首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Drainage schemes for salinity management are aimed at lowering the shallow groundwater to help increase production and reduce ecological risks. Once the groundwater levels are lowered to desired agro-ecological thresholds, the drainage scheme’s operation needs to be optimised according to the spatio–temporal variation in groundwater dynamics. Groundwater systems can be modelled if their behaviour is fully known and understood but a key difficulty in optimisation is dealing with non-linear and non-unique spatio-temporal problems. Such problems can be optimised using genetic algorithms (GA) aimed at finding near optimal solutions to highly non-linear optimisation problems. The major advantages of GAs are their broad applicability, flexibility and their ability to find solutions with relatively modest computational requirements. A surface water/groundwater interaction model has been developed in conjunction with GA based spatio-temporal optimisation of pumping operation of a subsurface drainage scheme. The aim has been to achieve a similar or better than on-going level of service both in space and time domains. The Wakool Tullakool Subsurface Drainage Scheme in the Murray Irrigation Area, Australia is discussed to illustrate the modelling process. The model results are being used to plan the cost-effective operation of the tubewells to control water logging and salinisation.  相似文献   

2.
海水入侵是困扰沿海地区经济社会发展的重大资源、环境问题,严重影响沿海地区地下水资源。定量模拟、预测和可视化管理是对海水入侵进行有效监测和机理分析的重要手段。基于前期海水入侵模拟的理论研究及方法,提出了海水入侵模拟及预测模型VFT3D,该模型综合考虑地表水-地下水对海水入侵的协同控制作用,能够模拟变密度地下水流及复杂反应性迁移,实现模拟海水入侵的完整水文循环过程。文章介绍了VFT3D模型,利用VFT3D模型模拟了一个海水入侵案例,并与SEAWAT模型模拟结果进行了对比分析。结果表明VFT3D 模型模拟水头与SEAWAT模型模拟结果相差不大,但SEAWAT模型无法模拟海水入侵中复杂的化学反应过程。VFT3D 模型模拟发现,水文地球化学过程(阳离子吸附交换作用)对阳离子(Na+、K+、Mg2+和Ca2+)运移产生明显影响,同时引起过渡带中离子组分浓度发生变化,对海水入侵过程产生较大影响。因此,考虑变密度和复杂反应过程,才能更加准确地描述海水入侵,从而有利于地下咸水治理工程的科学实施。  相似文献   

3.
利用北调江水补充调蓄石家庄地下水的工程技术方法探讨   总被引:1,自引:1,他引:1  
石家庄是中国北方水资源危机较严重的城市之一,已形成了超采地下水的巨大降落漏斗。结合其毗邻滹沱河宽阔河滩,地面水可直接入渗补给降落漏斗内地下水的有利水文地质条件,实施利用北调江水补充调蓄地下水工程,将具有现实意义。该文针对北调江水可能存在的不同水质情况,应用现有较适宜的地下水调蓄方法和相关的水质净化技术或研究成果,选择滹沱河河道、河漫滩上采砂坑及其他有利的条件场地等,就利用北调江水补充调蓄地下水工程,进行了相关技术方法探讨,提出一个较适宜的工程技术方案,以期能为石家庄水资源的战略调控服务。  相似文献   

4.
During the last 25 years, rapid and unplanned land reclamation activity has been carried out in the areas located in both south and east of Wadi El - Natrun Depression of Egypt. Accordingly, negative effects on groundwater levels and vulnerability are frequently caused by localized high levels of abstraction and the return-flow of polluted irrigation water respectively. A groundwater model is a computational method that presents an approximation of an underground water system. In this study the groundwater system is simulated both in quantity and quality by using Mass Balance Transfer Model (NETPATH), Groundwater Modeling System (GMS) and DRASTIC Model to investigate the water - rock interactions, groundwater levels drawdown and vulnerability respectively. Three main geochemical processes namely dedolomitisation, dissolution of halite and silicate weathering were estimated during the flow path. The present over-abstraction of groundwater (105.84 million m3/year) has induced a general head drawdown from 3 to 40 m in years 2015 and 2050 respectively. Best estimate using a 3D GMS hydraulic model was (157000 m3/day) a strategy proposed for the management of groundwater without critical depletion (second scenario). The results document the extent to which a high drawdown can greatly reach 4 m by the end of simulation year 2050. The vulnerability maps of groundwater were constructed using the DRASTIC index method. The results indicated that, the southeastern and central portions of the study area are having high vulnerability rate (> 110). Modified DRASTIC map showed many more dominant high risk areas in the eastern parts of the study area that were low risk, which may be attributed to return flow of polluted irrigation water.  相似文献   

5.
地下水位变化是地下水资源量多寡最直接的表现形式,是地下水管理最重要的控制性指标。对地下水水位进行管理,可实现对地下水资源的量化管理。通过对地下水位与生态及地质环境的关系、地下水位阈值、地下水管理水位划定等几个方面进行综述,力图从相对全面的角度认识当前地下水水位管理的发展。在回顾地下水水位管理以上研究进展的基础上,对我国地下水水位管理面临的问题、地下水管理策略、复合型地区地下水水位管理等发展趋势进行了探讨,为相关研究人员提供一定的参考。  相似文献   

6.
This paper provides a review of the water environment problems faced in China and a comparison with the European experience in dealing with such issues, with an attempt to emphasize the challenges in China. The paper also summarizes various studies in China to highlight the severity of water pollution problems faced by regulators, polluters and the general public. China’s water situation can be characterized by insufficient quantities of water, uneven distribution of water spatially and temporally, as well as poor water quality. Water pollution in China has spread from point source to non-point source, from fresh water to coastal water, and from surface water to groundwater. From the management and technological experience from EU, including water framework directive, water price system, desalination and groundwater recharge technologies, and from the analysis of water environment problems and management system in two regions, we could come to the conclusion that water price, water market and water tax could be introduced to China for water environment regulations. Moreover, it is necessary to establish a reliable risk assessment system for water quality, human health and ecological safety.  相似文献   

7.
The Valley of Puebla aquifer (VPA), at the central region of Mexico, is subject to intensive exploitation to satisfy the urban and industrial demand in the region. As a result of this increased exploitation, a number of state and federal agencies in charge of water management are concerned about the problems associated with the aquifer (decline of groundwater table, deterioration in water quality, poor well productivity and increased pumping and water treatment costs). This study presents a groundwater management model that combines “MODFLOW” simulation with optimization tools “MODRSP”. This simulation–optimization model for groundwater evaluates a complex range of management options to identify the strategies that best fit the objectives for allocating resources in the VPA. Four hypothetical scenarios were defined to analyze the response of the hydrogeological system for future pumping schemes. Based on the simulation of flow with the MODFLOW program, promising results for the implementation of the optimization of water quantity were found in scenarios 3 and 4. However, upon comparison and analysis of the feasibility of recovery of the piezometric level (considering the policy of gradual reductions of pumping), scenario 4 was selected for optimization purposes. The response functions of scenario 4 were then obtained and optimized, establishing an extraction rate of 204.92 millions of m3/year (Mm3/year). The reduction in groundwater extraction will be possible by substituting the volume removed by 35 wells (that should be discontinued) by the same volume of water from another source.  相似文献   

8.
The natural groundwater recharge in Asia is estimated to be 4 677.74×109 m3/a. However, it features extremely uneven spatial-temporal distribution. Groundwater is distributed in various natural and geological environments, and it is liable to be affected by numerous factors and possesses different properties. Moreover, groundwater faces complex ecological problems. This paper gains a complete understanding of groundwater in Asia in terms of the structure of aquifer systems, the processes of groundwater cycle, and the spatial variation laws of surface ecosystems. Based on this, it proposes the ecological function zoning scheme of groundwater in Asia, aiming to provide guidance for the utilization of regional water resources and the planning for economic and social development, coordinate the relationship between social and economic development and water resource protection, and improve the ecological functions of groundwater. Furthermore, this paper analyzes the problems with regional groundwater management in Asia and puts forward countermeasures and suggestions, thus providing a theoretical basis for the sustainable development and utilization of regional groundwater and environmental protection.  相似文献   

9.
关中盆地水资源可持续开发利用对策研究--以渭南市为例   总被引:4,自引:0,他引:4  
以关中盆地东部的渭南市为例,概述了水资源的分布特征及其开发利用现状。认为水资源开发利用中存在水资源浪费严重,重复利用率低;行政区块限制,水资源调配不够;不合理开采地下水,出现负环境效应;地下水人工调控力度不够,不能有效的促进生态环境良性循环;对地下水资源的研究、规划和管理滞后等五个方面的主要问题。针对存在的主要问题,提出了六项水资源可持续开发利用对策,包括节水对策、开源对策、改水对策、调水对策、增补对策以及管理对策。  相似文献   

10.

Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer’s hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant’s groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.

  相似文献   

11.
Groundwater plays an important role in the economic development and ecological balance of the arid area of northwest China. Unfortunately, human activity, for example groundwater extraction for irrigation, have resulted in excessive falls in groundwater level, and aquifer overdraft in the oasis, disrupting the natural equilibrium of these systems. A groundwater numerical model for Minqin oasis, an arid area of northwest China, was developed using FEFLOW software to simulate regional groundwater changes under transient conditions. The vertical recharge and discharge (source/sink terms) of the groundwater models were determined from land-use data and irrigation systems for the different crops in the different sub-areas. The calibrated model was used to predict the change for the period from 2000 to 2020 under various water resources management scenarios. Simulated results showed that under current water resources management conditions groundwater levels at Minqin oasis are in a continuous drawdown trend and groundwater depth will be more than 30 m by 2020. Reducing the irrigation area is more effective than water-saving irrigation to reduce groundwater decline at Minqin oasis and the annual groundwater budget would be −0.978 × 108 m3. In addition, water-diversion projects can also reduce the drawdown trend of groundwater at Minqin oasis, and the groundwater budget in the Huqu sub-area would be in zero equilibrium if the annual inflow into the oasis was enhanced to 2.51 × 108 m3. Furthermore, integrative water resources management including water-diversion projects, water-saving irrigation, and reducing the irrigation area are the most effective measures for solving groundwater problems at Minqin oasis.  相似文献   

12.
大港区供用水现状问题及对策   总被引:1,自引:0,他引:1  
孙书洪  徐廷云  王仰仁 《地下水》2007,29(3):109-111
通过对大港区水资源、供用水现状进行分析,结果表明,大港区属于水质型和资源型双重缺水地区.存在的主要问题是地表水污染严重、地下水严重超采、农村饮水氟超标和水量不足、水资源浪费仍很严重,以及管理手段有待提高等.针对这些问题提出了若干对策:(1)认真搞好供水规划,积极争取外调水;(2)加大污水治理力度,包括上游来水的水质控制;(3)搞好节水规划,提高工农业用水的利用效率;(4)健全和理顺水管理体制.  相似文献   

13.
汪莹  罗朝晖  吴亚  李洁  顾栩 《地球科学》2019,44(9):2909-2919
岩溶地下水是贵州省六盘水市的重要供水水源,但针对该地区的岩溶地下水脆弱性评价,尤其是城镇化区域的岩溶地下水脆弱性评价尚未见报道.运用改进的径流-覆盖层-降雨(COP)模型,利用RS及GIS技术对水城盆地的土壤类型、土地利用/覆盖类型、降水量数据进行处理,研究了岩溶地下水脆弱性评价的城镇化因子.结果显示,2004~2016年间,研究区地下水固有脆弱性整体呈现出由中脆弱性向低脆弱性转变的趋势,脆弱性降低的区域与城镇化过程中增加的不透水地面区域相一致;表明不透水地面有效地阻碍了地表污染物进入地下,降低了地下水固有脆弱性.本结果为水城盆地岩溶水资源管理提供了重要依据.   相似文献   

14.
To deal with the challenge of groundwater over-extraction in arid and semi-arid environments, it is necessary to establish management strategies based on the knowledge of hydrogeological conditions, which can be difficult in places where hydrogeological data are dispersed, scarce or present potential misinformation. Groundwater levels in the southern Jordan Valley (Jordan) have decreased drastically in the last three decades, caused by over-extraction of groundwater for irrigation purposes. This study presents a local, two-dimensional and transient numerical groundwater model, using MODFLOW, to characterise the groundwater system and the water balance in the southern Jordan Valley. Furthermore, scenarios are simulated regarding hydrological conditions and management options, like extension of arable land and closure of illegal wells, influencing the projection of groundwater extraction. A limited dataset, literature values, field surveys, and the ‘crop water-requirement method’ are combined to determine boundary conditions, aquifer parameters, and sources and sinks. The model results show good agreement between predicted and observed values; groundwater-level contours agree with the conceptual model and expected flow direction, and, in terms of water balance, flow volumes are in accordance with literature values. Average annual water consumption for irrigation is estimated to be 29 million m3 and simulation results show that a reduction of groundwater pumping by 40% could recover groundwater heads, reducing the water taken from storage. This study presents an example of how to develop a local numerical groundwater model to support management strategies under the condition of data scarcity.  相似文献   

15.
Groundwater is critical for the sustainable development of the Loess Plateau, while groundwater quality is generally poor in this area due to natural factors and anthropogenic pollution. This study was carried out to investigate the suitability of groundwater for domestic and agricultural purposes in Yan’an City on the Chinese Loess Plateau and to assess its implications to sustainable groundwater management on the plateau. The index levels were compared with the threshold values established by the national and the WHO drinking water guidelines, and the suitability of groundwater for irrigation purposes was assessed using multiple agricultural water quality indicators. An entropy-weighted Technique for Order Preference by Similarity to an Ideal Solution (entropy-weighted TOPSIS) was adopted for overall groundwater quality assessment. The results indicate that the study area is characterized by saline, hard, and slightly alkaline groundwater, mainly of the HCO3–Ca·Mg type, accompanied by some minor SO4·Cl–Ca·Mg type. The dissolution of carbonates and gypsum and the leaching of soluble salts are important natural processes influencing the groundwater ion chemistry. The parameters TH, TDS, and SO42? are major indices, while Fe, Mn, F?, and NH4+ are minor contaminants affecting groundwater quality. The overall groundwater quality is generally acceptable for irrigation, and most of the water is suitable for drinking. Rainwater harvesting, water quality improvement programs, regular water quality monitoring, and multidisciplinary water research programs are suggested as measures for sustainable groundwater management on the Loess Plateau.  相似文献   

16.
天山北坡玛纳斯河流域地下水长期大规模开采引发了一系列生态环境问题,地下水均衡状态和地下水流动模式明显发生了改变。为研究节水灌溉条件下的地下水系统流动模式及其对地下水均衡要素的改变规律,以平原绿洲区为研究对象,采用三维地下水数值模拟方法,研究玛纳斯河流域地下水水位动态变化及水量平衡规律。结果表明:研究区地下水水位的抬升和回落受农业灌溉的影响显著,具有一定的周期性,存在着明显的时空差异;地下水均衡处于负均衡状态,补排差为-2.81×108m3。模拟期内观测水头与计算水头两者相关系数各月均在0.81以上,模拟效果较好。  相似文献   

17.
Assessing factors that influence groundwater levels such as land use and pumping strategy, is essential to adequately manage groundwater resources. A transient numerical model for groundwater flow with infiltration was developed for the Tedori River alluvial fan (140 km2), Japan. The main water input into the groundwater body in this area is irrigation water, which is significantly influenced by land use, namely paddy and upland fields. The proposed model consists of two models, a one-dimensional (1-D) unsaturated-zone water flow model (HYDRUS-1D) for estimating groundwater recharge and a 3-D groundwater flow model (MODFLOW). Numerical simulation of groundwater flow from October 1975 to November 2009 was performed to validate the model. Simulation revealed seasonal groundwater level fluctuations, affected by paddy irrigation management. However, computational accuracy was limited by the spatiotemporal data resolution of the groundwater use. Both annual groundwater levels and recharge during the irrigation periods from 1975 to 2009 showed long-term decreasing trends. With the decline in rice-planted paddy field area, groundwater recharge cumulatively decreased to 61 % of the peak in 1977. A paddy-upland crop-rotation system could decrease groundwater recharge to 73–98 % relative to no crop rotation.  相似文献   

18.
蔡磊  苏晶文  李状  史洪峰  王睿  杨洋  丁勇 《华东地质》2023,44(3):262-272
新安江流域上游地区地下水水化学成分复杂,水与含水介质间发生的各种溶解、沉淀、吸附等水-岩相互作用在地下水复杂成分形成和演化过程中发挥重要功能。文章采用数理统计、主成分分析和聚类分析、Gibbs模型、硅酸平衡、主要离子比例系数等方法,研究了新安江流域上游地区地下水水化学特征和水文地球化学作用,分析了水化学组分来源。结果表明:研究区地下水阳离子以Ca2+、Na+为主,阴离子以HCO-3为主,还存在少量Cl-、SO2-4,地下水主要水化学类型为HCO3-Ca型、HCO3-Na·Ca型、HCO3-Ca·Mg型;地下水水化学组分主要来自碳酸盐矿物和硅酸盐矿物的风化溶解,其次来源于蒸发岩的风化溶解。地下水的溶滤作用、阳离子交替吸附作用以及人类生产生活等活动共同影响地下水水化学特征。  相似文献   

19.
Hydrochemical system analysis (HCSA) is used to better understand the individual state of and spatial patterns in groundwater quality, by addressing the spatial distribution of groundwater bodies with specific origins (hydrosomes) and characteristic hydrochemical zones within each hydrosome (facies). The origin is determined by environmental tracers or geomorphological and potentiometric maps, the facies by combining age, redox and alkalinity indices. The HCSA method is applied to all 206 active public supply well fields (PSWFs) in The Netherlands, resulting in the distinction of nine hydrosomes and eleven facies parameters—age (young, intermediate, old), redox ((sub)oxic, anoxic, deep anoxic, mixed) and alkalinity (very low, low, intermediate and high). The resulting classification of PSWFs provides a means to (1) predict their vulnerability; (2) optimize groundwater-quality monitoring programs; and (3) better delineate groundwater bodies, by considering groundwater origin and flow. The HCSA translates complex hydrochemical patterns into easily interpretable maps by showing PSWFs, groundwater bodies and hydrochemical facies. Such maps facilitate communication between researchers, water resources managers and policy makers and can help to solve complex groundwater resources management problems at different scales, ranging from a single well(field) or region to the national or European scale.  相似文献   

20.
Groundwater management in northern Iraq   总被引:1,自引:0,他引:1  
Groundwater is vital and the sole resource in most of the studied region of northern Iraq. It has a significant role in agriculture, water supply and health, and the elimination of poverty in rural areas. Although Iraq is currently dramatically disturbed by complex political and socio-economic problems, in its northern part, i.e. the Kurdish-inhabited region, fast urbanization and economic expansion are visible everywhere. Monitoring and water management schemes are necessary to prevent aquifer over-exploitation in the region. Artificial recharge with temporary runoff water, construction of subsurface dams and several other aquifer management and regulation measures have been designed, and some implemented, in order to improve the water situation. Recommendations, presented to the local professionals and decision-makers in water management, include creation of Water Master Plans and Water User Associations, synchronization of drilling programmes, rehabilitation of the existing well fields, opening of new well fields, and the incorporation of new spring intakes in some areas with large groundwater reserves, as well as construction of numerous small-scale schemes for initial in situ water treatment where saline groundwater is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号