U.S. Department of Energy, DOE, under contract number DE-AC04-76DP00789  相似文献   

5.
Ternary clinopyroxenes have been synthesized in the plane Di-CaTs-En. The variation of their crystallographic parameters has allowed the development of three determinative grids, which utilize b-, 2 22¯1–2 310 and 2 330 –2 202 respectively. These grids show significant differences in comparison with the previously proposed ones. Present results have been used to review some data on clinopyroxenes equilibria in the system CaO-MgO-Al2O3-SiO2 (CMAS) (Biggar 1969; Bruno and Facchinelli 1978; Herzberg 1978; O'Hara and Schairer 1963; Boyd 1969). In particular the petrogenic grid correlating P, T and CaTs content of clinopyroxenes in spinel-lherzolite assemblage (Herzberg 1978) has been revised, and consequently equilibrium temperatures rise by one hundred degrees.  相似文献   

6.
The marble- and metavolcanic-hosted Pb–Zn–(Ag–Sb–As) deposits of the Hällefors district, located in the Palaeoproterozoic Bergslagen ore province, south central Sweden, comprise both stratabound sulphides and discordant, Ag-rich sulphide–sulphosalt veins. The complex sulphide–sulphosalt assemblages of the Alfrida-Jan Olof mines at Hällefors were investigated by a combination of ore microscopy, electron-microprobe analysis, and in situ laser sulphur isotope analysis. The massive ore is characterized by positive and homogeneous 34S (+1.4 to +2.7 V-CDT), whereas vein-hosted sulphides and sulphosalts exhibit similar, but generally less positive to slightly negative 34S (–0.6 to +2.0). Comparison of the observed ore mineral assemblages with calculated phase equilibria in the system Fe–As–S–O–H and isotopic fractionation as a function of temperature, oxygen fugacity and pH indicates that the vein-type mineralization was formed from relatively reduced and rather alkaline hydrothermal fluids. At these reduced conditions, fractionation of 34S via changes of fO2 is insignificant, and thus the isotopic signatures of the vein minerals directly reflect the composition of the sulphur source. We therefore conclude that the vein-type ore essentially inherited the sulphur isotope signature from the pre-existing massive sulphides via metamorphic remobilization at approximately 300–400°C and 2–3 kbar. Scales of remobilization observable are on the order of about 5 mm to 30 cm. Overall, the sulphide–sulphosalt assemblages from the Alfrida-Jan Olof mines exhibit 34S values which are comparable to a majority of metasupracrustal-hosted deposits in the Bergslagen province, thereby suggesting a common origin from ca. 1.90–1.88 Ga volcanic-hydrothermal processes.Editorial handling: S. Nicolescu  相似文献   

7.
We have developed a new technique for the experimental determination of the activities of oxide components in melts and minerals using the equilibrium between Pd alloy, oxygen, and the oxide component in the sample of interest. If a melt or mineral sample is equilibrated with Pd metal at fixed P, T, and f O 2, a small amount of each constituent oxide will reduce to metal and dissolve into the Pd, forming an alloy. Due to the extraordinary stability of dilute alloys of Pd with Mg, Al, and Si, these metals dissolve into the Pd in amounts easily measured with the electron microprobe at f O 2 s that can be achieved with conventional gas-mixing techniques. We determined the activity-composition relations for Pd–Mg, –Al, and –Si alloys by equilibrating Pd at fixed f O 2and T with periclase, corundum, and cristobalite (a oxide1). Because Mg, Al, and Si have constant activity coefficients in Pd at low concentrations, the activity of the oxide of each metal is a simple function of the ratio of the concentration of the metal in Pd in equilibrium with the sample to that in Pd in equilibrium with the pure oxide. Therefore, if Pd plus a melt or mineral and Pd plus pure oxide standards are equilibrated simultaneously at fixed T and f O 2, the precision of the analytical technique is the major limitation on the determination of oxide activities. We used Pd-oxide equilibration to explore activities in silicate melts analogous to Type B Ca–Al-rich inclusions (CAIs) from carbonaceous chondrites; the measured activities deviate systematically from model valves but agree to within 1–30%. The activities imply that Type B CAIs did not condense as liquids from a gas of solar composition, and that only very aluminous compositions are potential liquid condensates from the solar nebula. We also used Pd-oxide equilibration to determine the free energy of formation from the oxides, G f /O , of the spinel end-member MgAl2O4 at 1150 to 1400°C to a precision of 2–19% (1). Because the technique reflects equilibration at high temperature, the G f /O s accurately represent the mineral with equilibrium Mg–Al disorder at temperature, a feature not true of drop calorimetric results because of partial reordering during quenching. Our results indicate more negative G f Emphasis>/O and hence higher entropy of formation, S f Emphasis>/O , than given in most compilations of thermodynamic data for spinel.Division of Geological and Planetary Sciences Contribution #5278  相似文献   

8.
A revised equation is proposed to represent and extrapolate the heat capacity of minerals as a function of temperature: C P=k0+k1 T –0.5+k2 T –2+k3 T –3 (where k1, k20).This equation reproduces calorimetric data within the estimated precision of the measurements, and results in residuals for most minerals that are randomly distributed as a function of temperature. Regression residuals are generally slightly greater than those calculated with the five parameter equation proposed by Haas and Fisher (1976), but are significantly lower than those calculated with the three parameter equation of Maier and Kelley (1932).The revised equation ensures that heat capacity approaches the high temperature limit predicted by lattice vibrational theory (C P=3R+2VT/). For 16 minerals for which and have been measured, the average C Pat 3,000 K calculated with the theoretically derived equation ranges from 26.8±0.8 to 29.3±1.9 J/(afu·K) (afu = atoms per formula unit), depending on the assumed temperature dependence of . For 91 minerals for which calorimetric data above 400 K are available, the average C Pat 3,000 K calculated with our equation is 28.3±2.0 J/(afu·K). This agreement suggests that heat capacity extrapolations should be reliable to considerably higher temperatures than those at which calorimetric data are available, so that thermodynamic calculations can be applied with confidence to a variety of high temperature petrologic problems.Available calorimetric data above 250 K are fit with the revised equation, and derived coefficients are presented for 99 minerals of geologic interest. The heat capacity of other minerals can be estimated (generally within 2%) by summation of tabulated oxide component C Pcoefficients which were obtained by least squares regression of this data base.  相似文献   

9.
Oxygen isotopic analyses of 95 metamorphic and igneous rocks and minerals from a Hercynian metamorphic sequence in the Trois Seigneurs Massif, Pyrenees, France, indicate that all lithologies at higher metamorphic grades than the andalusite in isograd have relatively homogeneous 18O values. The extent of homogenization is shown by the similarity of 18O values in metacarbonates, metapelites and granitic rocks (+11 to +13), and by the narrow range of oxygen isotopic composition shown by quartz from these lithologies. These values contrast with the 18O values of metapelites of lower metamorphic grade ( 18O about +15). Homogenization was caused by a pervasive influx of hydrous fluid. Mass-balance calculations imply that the fluid influx was so large that its source was probably high-level groundwaters or connate formation water. Hydrogen isotopic analyses of muscovite from various lithologies are uniform and exceptionally heavy at D=–25 to –30, suggesting a seawater origin. Many lines of petrological evidence from the area independently suggest that metamorphism and anatexis of pelitic metasediment occurred at depths of 6–12 km in the presence of this water-rich fluid, the composition of which was externally buffered. Deep penetration of surface waters in such environments has been hitherto unrecognized, and may be a key factor in promoting major anatexis of the continental crust at shallow depth. Three types of granitoid are exposed in the area. The leucogranites and the biotite granite-quartz diorite are both mainly derived from fusion of local Paleozoic pelitic metasediment, because all these rocks have similar whole-rock 18O values (+11 to +13). The post-metamorphic biotite granodiorite has a distinctly different 18O (+9.5 to +10.0) and was probably derived from a deeper level in the crust. Rare mafic xenoliths within the deeper parts of the biotite granite-quartz diorite also have different 18O (+8.0 to +8.5) and possibly represent input of mantle derived magma, which may have provided a heat source for the metamorphism.Contribution No. 4192, Publications of the Division of Geological and Planetary Sciences, California Institute of Technology  相似文献   

10.
Graphite occurs in two distinct textural varieties in syntectonic granitoids of the New Hampshire Plutonic Series and in associated metasedimentary wall rocks. Textural characteristics indicate that coarse graphite flakes were present at an early stage of crystallization of the igneous rocks and thus may represent xenocrystic material assimilated from the wall rocks. The range of 13C values determined for flake graphite in the igneous rocks (–26.5 to –13.8) overlaps the range for flake graphite in the wall rocks (–26.0 to –16.7), and spatial correlation of some 13C values in the plutons and wall rocks supports the assimilation mechanism. The textures of fine-grained irregular aggregates or spherulites of graphite, on the other hand, indicate that they formed along with secondary hydrous silicates and carbonates during retrograde reactions between the primary silicates and a carbon-bearing aqueous fluid phase. Relative to coexisting flake graphite, spherulitic graphite shows isotopic shifts ranging from 1.9 higher to 1.4 lower in both igneous and metasedimentary samples.The observed isotopic shifts and the association of spherulitic graphite with hydrous silicates are explained by dehydration of C-O-H fluids initially on or near the graphite saturation boundary. Hydration of silicates causes dehydration of the fluid and drives the fluid composition to the graphite saturation surface. Continued dehydration of the fluid then requires coprecipitation of secondary graphite and hydrous silicates and drives the fluid toward either higher or lower CO2/CH4 depending upon the inital bulk composition. Isotopic shifts in graphite formed at successive reaction stages are explained by fractionation of 13C between secondary graphite and the evolving fluid because 13C is preferentially concentrated into CO2 relative to CH4.Epigenetic graphite in two vein deposits assiciated with the contacts of these igneous rocks is generally enriched in 13C (–15.7 to –11.6) relative to both the igneous and wall-rock 13C values. Values of 13C vary by up to 3.4 within veins, with samples taken only 3 cm apart differing by 2.0 These variations in 13C correlate with textural evidence showing sequential deposition of different generations of graphite in the veins from fluids which differed in proportions of carbon species or isotopic composition (or both).  相似文献   

11.
The Hongan Block (western Dabieshan) exposes a series of HP/UHP metamorphic rocks, with a S-to-N distribution from blueschist–greenschist, kyanite-free, to kyanite- and coesite-bearing eclogites. The available age data are inconclusive that hinder our understanding of the tectonic evolution of the Block. The metamorphic temperatures in the Hongan Block (Tmeta 700 to 500°C) are lower by 50–150°C than that of the Dabie and Sulu terranes. In this work, we undertook new trace element and Sr–Nd–O isotopic analyses on minerals in order to gain more insight into the geochronological problems. The results are as follows: (1) Trace element distribution patterns suggest that garnet and omphacite in many cases are out of chemical equilibrium; and the presence of high-temperature LREE-rich mineral inclusions (e.g., epidote) in garnet and omphacite has contributed to isotope disequilibrium. (2) Sm–Nd isotope analyses yielded no isochron ages for the Hongan eclogites. (3) Rb–Sr isotope analyses gave mixed results; in some cases, coexisting minerals are completely out of isotope equilibrium, and in others, isochron relationship is established, yielding ages from 210 Ma to 225 Ma. The pattern of Rb–Sr isotope disequilibrium appears to be independent of the petrological and O-isotope temperatures. (4) In contrast to the unequilibrated Sm–Nd isotopic systems, oxygen isotopes of the eclogite minerals seem to have attained isotope equilibrium or near-equilibrium. Oxygen isotope temperatures are comparable with petrological temperatures. However, this is an apparent feature due to mass balance constraints. (5) Whole-rock 18O values show a large variation from +10 to –8, suggesting that their protoliths have undergone very different processes of water–rock interaction. In view of the overall geochronological information, we conclude that the HP/UHP metamorphism in the Hongan Block took place in the Triassic at about 220–230 Ma, as observed in the Dabie and Sulu terranes. The significance of published Paleozoic dates (450–300 Ma) for the Xiongdian eclogite is not clear. However, any hypotheses advocating two periods of UHP metamorphic events for the same tectonic unit or in the same locality are not constrained by the geochronological data.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

12.
The mineral paragonite, NaAl2[AlSi3O10 (OH)]2, has been synthesized on its own composition starting from a variety of different materials. Indexed powder data and refined cell parameters are given for both the 1M and 2M1 polymorphs obtained. The upper stability limit of paragonite is marked by its breakdown to albite + corundum + vapour. The univariant equilibria pertaining to this reaction have been established by reversing the reaction at six different pressures, the equilibrium curve running through the following intervals: 1 kb: 530°–550° C 2 kb: 555°–575° C 3 kb: 580°–600° C 5kb: 625°–640° C 6 kb: 620°–650° C 7 kb: 650°–670° C.Comparison with the upper stability limit of muscovite (Velde, 1966) shows that paragonite has a notably lower thermal stability thus explaining the field observation that paragonite is absent in many higher grade metamorphic rocks in which muscovite is still stable.The enthalpy and entropy of the paragonite breakdown reaction have been estimated. Since intermediate albites of varying structural states are in equilibrium with paragonite, corundum and H2O along the univariant equilibrium curve, two sets of data pertaining to the entropy of paragonite (S 298 0 ) as well as the enthalpy ( H f,298 0 ) and Gibbs free energy ( G f,298 0 ) of its formation were computed, assuming (1) high albite and (2) low albite as the equilibrium phase. The values are: (1) (2) S 298 0 67.8±3.9 cal deg–1 gfw–1 63.7±3.9 cal deg–1 gfw–1 H f,298 0 –1417.9±2.7 kcal gfw–1 –1420.2±2.6 kcal gfw–1 G f,298 0 –1327.4±4.0 kcal gfw–1 –1328.5±4.0 kcal gfw–1.Adapted from a part of the author's Habilitationsschrift accepted by the Ruhr University, Bochum (Chatterjee, 1968).  相似文献   

13.
Ijolites from the type locality at Iivaara, Finland, form a continuous series of magmatic rocks ranging from urtites to melteigites. Both Ni and Cr, but also the large ion lithophile light-rare-earth elements, Zr, Hf, Nb, Rb, Sr and Ba are low in concentration. The Nd contents equal those of the neighboring fenites, Sr is distinctly less abundant, and there is no significant Eu anomaly. The 143Nd/144Nd and 87Sr/86Sr of the ijolites demonstrate a systematic covariation between the data of carbonaties from the Kola Alkaline Province (Sr – 13.8, Nd + 5.6) and those of the fenites at Iivaara (Sr + 132.9, Nd – 24.7) with Sr varying from +0.3 to +23.9 and Nd varying from-9.2 to-19.3. The trace element abundances and the isotopic data give evidence for a crystallization of the rocks from a liquid generated by melting (rheomorphism) of high-grade fenitized country rocks rather than from a primary mantle-derived magma which was contaminated at crustal levels. The fenitization of wall rocks preceding the ijolite magma formation was clement selective. Mixing of elements during the fenitization process between the designated components carbonatite (or derivative fenitizing fluid) and wall rock should have been dynamical depending on the stability of the wall rock mineral assemblages in contact with the fenitizing fluids, the migration velocity of these fluids, and their capacity of the respective elements. Such dynamical mixing explains best the variation of the isotope ratios withont systematic covariation of the respective element concentrations.  相似文献   

14.
Two parameters GO2– and HO2– are defined as the differences between respectively the Gibbs free energies and the enthalpies of formation of an oxide and its corresponding aqueous cation. The Gibbs free energies and enthalpies of formation of phosphates from their consituent oxides are shown to be linear functions of respectively GO2– and HO2– of their constituent cations.  相似文献   

15.
Late Hercynian U-bearing carbonate veins within the metamorphic complex of La Lauzière are characterized by two parageneses. The first is dominated by dolomite or ankerite and the second by calcite and pitchblende. Fluids trapped in the dolomites and ankerites at 350–400° C are saline waters (20 to 15 wt % eq. NaCl) with D –34 to –49. In the calcite they are less saline (17 to 8 wt % eq. NaCl) and trapped at 300–350° C with D –50 to –65. All fluids contain trace N2, CO2 and probably CH4. The carbonates have 13C –8 to –14. and derived their carbon from organic matter. Evolution of the physico-chemical conditions from dolomite (ankerite) to calcite deposition was progressive.H and O-isotope studies indicate the involvement of two externally derived fluids during vein development. A D-rich ( –35) low fO2, saline fluid is interpreted to have come from underlying sediments and entered the hotter overlying metamorphic slab and mixed with more oxidizing and less saline U bearing meteoric waters during regional uplift. This evidence for a sedimentary formation water source for the deep fluid implies that the metamorphic complex overthrusted sedimentary formations during the Late-Hercynian.  相似文献   

16.
Local structural heterogeneities in crystals of the binary grossular–spessartine solid solution have been analyzed using powder IR absorption spectroscopy. Wavenumber shifts of the highest energy Si–O stretching mode in spectra collected at room temperature are consistent with variations in Si–O bond length from structural data. They show a smaller positive deviation from linearity across the join than is seen for the grossular–pyrope and grossular–almandine binaries. The effective line widths, corr, of three selected wavenumber regions all deviate positively from linear behaviour. An empirical calibration of this excess spectroscopic property, obtained by comparison with calorimetric enthalpy of mixing data, gives an estimate for the symmetric Margules parameter of WHspec = 14.4(7) kJ mol–1 in Hmix = WHspecXGrXSp. WHspec values derived on the same basis for four aluminosilicate garnet solid solutions analyzed by IR spectroscopy vary with V2, where V represents the difference in molar volume between the end members of each binary system. Measurements of lattice parameters and IR spectra were made over a range of temperatures for seven samples with different compositions. Positive excess molar volumes of mixing at low temperature (30 K) may be larger than the excess molar volumes at room temperature. The saturation temperatures of the molar volumes show no correlation with composition, however, in contrast with what had been expected on the basis of data for the grossular–pyrope binary. Saturation temperatures for spectroscopic parameters and lattice parameters of samples with compositions Gr15Sp85 and Gr60Sp40 seem to be outliers in all experiments. It is concluded that the data hint at systematic changes in saturation temperatures across the solid solution, with implications for both the excess entropy of mixing and the excess volume of mixing, but more precise data or further sample characterization are needed to prove that this composition dependence is real in garnet solid solutions.  相似文献   

17.
Late Cretaceous, granitic pegmatite-aplite dikes in southern California have been known for gem-quality minerals and as a commercial source of lithium. Minerals, whole-rock samples, and inclusion fluids from nine of these dikes and from associated wall rocks have been analyzed for their oxygen, hydrogen, and carbon isotope compositions to ascertain the origins and thermal histories of the dikes. Oxygen isotope geothermometry used in combination with thermometric data from primary fluid inclusions enabled the determination of the pressure regime during crystallization.Two groups of dikes are evident from their oxygen isotope compositions (18Oqtz+10.5 in Group A, and +8.5 in Group B). Prior to the end of crystallization, Group A pegmatites had already extensively exchanged oxygen with their wall rocks, while Group B dikes may represent a closer approximation to the original isotopic composition of the pegmatite melts. Oxygen isotope fractionations between minerals are similar in all dikes and indicate that the pegmatites were emplaced at temperatures of about 730 ° to 700 ° C. Supersolidus crystallization began with the basal aplite zone and ended with formation of quench aplite in the pocket zone, nearly to 565 ° C. Subsolidus formation of gem-bearing pockets took place over a relatively narrow temperature range of about 40 ° C (approximately 565–525 ° C). Nearly closed-system crystallization is indicated.Hornblende in gabbroic and noritic wall rocks (Dw.r. = –90 to –130) in the Mesa Grande district crystallized in the presence of, or exchanged hydrogen with, meteoric water (D –90) prior to the emplacement of the pegmatite dikes. Magmatic water was subsequently added to the wall rocks adjacent to the pegmatites.Groups A and B pegmatites cannot be distinguished on the basis of their hydrogen isotope compositions. A decrease in D of muscovite inward from the walls of the dikes reflects a decrease in temperature. D values of H2O from fluid inclusions are: –50 to –73 (aplite and pegmatite zones); –62 to –75 (pocket quartz: Tourmaline Queen and Stewart dikes); and –50 ± 4 (pocket quartz from many dikes). The average 13C of juvenile CO2 in fluid inclusions in Group B pegmatites is –7.9. In Group A pegmatities, 13C of CO2 is more negative (–10 to –15.6), due to exchange of C with wall rocks and/or loss of 13C-enriched CO2 to an exsolving vapor phase.Pressures during crystallization of the pockets were on the order of 2,100 bars, and may have increased slightly during pocket growth. A depth of formation of at least 6.8 km (sp. gr. of over burden = 3.0, and P fiuid=P load) is indicated, and a rate of uplift of 0.07 cm/yr. follows from available geochronologic data.  相似文献   

18.
A detailed isotopic study of minerals and whole rocks from the Cretaceous Oka complex, Quebec, Canada, shows a very small variation in initial Nd and Sr isotopic compositions. Assuming an age of 109 Ma for the complex, apatite, calcite, garnet, melilite, monticellite, olivine and pyroxene and whole rocks yield a range for initial 87Sr/86Sr of 0.70323–0.70333; and for initial 143Nd/144Nd of 0.51271–0.51284 ( SR(T)= –14.8 to –16.2; Nd(T)=+4.1 to +6.6). The negative SR and positive Nd indicate derivation of the Nd and Sr from a source with a time-integrated depletion in the large-ion lithophile (LIL) elements. This agrees with data from other Canadian carbonatites and confirms that a large part of the Canadian Shield is underlain by a source region depleted in the LIL elements. The new data from Oka suggest that the depleted source may have remained coupled to the continental crust until recent time.  相似文献   

19.
The aim of this paper is to determine a relationship between the wavenumbers of the first OH-stretching overtones (W2OH) and the wavenumbers of the OH-stretching fundamentals (WOH) to help to interpret the near-infrared (NIR) spectra. The first overtone (2OH) bands appear at wavenumbers less than twice those of the fundamental bands (OH), due to the anharmonic character of vibrations, X = W2OH/2 - WOH, with X being the anharmonicity constant. Talc samples with various crystal chemistries are used to solve the equation and the experimental data are well fitted with X = –85.6 cm–1. As far as the authors are aware, it is the first time that the anharmonicity constant for the OH-stretching vibrations is determined for phyllosilicates. The anharmonicity constant remains almost unchanged for several types of clay samples. Therefore the relation, established from talc samples because their absorption bands are narrow and their wavenumber range of OH vibrations is wide, can be used for any other clay minerals.  相似文献   

20.
A new thermodynamic formulation of the Fe–Ti oxide geothermometer/oxygen barometer is developed. The method is based upon recently calibrated models for spinel solid solutions in the quinary system (Fe2+, Mg)(Al,Fe3+,Cr)2O4–(Fe2+, Mg)2TiO4 by Sack and Ghiorso, and rhombohedral oxides in the quaternary system (Fe2+,Mg,Mn)TiO3–Fe2O3 (this paper). The formulation is internally consistent with thermodynamic models for (Fe2+,Mg)-olivine and -orthopyroxene solid solutions and end-member thermodynamic properties tabulated by Berman. The constituent expressions account for compositional and temperature dependent cation ordering and reproduce miscibility gap features in all of the component binaries. The calibration does not account for the excess Gibbs energy resulting from compositional and temperature dependent magnetic ordering in either phase. This limits application of the method to assemblages that equilibrated at temperatures above 600° C. Practical implementation of the proposed geothermometer/oxygen barometer requires minimal use of projection algorthms in accommodating compositions of naturally occurring phases. The new formulation is applied to the estimation of temperature and oxygen fugacity in a wide variety of intermediate to silicic volcanic rocks. In combination with previous work on olivine and orthopyroxene thermodynamics, equilibration pressures are computed for a subset of these volcanics that contain the assemblage quartz, oxides and either ferromagnesian silicate. The calculated log10 f O 2-T relations are reflected in coexisting ferromagnesian mineral assemblages. Volcanics with the lowest relative oxygen fugacity (log10 f O 2) are characterized by the assemblage olivine-quartz, those with slightly higher log10 f O 2 s, by the assemblage orthopyroxene-quartz. The sequence proceeds with the necessary phases biotite-feldspar, then hornblende-quartz-clinopyroxene, and finally at the highest log10 f O 2 s, sphene-quartz-clinopyroxene. Quantitative analysis of these trends, utilizing thermodynamic data for the constituent phases, establishes that, in most cases, the T-log10 f O 2value computed from the oxides is consistent with the compositions of coexisting silicate phases, indicating that phenocryst equilibrium was achieved prior to eruption. There is, however, considerable evidence of oxide-silicate disequilibrium in samples collected from more slowly cooled domes and obsidians. In addition, T-log10 f O 2trends from volcanic rocks that contain biotite and orthopyroxene are interpreted to imply a condition of Fe2+–Mg exchange disequilibrium between orthopyroxene and coexisting ferromagnesian silicates and melt. It is suspected that many biotite-feldspar-quartz-orthopyroxene bearing low temperature volcanic rocks inherit orthopyroxene xenocrysts which crystallized earlier in the cooling history of the magma body.The problem is probably at least as complex as that of the feldspars... A.F. Buddington (1956)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号