首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The structure of the turbulent boundary layer underneath laboratory wind waves was studied by using a combination of a high-sensitivity thermometer array with a two-component sonic flowmeter. The temperature fluctuations are used to detect movements of water parcels, with temperature as a passive quantity. The turbulence energy was dominant in the frequency range (0.01 0.1 Hz), which was much smaller than the wind-wave frequency (2 5 Hz), and in which the turbulence was anisotropic. There was a frequency range (0.2 2 Hz for velocity, 0.2 5 Hz for temperature fluctuation) where the turbulence was isotropic and had a –5/3 slope in the energy spectrum. These points are the same as those in previous works. However, by analyses of the time series by using a variable-interval time-averaging technique (VITA), it has been found that conspicuous events in this main turbulence energy band are the downward bursting from the vicinity of the water surface. Thus the structure of the water layer underneath the wind waves has characters which are similar to the familiar turbulent boundary layer over a rough solid wall, as already conceived. It has been found that, at the same time, the turbulence energy can be related to quantities of the wind waves (the root mean squared water level fluctuation and the wave peak frequency), for different wind and wave conditions. That is, the turbulence underneath the wind waves develops under a close coupling with the wind waves.  相似文献   

2.
The minimum value of wind stress under which the flow velocity in short wind waves exceeds the phase speed is estimated by calculating the laminar boundary layer flow induced by the surface tangential stress with a dominant peak at the wave crest as observed in previous experiments. The minimum value of the wind stress is found to depend strongly on, the ratio of the flow velocity just below the boundary layer and the phase speed, but weakly onL, the wavelength. For wind waves previously studied (=0.5,L=10 cm), the excess flow appears when the air friction velocityu * is larger than about 30 cm sec–1. The present results confirm that the excess flow found in my previous experiments is associated with the local growth of a laminar boundary layer flow near the wave crest.  相似文献   

3.
We analyze the data of investigation of the intrusive structure of the Gulf-Stream frontal zone obtained in making frequent drift sections with the help of an MGI-8102 probing complex, study the regularities of variation of temperature, salinity, and density along separate intrusions, and present a series of results connected with the specific features of initiation and development of intrusions and the types of exchange processes determining their transformations. It is shown that the T-diagrams of all intrusions are well separated into segments with different slopes. Moreover, by comparing the slopes and locations of these segments with each other and with the T-diagrams of the Gulf Stream and slope waters, we can fairly reliably attribute the corresponding segments of intrusions to one of the following four types: initial dynamic folds of the frontal zone, layers of domestic water separating the intrusive segments of foreign water from each other, intrusive segments characterized by the penetration of ambient water, and segments not intrusive initially but getting the required slope as a result of interaction with upper and lower intrusive segments. For segments of the last two types, it is possible to specify the predominant type of exchange.  相似文献   

4.
Analysis is made of wind and wave data, which were obtained during the passage of Typhoon 8013 at an Ocean Data Buoy Station south of Honshu operated by the Japan Meteorological Agency, in order to investigate the wave dependence of sea-surface roughness parameter in the situation where wind waves are dominant with less significant swells. The data fit better the wave-dependent expression of the wind stress,z 0 p/u*=, than to Charnock's formula,gz 0/u*2=, wherez 0 is the roughness length, p the angular frequency of the spectral peak of wind waves,u* the friction velocity of air,g the acceleration of gravity, and are non-dimensional constants. The results are very similar to those of our previous study using data from an oil producing platform in the Bass Strait, Australia, although the type of observation system and the synoptic situation of the winds and wind waves were totally different.  相似文献   

5.
We compare the results obtained by using theoretical and semiempirical models developed for the evaluation of the dissipation rate of turbulent energy in a stratified ocean with independent distribution of this quantity established by the authors for the active layer of the Black Sea (50–300 m) by using a one-dimensional model taking into account the balance of heat, salt, and fluid inside the layer. It is shown that, in a layer with gradual variation of the Väisälä–Brunt frequency N as a function of depth, the predominant sink of the energy of motion into dissipation N 2 is ensured by the flow of energy through the spectrum of internal waves toward low frequencies and small vertical scales. On the contrary, in layers with abrupt drops of density as a function of depth (layers with jumps of density), an important role is played by the interface-type waves and the dependence of on N transforms into N .  相似文献   

6.
The heat balance of the upper ocean under a land and sea breeze was investigated based on observations of sea water temperature in the upper 300 m layer and heat flux across the sea surface at a fixed station in Sagami Bay (3510N, 13925E) during two periods of two days in August 1980 and three days in August 1981. During both periods, a typical land and sea breeze of 4–6 m sec–1 at maximum prevailed in the observation area. Large diurnal variation of sea surface temperature with a maximum peak around noon LST was observed during both periods (the daily value of the range was 0.9C and 2.5C in 1980, and 1.2C, 1.5C and 1.7C in 1981). It was found that these large temperature variations were caused by diurnal variation of the wind speed which dropped to 0–3 m sec–1 at noon when the strongest insolation (–270 Wm–2) penetrated the sea and at midnight in association with alternations of the land breeze and the sea breeze. On the other hand, vertical mixing of the sea water caused by the wind stress and/or convection due to cooling at night extended down only to the surface 10 m layer. Horizontal heat advection was negligibly small. Therefore the local time change of the heat content in the upper 10 m water column was affected mainly by the heat flux across the air-sea interface which was estimated from data on radiation fluxes measured directly on board and latent and sensible heat fluxes calculated by the aerodynamic bulk method. The water temperature below the 10 m layer also varied with time and the temperature variation in the thermocline (20–50 m depth) was frequently larger than that of the sea surface temperature. However, the variation in the upper 10 m layer was little influenced by that below the layer.  相似文献   

7.
The heat lability of succinic dehydrogenase, malic dehydrogenase and lactate dehydrogenase in cell-free extracts ofVibrio marinus MP-1 grown at 15C was compared for the tris buffer suspended enzymes and the NaCl suspended enzymes. The tris buffer suspended enzymes lost 50 percent activity at low thermal exposure between 5C and 27C. No activity was evident on thermal exposure between 32C and 39C. The enzyme extracts suspended in NaCl at 36 % were more heat stable, losing 50 percent activity after exposure between 16C and 40C. The enzymes lost all activity on thermal exposure between 33C and 42C in the presence of NaCl.  相似文献   

8.
Siome, which was firstly defined by Uda (1938); is a line of convergence on the sea surface. There are many kinds of siome in the sea. I propose in this paper that siome should be classified into streak and front. Streak is defined as the convergence within the same water mass and front the convergence between two different water masses. Streaks and fronts are classified into more details on the basis of their mechanisms of generation. The proposed classification will be useful for understanding the dynamics of siome and should help to promote interdisciplinary studies around siome regions.  相似文献   

9.
We studied shocks in a coastal boundary current with zero potential vorticity. By coastal boundary current, we mean a semigeostrophic light fluid flow over an infinitely deep dense fluid and along a coast on its right hand side, with its lower interface exposed to the ocean surface at some finite distance from the coast. The shocks are assumed to conserve mass and momentum. It is found that the shocks can be classified into two categories, coastal shocks and frontal shocks, by the signs of the upper layer flux relative to the shocks. Coastal shocks, for which the relative upper layer flux is negative, always propagate downstream. The upper layer at the coast is thicker on the upstream sides of coastal shocks than on the downstream sides. Frontal shocks, for which the relative upper layer flux is positive, propagate upstream as well as downstream. In most cases, the current is wider on the downstream sides of frontal shocks than on the upstream sides. However, under the circumstances that the current is nearly separated from the coast, the current is wider on the upstream sides of frontal shocks. Coastal and frontal shocks both dissipate energy of the current. We also demonstrate that special shocks with no light fluid on the downstream sides cannot exist irrespective of the potential vorticity distribution.  相似文献   

10.
The reflection and breaking of internal waves on a sloping beach were studied in a small wavetank filled with water and petroleum. The dependence of the reflection coefficient of the internal waves on wave steepness and on beach slope is found to be very similar to that of surface waves. The reflection coefficient is small for the very gentle slope, increases rapidly as the slope increases, and becomes almost constant for the steep slope. The reflection coefficient decreases with increase of the wave steepness. Also, the transition slope at which the coefficient curve has the maximum gradient increases with increase of the wave steepness. Breaking pattern of the internal waves is classified into four types; breaking, semi-breaking, wrinkle-generating, and non-breaking. Their dependence on beach slope and wave steepness is examined. The regular sequence of the four breaking types from breaking to non-breaking is observed with decrease of wave steepness or with increase of beach slope.  相似文献   

11.
The vertical distribution of benthic organisms in the sediment profile was studied using horizontally sliced sediments collected at five stations at depths from 115 to 472 m in Suruga Bay, central Japan. Using sieves of 1.0 and 0.5 mm mesh, benthic organisms were divided into two size classes, smaller macrobenthos (>1mm, <1g wet weight) and larger meiobenthos (1.0 mm0.5 mm). The maximum depth of vertical distribution of organisms in the sediment profile was expressed by the 95 % intercept of the cumulative % curve of the number of individuals drawn with respect to depth in the sediment. It has long been supposed that benthic animals are concentrated in the surface centimeters of sediment in the deep-sea system, and the present study clearly substantiated this. Most benthic organisms of both of these two size classes were concentrated in the upper 5 cm of sediment. The vertical distribution was almost always deeper in the case of smaller macrobenthos than for larger meiobenthos. However the difference could not be substantiated statistically since the number of samples was insufficient. The maximum depth indices of polychaetes were found to be significantly larger than those of crustaceans in the case of macrobenthos, while in the case of meiobenthos, the difference was not significant. The maximum depth index of all benthic organisms was positively and significantly correlated with water-depth and the possible cause for this relationship is discussed.  相似文献   

12.
The mechanism of the development of wind-waves will be proposed on the basis of the observed wave spectra in the wind tunnels and at Lake Biwa (Imasato, 1976). It consists of two aspects: One is that the air flow over the wind-waves transfers momentum concentratively to the steepest component waves and the other is that the upper limit of the growth of a wave spectral density is given by the ultimate value in the slope spectral density. The first aspect means that the wave field has the momentum transfer filter on receiving the momentum from the air flow. Wind-waves in the stage of sea-waves receive the necessary amount of momentum by the form drag,e.g. according to the Miles' (1960) inviscid mechanism, through a very narrow frequency region around a dominant spectral peak. On the other hand, wind-waves in the stage of initial-wavelets receive it according to the Miles' (1962a) viscous model through a fairly broad frequency region around the peak. The upper limit ofS max developing according to viscous mechanism is given byS max =6.40×10–4 k max –2cm2s andS max =2.03C(f max )–2cm2s(S max is the power density of the wave spectral peak with the frequencyf max ,k max is the wave number corresponding to the frequencyf max andC is the phase velocity).From the second aspect, the upper limit of the growth of wave spectral density is given by 33.3f –4cm2s in the frequency region of late stage of sea-waves. Therefore, the spectral peak, which has the largest value in the slope spectral density in the component waves of the wave spectrum, rises high over the line 4.15f –5cm2s. The energy is transported from the spectral peak to the high frequency part and to the forward face of a wave spectrum by nonlinear wave-wave interaction. This nonlinearity is confirmed by the bispectra calculated from the observed wind-wave data. In the stage of sea-waves, nonlinear rearrangement of the wave energy comes from a narrow momentum transfer filter, and, in the stage of initial-wavelets, it comes mainly from small corrugations and small steepness of the wave field.  相似文献   

13.
14.
The activity of photosynthesis and the contents of chlorophylla and pheo-pigments were compared in the samples of the intake and effluent seawater of Owase-Mita Thermal Power Plant and in the seawater samples in the Yoshimi Bay before and after heat treatment. At Owase-Mita Thermal Power Plant, after passage of sea water through the cooling system chlorophylla content reduced to about a half and pheo-pigment content doubled in August with high temperature (25–27C), but the contents of chlorophylla and pheo-pigments changed little in January with low temperature (16C); whereas the depression of photosynthetic activity after passing through the cooling system was 71–77 % in August and 31–46 % in January. In the laboratory experiments, the heat treatment at 34–43C for 7–8 sec., which resulted in temperature rise of 7–8C, gave the decrease of chlorophylla and an increase of pheo-pigments in August temperature (26.5C), but a slight decrease of chlorophylla and a slight increase of pheo-pigments in November at the initial temperature of 19.2C, while in January and December the samples with low initial temperature (11.6 and 10.8C) showed almost no change in the content of pigments; the decrease in photosynthetic activity was 32 % in August sample,ca. 11 % in November sample,ca. 15% in January and almost no change in December. It is concluded that the photosynthetic carbon assimilation of marine phytoplankton is suppressed by passing through the cooling system of a thermal power plant even at lower water temperature in winter, while the content of chlorophylla is affected very little at a temperature below 20C.  相似文献   

15.
Inversion modelling of marine gravity anomalies to derive predicted seafloor topography has provided significant advance in delineating deep-ocean bathymetry where the seafloor both conforms to the half-space cooling model of seafloor spreading, and largely sediment-free. Similar modelling for elevated ridges and seamounts, that are formed by processes other than seafloor spreading and/or have proximal sediment sources (e.g., continental margins and volcanic arcs), have significantly higher errors when validated against modern shipborne echo-sounding data. A three-dimensional, five-layer gravity model is emulated for the cases of both synthetic and real seamounts, with varying degrees of sediment burial, to establish the sensitivity of variable sediment cover as a source of error. A simple `Gaussian' seamount with base radius of 30 km, 2000 m of relief, has a maximum 140–160 mGal anomaly, that decreases to 50 mGal with the addition of 1 km of sediment cover with simple `flood' geometry. Complete burial, with a typical sediment density of 2300 kg m–3, results in a 120 mGal difference from a sediment-free seamount model. Increasing sediment density results in an exponential decay of the seamount anomaly. More complex synthetic geometries of varying basement relief and sediment thickness show that the anomaly amplitude remains significant, especially where the latter is >700–800 m thick. For the real case, seamounts of the Three Kings Ridge (northern New Zealand) imaged with seismic reflection data, with varying degrees of sediment cover of up to 1 km, when modelled both with and with-out the inclusion of a sediment layer, typically have rms differences of 30 mGal between observed and modelled gravity anomalies. Significantly, the rms errors are reduced by 50% with the inclusion of a sediment layer that corresponds to a reduction of predicted seafloor topography rms errors of 192–684 m to 78–360 m.  相似文献   

16.
Water surface elevations(t), vertical surface velocities and vertical surface acceleration of wind-generated waves have been measured in a laboratory wind wave channel by using resistance-type wave gauges combined with an electronic differentiation circuits. Probability distributions of the values of(t), , and have been determined from the wave records.In an initial stage of wave generation,i.e., when wind waves are generated at short fetches and low wind speeds, the observed distributions for(t), and are appreciately good fit to the distributions given by successive sum of a Gram-Charlier series, which has been derived following the formulation ofLonguet-Higgins (1963), by taking the weakly nonlinear effect into account.However, when wind waves develop with increasing wind speeds and fetches, the observed distributions deviate gradually from the Gram-Charlier series. Particularly, the deviations are remarkable for the distribution of .When the wind speed increases, the observed distributions of(t), and show the following characteristics: (i) the skewnesses of the distributions of(t) and decrease slightly, (ii) the skewness of changes, at some wind speed, from positive small values to relatively large negative values, (iii) the kurtosis of the distribution of(t) decreases slightly but that of increases slightly and these characteristics seem to depend not so much on fetches, (iv) the kurtosis of the distribution of increases rapidly.  相似文献   

17.
With the averaged variational principles and the energy-momentum tensor, conservation laws for wave action, mass, momentum and energy for slowly varying water waves are derived systematically. For Stokes waves this enables us to derive energy and momentum conservation laws developed by the concept of radiation stress from general energymomentum tensor, which is as yet not clearly understood. Moreover the change of the wave amplitude of solitary wave over an uneven bottom is obtained from energy conservation equation.  相似文献   

18.
The storm surges which occurred in Tosa Bay in August 21, 1970 were numerically simulated. First of all NOAA's model SPLASH (Special Program to List Amplitudes of Surges from Hurricanes) was used and the effects of the typhoon's parameters, the bottom topography, the coastal configuration and the coordinate systems of storm surges were examined. SPLASH was then modified to suit computations of storm surges in the open sea and open boundary conditions were studied. Finally a two layer model was developed and the effects of the two layer system on surges were investigated.  相似文献   

19.
Various wind velocitiesu *,U /2,U andU 10 are correlated to the measured growth rate of water waves , whereu * is the friction velocity of the wind, andU /2,U andU 10 are the wind speeds respectively at the heights /2, and 10m above sea surface (: wave length). It is shown that within a range of the dimensionless wind speed, 0.1<u * /C<0.6, there are no appreciable differences in the correlations, whereC is the phase velocity of water waves. The present relation between andU shows qualitatively similar properties as the one obtained by Al'Zanaidi and Hui (1984); the growth rate for waves with rough surface is larger than that with smooth surface. However, our present relations give, for the both waves with different surface roughness, larger values by factors 1.71.8 than those given by Al'Zanaidi and Hui's relation.  相似文献   

20.
Using the data from a wind-tunnel experiment, bispectra of orbital-motions of wind-waves and of turbulence are calculated, and nonlinear interaction of wind-waves with turbulence in water are discussed. The wind-waves or the orbital motions of them, at first, produce the turbulence coherent with themselves, and then this coherent turbulence changes to the turbulence noncoherent with wind-waves. Nonlinearity of the velocity fluctuations in the surface layer in water under wind-waves is almost due to the nonlinear energy transfer from the orbital motions of wind-waves to the coherent turbulence. The vertical variations of the power spectra and of the normalized bispectra suggest that the wind driven currents near the surface play an important role in the process from orbital motion of wind-waves to noncoherent turbulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号