首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Two-point boundary value problems appear frequently in space trajectory design. A remarkable example is represented by the Lambert’s problem, where the conic arc linking two fixed positions in space in a given time is to be characterized in the frame of the two-body problem. Classical methods to numerically solve these problems rely on iterative procedures, which turn out to be computationally intensive in case of lack of good first guesses for the solution. An algorithm to obtain the high order expansion of the solution of a two-point boundary value problem is presented in this paper. The classical iterative procedures are applied to identify a reference solution. Then, differential algebra is used to expand the solution of the problem around the achieved one. Consequently, the computation of new solutions in a relatively large neighborhood of the reference one is reduced to the simple evaluation of polynomials. The performances of the method are assessed by addressing typical applications in the field of spacecraft dynamics, such as the identification of halo orbits and the design of aerocapture maneuvers.  相似文献   

2.
Consecutive collision orbits in the limiting case µ = 0 of the elliptic restricted three-body problem are investigated. in particular those in which the infinitesimal mass collides twice with the smaller (massless) primary. A timing condition is presented that allows the extension of previous results to the case of arbitrary relative orientation of the orbits of the infinitesimal mass and the smaller primary. The timing condition is expressed in two general forms - in terms of orbit parameters and eccentric (or hyperbolic) anomalies at the times of collision - for the specific cases of elliptic. parabolic or hyperbolic orbits of the infinitesimal mass. Some families of solutions are presented.  相似文献   

3.
In this paper, we prove the existence of special type of motions in the restricted planar parabolic three-body problem, of the type exchange, emission–capture, and emission–escape with close passages to collinear and equilateral triangle configuration, among others. The proof is based on a gradient-like property of the Jacobian function when equations of motion are written in a rotating–pulsating reference frame, and the extended phase space is compactified in the time direction. Thus a phase space diffeomorphic to -coordinates (θ, ζ, ζ′) is obtained with the boundary manifolds θ = ± π/2 corresponding to escapes of the binaries when time tends to ± ∞. It is shown there exists exactly five critical points on each boundary, corresponding to classic homographic solutions. The connections of the invariant manifolds associated to the collinear configurations, and stable/unstable sets associated to binary collision on the boundary manifolds, are obtained for arbitrary masses of the primaries. For equal masses extra connections are obtained, which include equilateral configurations. Based on the gradient-like property, a geometric criterion for capture is proposed and is compared with a criterion introduced by Merman (1953b) in the fifties, and an example studied numerically by Kocina (1954).  相似文献   

4.
In this paper, from a Hamiltonian point of view, the nonlinear optimal control problems are transformed into nonlinear two-point boundary value problems, and a symplectic adaptive algorithm based on the dual variational principle is proposed for solving the nonlinear two-point boundary value problem. The state and the costate variables within a time interval are approximated by using the Lagrange polynomial and the costate variables at two ends of the time interval are taken as independent variables. Then, based on the dual variational principle, the nonlinear two-point boundary value problems are replaced by a system of nonlinear equations which can preserve the symplectic structure of the nonlinear optimal control problem. Furthermore, the computational efficiency of the proposed symplectic algorithm is improved by using the adaptive multi-level iteration idea. The performance of the proposed algorithm is tested by the problems of Astrodynamics, such as the optimal orbital rendezvous problem and the optimal orbit transfer between halo orbits.  相似文献   

5.
Suitable lunar constellation coverage can be obtained by separating the satellites in inclinations and node angles. It is shown in the paper that a relevant saving of velocity variation ΔV can be achieved using weak stability boundary trajectories. The weakly stable dynamics of such transfers allows the separation of the satellites from the nominal orbit to the required orbit planes with a small amount of ΔV. This paper also shows that only one different set of orbital parameters at Moon can be reached with the same ΔV manoeuvre starting from a nominal trajectory and ending at a fixed periselenium altitude. In fact, such a feature is proved to be common to other simpler dynamical systems, such as the two- and three-body problems.  相似文献   

6.
This paper deals with the Sitnikov family of straight-line motions of the circular restricted three-body problem, viewed as generator of families of three-dimensional periodic orbits. We study the linear stability of the family, determine several new critical orbits at which families of three dimensional periodic orbits of the same or double period bifurcate and present an extensive numerical exploration of the bifurcating families. In the case of the same period bifurcations, 44 families are determined. All these families are computed for equal as well as for nearly equal primaries (μ = 0.5, μ = 0.4995). Some of the bifurcating families are determined for all values of the mass parameter μ for which they exist. Examples of families of three dimensional periodic orbits bifurcating from the Sitnikov family at double period bifurcations are also given. These are the only families of three-dimensional periodic orbits presented in the paper which do not terminate with coplanar orbits and some of them contain stable parts. By contrast, all families bifurcating at single-period bifurcations consist entirely of unstable orbits and terminate with coplanar orbits.  相似文献   

7.
We consider periodic halo orbits about artificial equilibrium points (AEP) near to the Lagrange points L 1 and L 2 in the circular restricted three body problem, where the third body is a low-thrust propulsion spacecraft in the Sun–Earth system. Although such halo orbits about artificial equilibrium points can be generated using a solar sail, there are points inside L 1 and beyond L 2 where a solar sail cannot be placed, so low-thrust, such as solar electric propulsion, is the only option to generate artificial halo orbits around points inaccessible to a solar sail. Analytical and numerical halo orbits for such low-thrust propulsion systems are obtained by using the Lindstedt Poincaré and differential corrector method respectively. Both the period and minimum amplitude of halo orbits about artificial equilibrium points inside L 1 decreases with an increase in low-thrust acceleration. The halo orbits about artificial equilibrium points beyond L 2 in contrast show an increase in period with an increase in low-thrust acceleration. However, the minimum amplitude first increases and then decreases after the thrust acceleration exceeds 0.415 mm/s2. Using a continuation method, we also find stable artificial halo orbits which can be sustained for long integration times and require a reasonably small low-thrust acceleration 0.0593 mm/s2.  相似文献   

8.
We locate members of an important category of periodic orbits in the Newtonian four-body problem. These systems perform an interplay motion similar to that of the periodic three-body orbit discovered by Schubart. Such orbits, when stable, have been shown to be a key feature and influence on the dynamics of few-body systems. We consider the restricted case where the masses are collinear and are distributed symmetrically about their centre of mass. A family of orbits is generated from the known (three-dimensionally) unstable equal masses case by varying the mass ratio, whilst maintaining the symmetry. The stability of these orbits to perturbation is studied using linear stability analysis, analytical approximation of limiting cases and nonlinear simulation. We answer the natural question: are there any stable periodic orbits of this kind? Three ranges of the mass ratio are found to have stable orbits and three ranges have unstable orbits for three-dimensional motion. The systems closely resemble their three-body counterparts. Here the family of interplay orbits is simpler requiring just one parameter to characterise the mass ratio. Our results provide a further insight into three-body orbits studied previously.  相似文献   

9.
We analyze nearly periodic solutions in the plane problem of three equal-mass bodies by numerically simulating the dynamics of triple systems. We identify families of orbits in which all three points are on one straight line (syzygy) at the initial time. In this case, at fixed total energy of a triple system, the set of initial conditions is a bounded region in four-dimensional parameter space. We scan this region and identify sets of trajectories in which the coordinates and velocities of all bodies are close to their initial values at certain times (which are approximately multiples of the period). We classify the nearly periodic orbits by the structure of trajectory loops over one period. We have found the families of orbits generated by von Schubart’s stable periodic orbit revealed in the rectilinear three-body problem. We have also found families of hierarchical, nearly periodic trajectories with prograde and retrograde motions. In the orbits with prograde motions, the trajectory loops of two close bodies form looplike structures. The trajectories with retrograde motions are characterized by leafed structures. Orbits with central and axial symmetries are identified among the families found.  相似文献   

10.
The non-linear stability of the triangular libration point L4 of the restricted three-body problem is studied under the presence of third- and fourth-order resonances, when the more massive primary is a triaxial rigid body and source of radiation. In this study, Markeev's theorems are applied with the help of Moser's theorem. It is found that the stability of the triangular libration point is unstable in the third-order resonance case and in the fourth-order resonance case, this is stable or unstable depending on A1 and A2, and a source of radiation parameter α, where A1, A2 depend upon the lengths of the semi-axes of the triaxial rigid body.  相似文献   

11.
We investigate symmetric periodic orbits in the framework of the planar, circular, restricted, three-body problem. Having fixed the mass of the primary equal to that of Jupiter, we determine the linear stability of a number of periodic orbits for different values of the eccentricity. A systematic study of internal resonances, with frequency p/q with 2p 9, 1 q 5 and 4/3 p/q 5, offers an overall picture of the stability character of inner orbits. For each resonance we compute the stability of the two possible periodic orbits. A similar analysis is performed for some external periodic orbits.Furthermore, we let the mass of the primary vary and we study the linear stability of the main resonances as a function of the eccentricity and of the mass of the primary. These results lead to interesting conclusions about the stability of exosolar planetary systems. In particular, we study the stability of Earth-like planets in the planetary systems HD168746, GI86, 47UMa,b and HD10697.  相似文献   

12.
A new second-order solution to the two-point boundary value problem for relative motion about orbital rendezvous in one orbit period is proposed. First, nonlinear differential equations to describe the relative motion between a chaser and a target are presented considering the second-order terms in the gravity. Then, by regarding the second-order terms as external accelerations, we establish second-order state transition equations. Moreover, the J2 perturbations effects can also be considered in the state transition equations. Last, the initial relative velocity to fulfill a rendezvous is determined by solving the state transition equations. Numerical simulations show that the new second-order state transition equations are accurate. The second-order solution to the two-point boundary value problem on eccentric orbits is valid even if the relative range is farther than 500 km.  相似文献   

13.
给出了受摄限制性三体问题平动点线性稳定性的一个判断条件.条件只与平动点切映像的特征方程系数有关,使用方便.用判断条件,讨论了Robe问题平动点在阻力摄动下的线性稳定性,得到了Hallan等给出的Robe问题平动点在阻力摄动下的线性稳定范围.并改进了Giordanoc等的结果.  相似文献   

14.
A numerical procedure to systematically find collision orbits in the planar three-body problem has been developed in the preceding paper (Tanikawa et al., 1995). Using this procedure, a search for binary and triple collision orbits has been carried out in the free-fall three-body problem. Some detailed structures of a part of the initial value space are discussed. Various interesting orbits have been found. Examples are oscillatory orbits in which ejected particles change from ejection to ejection, and orbits which are not isosceles initially but nearly isosceles after escape. Some results of isosceles problems (Simó and Martínez, 1988) are extended to non-isosceles problems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
In the analytical approach to the main problem in satellite theory, the consideration of the physical parameters imposes a lower bound for normalized Hamiltonian. We show that there is no elliptic frozen orbits, at critical inclination, when we consider small values of H, the third component of the angular momentum. The argument used suggests that it might be applied also to more realistic zonal and tesseral models. Moreover, for almost polar orbits, when H may be taken as another small parameter, a different approach that will simplify the ephemerides generators is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号