首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Great Sand Dunes National Park and Preserve (GSDNPP) in the San Luis Valley, Colorado, contains a variety of eolian landforms that reflect Holocene drought variability. The most spectacular is a dune mass banked against the Sangre de Cristo Mountains, which is fronted by an extensive sand sheet with stabilized parabolic dunes. Stratigraphic exposures of parabolic dunes and associated luminescence dating of quartz grains by single-aliquot regeneration (SAR) protocols indicate eolian deposition of unknown magnitude occurred ca. 1290-940, 715 ± 80, 320 ± 30, and 200-120 yr ago and in the 20th century. There are 11 drought intervals inferred from the tree-ring record in the past 1300 yr at GSDNPP potentially associated with dune movement, though only five eolian depositional events are currently recognized in the stratigraphic record. There is evidence for eolian transport associated with dune movement in the 13th century, which may coincide with the “Great Drought”, a 26-yr-long dry interval identified in the tree ring record, and associated with migration of Anasazi people from the Four Corners areas to wetter areas in southern New Mexico. This nascent chronology indicates that the transport of eolian sand across San Luis Valley was episodic in the late Holocene with appreciable dune migration in the 8th, 10-13th, and 19th centuries, which ultimately nourished the dune mass against the Sangre de Cristo Mountains.  相似文献   

2.
Mercury concentrations are clearly elevated in the surface and sub-surface layers of peat cores collected from a minerotrophic (“groundwater-fed”) fen in southern Greenland (GL) and an ombrotrophic (“rainwater-fed”) bog in Denmark (DK). Using 14C to precisely date samples since ca. AD 1950 using the “atmospheric bomb pulse,” the chronology of Hg accumulation in GL is remarkably similar to the bog in DK where Hg was supplied only by atmospheric deposition: this suggests not only that Hg has been supplied to the surface layers of the minerotrophic core (GL) primarily by atmospheric inputs, but also that the peat cores have preserved a consistent record of the changing rates of atmospheric Hg accumulation. The lowest Hg fluxes in the GL core (0.3 to 0.5 μg/m2/yr) were found in peats dating from AD 550 to AD 975, compared to the maximum of 164 μg/m2/yr in AD 1953. Atmospheric Hg accumulation rates have since declined, with the value for 1995 (14 μg/m2/yr) comparable to the value for 1995 obtained by published studies of atmospheric transport modelling (12 μg/m2/yr).The greatest rates of atmospheric Hg accumulation in the DK core are also found in the sample dating from AD 1953 and are comparable in magnitude (184 μg/m2/yr) to the GL core; again, the fluxes have since gone into strong decline. The accumulation rates recorded by the peat core for AD 1994 (14 μg/m2/yr) are also comparable to the value for 1995 obtained by atmospheric transport modelling (18 μg/m2/yr). Comparing the Pb/Ti and As/Ti ratios of the DK samples with the corresponding crustal ratios (or “natural background values” for preanthropogenic peat) shows that the samples dating from 1953 also contain the maximum concentration of “excess” Pb and As. The synchroneity of the enrichments of all three elements (Hg, Pb, and As) suggests a common source, with coal-burning the most likely candidate. Independent support for this interpretation was obtained from the Pb isotope data (206Pb/207Pb = 1.1481 ± 0.0002 in the leached fraction and 1.1505 ± 0.0002 in the residual fraction) which is too radiogenic to be explained in terms of gasoline lead alone, but compares well with values for U.K. coals. In contrast, the lowest values for 206Pb/207Pb in the DK profile (1.1370 ± 0.0003 in the leached fraction and 1.1408 ± 0.0003 in the residual fraction) are found in the sample dating from AD 1979: this shows that the maximum contribution of leaded gasoline occurred approximately 25 yr after the zenith in total anthropogenic Pb deposition.  相似文献   

3.
This study evaluates the accuracy of optically stimulated luminescence to date well-preserved strandline sequences at Manistique/Thompson bay (Lake Michigan), and Tahquamenon and Grand Traverse Bays (Lake Superior) that span the past ∼4500 yr. The single aliquot regeneration (SAR) method is applied to produce absolute ages for littoral and eolian sediments. SAR ages are compared against AMS and conventional 14C ages on swale organics. Modern littoral and eolian sediments yield SAR ages <100 yr indicating near, if not complete, solar resetting of luminescence prior to deposition. Beach ridges that yield SAR ages <2000 yr show general agreement with corresponding 14C ages on swale organics. Significant variability in 14C ages >2000 cal yr B.P. complicates comparison to SAR ages at all sites. However, a SAR age of 4280 ± 390 yr (UIC913) on ridge77 at Tahquamenon Bay is consistent with regional regression from the high lake level of the Nipissing II phase ca. 4500 cal yr B.P. SAR ages indicate a decrease in ridge formation rate after ∼1500 yr ago, likely reflecting separation of Lake Superior from lakes Huron and Michigan. This study shows that SAR is a credible alternative to 14C methods for dating littoral and eolian landforms in Great Lakes and other coastal strandplains where 14C methods prove problematic.  相似文献   

4.
Eolian sediments are common within the middle Gila River Valley, southern Arizona, and reflect variability in eolian and fluvial processes during the late Holocene. This study focuses on deciphering the stratigraphic record of eolian deposition and associated luminescence dating of quartz extracts by single aliquot regeneration (SAR) protocols. Stratigraphic assessment coupled with luminescence ages indicates that there are four broad eolian depositional events at ca. 3145 ± 220 yr, 1950-1360 yr, 800 ± 100 yr, and 690-315 yr. This nascent chronology, correlated with regional archeological evidence and paleoclimate proxy datasets, leads to two general conclusions: (1) loess deposits, transverse-dune formation and sand-sheet deposition in the late Holocene are probably linked to flow variability of the Gila River, though the last two events are concordant with regional megadroughts; and (2) the stability of eolian landforms since the 19th century reflects the lack of eolian sediment supply during a period of fluvial incision, resulting in Entisol formation on dunes. The prime catalyst of eolian activity during the late Holocene is inferred to be sediment supply, driven by climate periodicity and variable flow within the Gila River catchment.  相似文献   

5.
Dating deposits in caves formed by rivers may yield insight into rates and processes of bedrock incision. Three cave passages at different levels have developed in the walls of the Qianyou River valley in the Qinling mountains, south of the city of Xian, China. Twelve speleothem samples near the position of palaeowater tables in three cave passages are dated by the 230Th dating method. The results show that the river cut down at the rate of 0.23 ± 0.02 mm/yr from 358,000 ± 38,000 to 247,000 ± 28,000 yr ago, 0.19 ± 0.03 mm/yr from 247,000 ± 28,000 to 118,000 ± 19,000 yr ago, and 0.51 ± 0.08 mm/yr from 118,000 ± 19,000 yr ago until today. These fall very close to the glacial-interglacial transition following marine oxygen isotope stages 10, 8, and 6, respectively. The increase in downcutting rates during the interglacial period is consistent with warm, wet weather, increasing rates of erosion. This may lead us toward an underlying mechanism for modulating incision that is not in a direct response to the presence of headwater glaciers.  相似文献   

6.
A 90,000-yr record of environmental change before 18,000 cal yr B.P. has been constructed using pollen analyses from a sediment core obtained from Salar de Uyuni (3653 m above sea level) on the Bolivian Altiplano. The sequence consists of alternating mud and salt, which reflect shifts between wet and dry periods. Low abundances of aquatic species between 108,000 and 50,000 yr ago (such as Myriophyllum and Isoëtes) and marked fluctuations in Pediastrum suggest generally dry conditions dominated by saltpans. Between 50,000 yr ago and 36,000 cal yr B.P., lacustrine sediments become increasingly dominant. The transition to the formation of paleolake “Minchin” begins with marked rises in Isoëtes and Myriophyllum, suggesting a lake of moderate depth. Similarly, between 36,000 and 26,000 cal yr B.P., the transition to paleolake Tauca is also initiated by rises in Isoëtes and Myriophyllum; the sustained presence of Isoëtes indicates the development of flooded littoral communities associated with a lake maintained at a higher water level. Polylepis tarapacana-dominated communities were probably an important component of the Altiplano terrestrial vegetation during much of the Last Glacial Maximum (LGM) and previous wet phases.  相似文献   

7.
Thermoluminescence (TL) and infrared-stimulated luminescence (IRSL) sediment-dating methods have been applied to paleosol- and tephra-bearing loess sequences younger than marine oxygen isotope stage (MIS) 7 at three important sites. TL ages indicate the development of significant paleosols ∼75,000 and ∼30,000 yr ago in the loess sequence at the Gold Hill site. Relatively minor soil development occurred ∼70,000 and ∼48,000 yr ago. Like the ∼75,000-yr-old soil, the 30,000-yr-old soil is apparently of global extent, and consistent in timing with inferred warm intervals elsewhere (e.g., Greenland, Europe, western and central China). At Birch Hill, replicate TL dating of primary loess combined with two earlier TL results from the same site, and with an earlier mean fission-track-glass-shard age of 140,000 ± 10,000 yr for the associated Old Crow tephra, yield a more precise numeric age of 142,300 ± 6600 yr for this Alaska/Yukon chronostratigraphic marker ash bed. Three of the TL ages at the Halfway House site are difficult to interpret, but combined with other evidence, they indicate: (1) the upper 5-6 m of loess from Halfway House is not part of the Gold Hill Loess (equivalent to pre-MIS 5 age) as long thought by T.L. Péwé, but rather is much younger; (2) the regionally significant variegated tephra, found in the Fairbanks and Klondike areas and previously thought to be older than MIS 5, has an age of 77,800 ± 4100 yr (late MIS 5).  相似文献   

8.
A detailed study of the Duvanny Yar section in the Kolyma Lowland (Yakutia) provides the most extensive knowledge to date about late-Pleistocene soil formation processes and environments in the North–East Siberian Arctic. Late-Quaternary palaeoenvironmental changes were reconstructed using paleopedological data and a range of palaeoecological bio-indicators (palynomorphs, plant macrofossils and insects). The frozen sediments representing marine isotope stage 3 (MIS-3), which encompasses the Karginsky interstadial, include profiles of four palaeosols of different ages. The oldest palaeosol is early Karginskian, and three overlying soil horizons represent a late-Karginskian pedocomplex. Palaeopedological data indicate a change of from synlithogenic soil formation processes to epigenic ones during these intervals. The intervening periods of synlithogenic pedogenesis were accompanied by active accumulation of eolian deposits. The Earlier Karginskian period of pedogenesis occurred in the absence of eolian sedimentation and when summer conditions were warm. The wide spectrum of peaty and peaty-gley soils observed in the late-Karginskian deposits developed under conditions of progressive cooling. The structure and content of fossil rodent burrows dated to approximately 30 000 yr BP from frozen late-Pleistocene deposits at Duvanny Yar indicate an arid and severe climate, a depth of active layer of 60–80 cm, and a wide distribution of disturbed habitats with pioneer and steppe vegetation.  相似文献   

9.
Sediment and groundwater profiles were compared in two villages of Bangladesh to understand the geochemical and hydrogeological factors that regulate dissolved As concentrations in groundwater. In both villages, fine-grained sediment layers separate shallow aquifers (< 28 m) high in As from deeper aquifers (40-90 m) containing < 10 μg/L As. In one village (Dari), radiocarbon dating indicates deposition of the deeper aquifer sediments > 50 ka ago and a groundwater age of thousands of years. In the other village (Bay), the sediment is < 20 ka old down to 90 m and the deeper aquifer groundwater is younger, on the order of hundreds of years. The shallow aquifers in both villages that are high in As contain bomb-3H and bomb-14C, indicating recent recharge. The major and minor ion compositions of the shallow and deeper aquifers also differ significantly. Deeper aquifer water is of the Na+-HCO3- type, with relatively little dissolved NH4+ (76 ± 192 μmol/L), Fe (27 ± 43 μmol/L) and Mn (3 ± 2 μmol/L). In contrast, shallow aquifer water is of the Ca2+-Mg2+-HCO3- type, with elevated concentrations of dissolved NH4+ (306 ± 355 μmol/L), Fe (191 ± 73 μmol/L), and Mn (27 ± 43 μmol/L). In both villages, the quantity of As extractable from deeper aquifer sands with a 1 mol/L phosphate solution (0.2 ± 0.3 mg/kg, n = 12; 0.1 ± 0.1 mg/kg, n = 5) is 1 order of magnitude lower than P-extractable As from shallow deposits (1.7 ± 1.2 mg/kg, n = 9; 1.4 ± 2.0 mg/kg, n = 11). The differences suggest that the concentration of P-extractable As in the sediment is a factor controlling the concentration of As in groundwater. Low P-extractable As levels are observed in both deeper aquifers that are low in As, even though there is a large difference in the time of deposition of these aquifers in the two villages. The geochemical data and hydrographs presented in this study suggest that both Holocene and Pleistocene deeper aquifers that are low in As should be a viable source of drinking water as long as withdrawals do not exceed recharge rates of ∼1 cm/yr.  相似文献   

10.
Multiple lines of evidence show that the Rb-Sr, Sm-Nd, and Ar-Ar isotopic systems individually give robust crystallization ages for basaltic (or diabasic) shergottite Northwest Africa (NWA) 1460. In contrast to other shergottites, NWA 1460 exhibits minimal evidence of excess 40Ar, thus allowing an unambiguous determination of its Ar-Ar age. The concordant Rb-Sr, Sm-Nd, and Ar-Ar results for NWA 1460 define its crystallization age to be 346 ± 17 Ma (2σ). In combination with petrographic and trace element data for this specimen and paired meteorite NWA 480, these results strongly refute the suggestion by others that the shergottites are ∼4.1 Ga old. Current crystallization and cosmic-ray exposure (CRE) age data permit identification of a maximum of nine ejection events for Martian meteorites (numbering more than 50 unpaired specimens as of 2008) and plausibly as few as five such events. Although recent high resolution imaging of the Martian surface has identified limited areas of sparsely cratered terrains, the meteorite data suggest that either these areas are representative of larger areas from which the meteorites might come, or that the cratering chronology needs recalibration. Time-averaged 87Rb/86Sr = 0.16 for the mantle source of the parent magma of NWA 1460/480 over the ∼4.56 Ga age of the planet is consistent with previously estimated values for bulk silicate Mars in the range 0.13-0.16, and similar to values of ∼0.18 for the “lherzolitic” shergottites. Initial εNd for NWA 1460/480 at 350 ± 16 Ma ago was +10.6 ± 0.5, which implies a time-averaged 147Sm/144Nd of 0.217 in the Martian mantle prior to mafic melt extraction, similar to values of 0.211-0.216 for the “lherzolitic” shergottites. These time-averaged values do not imply a simple two-stage mantle/melt evolution, but must result from multiple episodes of melt extractions from the source regions. Much higher “late-stage” εNd values for the depleted shergottites imply similar processes carried to a greater degree. Thus, NWA 1460/480, the “lherzolitic” shergottites and perhaps EET 79001 give the best (albeit imperfect) estimate of the Sr- and Nd-isotopic characteristics of bulk silicate Mars.  相似文献   

11.
Detailed records of δ18O, δ13C, percentage and mass accumulation rate of CaCO3, and eolian percentage, mass accumulation rate, and grainsize generated for core RC11-210 from the equatorial Pacific reveal the timing of paleoclimatic events over the past 950,000 yr. The CaCO3 percentage record shows the standard Pacific correlation of high CaCO3 content with glacial periods, but displays a marked change of character about 490,000 yr ago with older stages showing much less variability. The carbonate mass flux record, however, does not show such a noticeable change. Sedimentation rates vary from about 0.5 to 3.0 cm/1000 yr and, during the past 490,000 yr, sections with enhanced sedimentation rates correspond to periods of high CaCO3 percentage. Eolian mass accumulation rates, an indication of the aridity of the source region, are usually higher during glacial times. Eolian grainsize, an indication of the intensity of atmospheric circulation, generally fluctuates at a higher frequency than the 100,000-yr glacial cycle. The mid-Brunhes climatic event centered at 300,000 yr ago appears as a 50,000-yr interval of low intensity and reduced variability of atmospheric circulation. Furthermore, the nature of this entire record changes then, with the younger portion indicating less variation in wind intensity than the older part of the record. The late Matuyama increase in amplitude of paleoclimatic signals begins 875,000 yr ago in the eolian record, 25,000 yr before the δ18O and CaCO3 percentage amplitude increases about 850,000 yr ago.  相似文献   

12.
The large (∼20‰) hydrogen isotopic gradient in surface waters of the northwest Atlantic Ocean is exploited to track changes in the source of alkenones to the Bermuda Rise sediment drift. Cultures of the predominant alkenone-producing coccolithophorid, E. huxleyi, were grown in deuterium-enriched seawater and shown to possess alkenones with a D/H ratio that closely tracked the water D/H ratio (r2 = 0.999, n = 5 isotopic enrichments) with a fractionation factor (α) between 0.732 and 0.775. A hydrogen isotopic depletion of -193 ± 3‰ (n = 9) was measured in alkenones from suspended particles relative to seawater in the subpolar and subtropical northwest Atlantic Ocean. This value was used to calculate the water δD values in which alkenones from Bermuda Rise sediment were synthesized, and by extension, the water mass in which they were produced. Applying this technique we find that 60% to 100% of the alkenones in late Holocene Bermuda Rise sediment were produced in deuterium-depleted subpolar water to the northwest of the drift. To reconcile values of the alkenone unsaturation ratio (Uk37), a widely used proxy for sea surface temperature, with the δD values of alkenones in late Holocene sediments from the Bermuda Rise at least three sources of sediment must be invoked: a cold, very isotopically depleted source, almost certain to be the Scotian Margin; a warm, moderately isotopically-depleted source, likely to be the northwestern edge of the subtropical gyre; and a cold, isotopically enriched source, which we hypothesize to be the subpolar waters overlying the main branch of North Atlantic Deep Water flowing southwest from the Nordic Seas.  相似文献   

13.
Sand-rich Holocene to modern clastic deposits in the eastern English Channel and the southern North Sea coasts of France and Belgium occur extensively as nearshore-sand bank, estuarine-tidal flat, aeolian dune and beach sub-environments. Sand samples (n = 665) collected from these deposits suggest the presence of three different populations: a largely dominant (83%) medium to fine quartz sand population (“b”), and finer- (14%) and coarser-grained (4%) populations (respectively “c” and “a”). The distribution of these populations among the four sub-environments reflects tide- and storm-dominated sorting and transport processes and a variable degree of mixing. These populations are derived from a mixture of very fine- to very coarse-grained fluvial, outwash and paraglacial sediments deposited on the beds of the eastern English Channel and southern North Sea during the late Pleistocene lowstand. The nearshore-sand bank environment, which also corresponds to the main offshore source area of the coastal deposits, exhibits population heterogeneity reflecting the variability of hydrodynamic conditions and sediment sorting in this zone. The nearshore topography of tidal ridges, banks and troughs in these tidal seas leads to variable bed and tide- and storm-induced shear stress conditions. These conditions only allow for the mobilisation and onshore transport of some of the finer fractions (populations “b” and “c”), leaving an offshore mixture of these finer populations with coarser, less mobilisable sediments (population “a”). Once in the coastal zone, these two finer populations undergo further hydrodynamic sorting and segregation. Variably sorted very fine sands to silts (population “c”) are trapped in the low-energy estuarine-tidal flat sub-environment, while the highly homogeneous population “b” is further sorted in aeolian dune and beach sub-environments. This sorting occurs via a coastal sand transport pathway linking the Somme estuary mouth to the southern North Sea bight where tidal range and wave energy decrease relative to the English Channel. Since this sand transport pathway enables longshore transport of hydrodynamically sorted medium to fine sand derived directly from the immediate nearshore zone, it has further contributed to a net flux of this sand population from the eastern English Channel sea bed to the southern North Sea.  相似文献   

14.
A bottomland flora that prevailed between 9900 and 6000 cal yr B.P. in a North Carolina stream valley may not reflect a regionally much wetter Atlantic climate, coeval with record drought in the Great Plains region and assumed dry Gulf coastal conditions. Such conditions were inferred for 6000 ± 1000 yr ago when the Bermuda High may have consistently occupied summer positions far to the NE. Arid episodes coeval with the Little River local wet interval are known from eolian sediments and pollen spectra in the Atlantic and the Gulf coastal plain. For multiple reasons, the regional extent, intensity, and duration of coastal aridity and alternating wet phases and the Bermuda High positions are not yet adequately constrained. The climate and edaphic causes for the steadily growing predominance of southern pines over hardwoods, achieved between 8900 and 4200 cal yr B.P. at different sites at different times are similarly still unresolved. New data from Shelby Lake, AL, reconfirms that no credible field or other proxy evidence exists for a previously postulated “catastrophic Gulf hurricane phase” in the late Holocene.  相似文献   

15.
Generally landslide dams which exist for several hundreds to thousands of years are considered as stable. We show with an example from the Argentine Andes that such dams can exist for several thousands of years but still may fail catastrophically. Multiple rock avalanches impounded two lakes with surface areas of ~8 km2 and ~600 km2, respectively, in Las Conchas valley, NW Argentina. Surface exposure dating (SED) by 10Be of the rock-avalanche deposits or landslide scars indicates that these landslides occurred at 15,300±2,000 yr and 13,550±900 yr. The dams were stable during a strong earthquake, as suggested by seismites within related lake sediments and by multiple coeval landslides in this region, which occurred at ~7.5 kyr. However, when a further rock-avalanche fell into the lower, smaller lake at 4,800±500 yr the dam downriver was destroyed, presumably by the resulting tsunami wave. The resulting flood also destroyed an additional rock-fall dam which had formed at ~5,630 yr 14C cal BP 30 km downriver. The new dam formed by the second rock avalanche was eroded prior to 3,630 yr 14C cal BP. This dam erosion coincides with an important climatic shift towards more humid conditions in the Central Andes. Our results show that instead of direct effects of strong seismicity on landslide dams, (1) landsliding into a landslide-dammed lake, (2) abrupt hydrological changes, and (3) climate change towards conditions related to enhanced run-off are processes which can produce failures of quasi-stable natural dams.  相似文献   

16.
New field investigations of the Achenheim sequence (Alsace, France) allow for the characterization of variations in the low-field magnetic susceptibility over most of the last climatic cycle, i.e., the past 130,000 yr. New stratigraphic data and thermoluminescence measurements permit reassessment of the previous chronological interpretation of the Upper Pleistocene at Achenheim. A high-resolution analysis of magnetic susceptibility discloses the occurrence of a fine-grained “marker” horizon which was also found recently in another section. This horizon is interpreted as a small-scale dust layer deposited prior to the main interval of loess deposition. The horizon, deposited at the marine isotope stage (MIS) 5/4 boundary, has been found in other loess sequences and is especially prevalent in central Europe. It is characterized by low susceptibility values and a grayish color. New thermoluminescence dates indicate that the loess deposition took place after the MIS 5/4 boundary, i.e., after 70,000 yr. These results are consistent with the Greenland GRIP ice-core dust record which also demonstrates a dusty atmosphere after 72,000 yr ago. On a more regional scale, the Achenheim loess sequence demonstrates a reliable correlation between the western side of the Eurasian loess belt and the dust record of the Greenland ice cores.  相似文献   

17.
Reliable and precise ages of Quaternary pedogenic carbonate can be obtained with 230Th/U dating by thermal ionization mass spectrometry applied to carefully selected milligram-size samples. Datable carbonate can form within a few thousand years of surface stabilization allowing ages of Quaternary deposits and surfaces to be closely estimated. Pedogenic carbonate clast-rinds from gravels of glacio-fluvial terraces in the Wind River Basin have median concentrations of 14 ppm U and 0.07 ppm 232Th, with median (230Th/232Th) = 270, making them well suited for 230Th/U dating. Horizons as thin as 0.5 mm were sampled from polished slabs to reduce averaging of long (≥105 yr), and sometimes visibly discontinuous, depositional histories. Dense, translucent samples with finite 230Th/U ages preserve within-rind stratigraphic order in all cases. Ages for terraces WR4 (167,000 ± 6,400 yr) and WR2 (55,000 ± 8600 yr) indicate a mean incision rate of 0.26 ± 0.05 m per thousand years for the Wind River over the past glacial cycle, slower than inferred from cosmogenic-nuclide dating. Terrace WR3, which formed penecontemporaneously with the final maximum glacial advance of the penultimate Rocky Mountain (Bull Lake) glaciation, has an age of 150,000 ± 8300 yr indicating that it is broadly synchronous with the penultimate global ice volume maximum.  相似文献   

18.
The stratigraphic record in the James and Hudson Bay Lowlands indicates that the sequence of glacial events at the geographical center of the 12.6 × 106 km2 Laurentide Ice Sheet may have been more complex than hitherto imagined. Isoleucine epimerization ratios of in situ and transported shells recovered from till and associated marine and fluvial sediments cluster into at least 4 discrete groups. Two alternative explanations of the data are offered, of which we strongly favor the first. Hypothesis 1: Setting the age of the “last interglacial” marine incursion, the Bell Sea, at 130,000 yr B.P. results in a long-term average diagenetic temperature for the lowlands of +0.6°C. Using this temperature enables us to predict the age of shells intermediate in age between the “last interglaciation” and the incursion of the Tyrrell Sea 8000 yr ago. Between these two interglacial marine inundations, Hudson Bay is predicted to have been free of ice along its southern shore about 35,000, 75,000, and 105,000 yr ago based on amino acid ratios from shells occurring as erratics in several superimposed tills and fluvial sediments. These results suggest (1) that traditional concepts of ice-sheet build-up and decay must be reexamined; (2) that “high” sea levels may have occurred during the Wisconsin Glaciation; and (3) that a critical reappraisal is required of the open ocean δ18O record as a simple indicator of global ice volume. An alternative, Hypothesis 2, is also examined. It is based on the assumption that the 35,000-yr-old deposits calculated on the basis of Hypothesis 1 date from the “last interglaciation”; this, in effect, indicates that the Missinaibi Formation, commonly accepted as sediments of the “last interglaciation,” are about 500,000 yr old and that the effective diagenetic temperature in the lowlands during approximately the last 130,000 yr has been close to ?6°C. We argue for rejection of this alternative hypothesis.  相似文献   

19.
Results are discussed of amino acid racemization dating of numerous samples of bones, teeth, tooth enamel and fossil shells. Racemization dating proved to be a very useful tool to date non-marine and marine deposits which are a few hundred thousand years old, as well as to correlate and chronologically classify even more ancient marine deposits. Aspartic acid racemization was used to date samples aged less than 80,000–100,000 yr; for more ancient samples, isoleucine epimerization, instead, was resorted to.In this work, dates were established for some important fragments of human bones and of large-mammalian fauna weighing a few grams, which would have been impossible to date with the 14C technique, requiring a large amount of bone material.The extent of isoleucine epimerization was measured in Glycymeris genera to estimate the age of numerous marine deposits of the Tyrrhenian coast of Centra-Southern Italy and of Sardinia. In the Tarquinia area (Latium) three marine terraces were identified, which were estimated to be approx. 120,000, 200,000 and 350,000 yr old. In Sardinia, five marine horizons were identified; the youngest deposit (Neotyrrhenian) proved to be present at Punta tramontana and Santa Reparata, while, at Riola and Stagno di Sassu, the most ancient marine deposits of Sardinia were found. In the Rome area, the Monte Mario Formation was estimated to be coeval with Monte delle Piche Formation. Finally, from the terraced coastal deposits of Capo Milaazzo (Sicily), Panarea (Eolian archipelago), Archi (Calabria) and Gallipoli (Apulia), a Tyrrhenian age range of 100,000–120,000 yr was obtained.  相似文献   

20.
Boulder Mountain, located in South Central Utah, is one of several mountain ranges on the Colorado Plateau that was glaciated during the late Pleistocene. Using 3He exposure-age dating (corrected for non-cosmogenic 3He with shielded samples), we determined 3He exposure-ages for boulders from the most well-preserved moraines in the Fish Creek drainage of Boulder Mountain. 3He exposure-ages indicate a last glacial maximum (LGM) advance ∼23,100 ± 1300 to 20,000 ± 1400 yr ago and a later and smaller advance ∼16,800 ± 500 to 15,200 ± 500 yr ago. This chronology is very similar to other cosmogenic glacial chronologies from the Western U.S. and suggests that the timing of glacial advance and retreat on the Colorado Plateau was generally in phase with the rest of the Western U.S. during the late Pleistocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号