首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A detailed accuracy assessment of the geopotential model Jgm3 is made based on independent single- and dual-satellite sea-height differences at crossovers from altimetry with Jgm3-based orbits. These differences, averaged over long time spans and in latitude bands, are converted to spectra (latitude-lumped coefficients) by least-squares estimation. The observed error spectra so obtained are then compared directly to error projections for them from the Jgm3 variance–covariance matrix. It is found from these comparisons that Jgm3 is generally well calibrated with respect to the crossover altimetry of and between Geosat, TOPEX/Poseidon (T/P), and Ers 1. Some significant discrepancies at a few lower orders (namely m=1 and 3) indicate a need for further improvement of Jgm3. A companion calibration (by order) of the geopotential model Jgm2 shows its variance–covariance matrix also to be generally well calibrated for the same single- and dual-satellite altimeter data sets (but based on Jgm2 orbits), except that the error projections for Geosat are too pessimistic. The analysis of the dual-satellite crossovers reveals possible relative coordinate system offsets (particularly for Geosat with respect to T/P) which have been discussed previously. The long-term detailed seasonally averaged Geosat sea level with respect to T/P (covering 1985–1996) should be useful in gauging the relative change in sea level between different parts of the ocean over the single 4-year gap between these missions (1988–1992). Received: 16 February 1998 / Accepted: 25 November 1998  相似文献   

2.
Latitude-lumped coefficients (LLC) are defined, representing geopotential-orbit variations for dual-satellite crossovers (DSC). Formulae are derived for their standard errors from the covariances of geopotential field models. Numerical examples are presented for pairs of the altimeter-bearing satellites TOPEX/Poseidon, ERS 1, and Geosat, using the error matrices of recent gravity models. The DSC, connecting separate missions, will play an increasingly important role in oceanography spanning decades only when its nonoceanographic signals are thoroughly understood. In general, the content of even the long-term averaged DSC is more complex then their single satellite crossover (SSC) counterpart. The LLC, as the spatial spectra for the geopotential-caused crossover effects, discriminate these source-differences sharply. Thus, the zero-order LLC in DSC data contains zonal gravity information not present in SSC data. In addition, zero- and first-order LLC of DSC data can reveal a geocenter discrepancy between the orbit tracking of the separate satellite missions. For example, DSC analysis from orbits computed with JGM 2 show that the y-axis of the geocenter for Geosat in 1986–1988 is shifted with respect to T/P by 6–9 cm towards the eastern Pacific. Also, where the time-gap is necessarily large (as between, say, Geosat and T/P missions) oceanographic (sea-level) differences in DSC may corrupt the geopotential interpretation of the data. Most importantly, as we illustrate, media delays for the altimeter (from the ionosphere, wet troposphere and sea-state bias) are more likely sources of contamination across two missions than in SSC analyses. Again, the LLC of zero order best shows this contrast. Using the higher-order LLC of DSC for both Geosat-T/P and ERS 1-T/P as likely representation of geopotential-only error, we show by comparison with the predicted standard errors of JGM 2 that the latter's previously calibrated covariance matrix is generally valid. Received: 14 February 1996 / Accepted: 27 March 1997  相似文献   

3.
ERS-1 radial positioning using the JGM-2 and JGM-3 gravity fields is assessed by analysing dual crossovers with TOPEX/Poseidon, neither field containing ERS-1 data. This method allows a more complete recovery of ERS-1 radial orbit error, specifically of the previously unattainable mean geographical error. The global analysis shows that the theoretical error derived from the JGM-2 covariance matrix is realistic and that JGM-3 represents a slight improvement, at least at the inclination of ERS-1. A latitudinal-based study in the southern ocean indicates possible weaknesses in both fields, notably for low and resonant geopotential orders m. A refinement of JGM-2, RGM-2, is undertaken through inclusion of ERS-1 and STELLA laser tracking and ERS-1 altimetry, reducing several of its deficiencies. Received: 14 May 1996 / Accepted: 17 February 1997  相似文献   

4.
Kaula’s rule of thumb has been used in producing geopotential models from space geodetic measurements, including the most recent models from satellite gravity missions CHAMP. Although Xu and Rummel (Manuscr Geod 20 8–20, 1994b) suggested an alternative regularization method by introducing a number of regularization parameters, no numerical tests have ever been conducted. We have compared four methods of regularization for the determination of geopotential from precise orbits of COSMIC satellites through simulations, which include Kaula’s rule of thumb, one parameter regularization and its iterative version, and multiple parameter regularization. The simulation results show that the four methods can indeed produce good gravitational models from the precise orbits of centimetre level. The three regularization methods perform much better than Kaula’s rule of thumb by a factor of 6.4 on average beyond spherical harmonic degree 5 and by a factor of 10.2 for the spherical harmonic degrees from 8 to 14 in terms of degree variations of root mean squared errors. The maximum componentwise improvement in the root mean squared error can be up to a factor of 60. The simplest version of regularization by multiplying a positive scalar with a unit matrix is sufficient to better determine the geopotential model. Although multiple parameter regularization is theoretically attractive and can indeed eliminate unnecessary regularization for some of the harmonic coefficients, we found that it only improved its one parameter version marginally in this COSMIC example in terms of the mean squared error.  相似文献   

5.
 The new GFZ/GRGS gravity field models GRIM5-S1 and GRIM5-C1, currently used as initial models for the CHAMP mission, have been compared with other recent models (JGM 3, EGM 96) for radial orbit accuracy (by means of latitude lumped coefficients) in computations on altimetry satellite orbits. The bases for accuracy judgements are multi-year averages of crossover sea height differences from Geosat and ERS 1/2 missions. This radially sensitive data is fully independent of the data used to develop these gravity models. There is good agreement between the observed differences in all of the world's oceans and projections of the same errors from the scaled covariance matrix of their harmonic geopotential coefficients. It was found that the tentative scale factor of five for the formal standard deviations of the harmonic coefficients of the new GRIM fields is justified, i.e. the accuracy estimates, provided together with the GRIM geopotential coefficients, are realistic. Received: 20 February 2001 / Accepted: 24 October 2001  相似文献   

6.
Determination of Geopotential of Local Vertical Datum Surface   总被引:1,自引:0,他引:1  
1 IntroductionEachcountryoreachgroupofcountriesselectsmeansealev elatadefinedtidegaugeoratagroupofgaugesforitsverti caldatumsurface .Itisrealized ,however,thatthelocalmeansealevelisusuallydepartedfromthegeoid ,whichshouldbetheidealdatumsurfaceforheight,ow…  相似文献   

7.
 Global mean sea surface heights (SSHs) and gravity anomalies on a 2×2 grid were determined from Seasat, Geosat (Exact Repeat Mission and Geodetic Mission), ERS-1 (1.5-year mean of 35-day, and GM), TOPEX/POSEIDON (T/P) (5.6-year mean) and ERS-2 (2-year mean) altimeter data over the region 0–360 longitude and –80–80 latitude. To reduce ocean variabilities and data noises, SSHs from non-repeat missions were filtered by Gaussian filters of various wavelengths. A Levitus oceanic dynamic topography was subtracted from the altimeter-derived SSHs, and the resulting heights were used to compute along-track deflection of the vertical (DOV). Geoidal heights and gravity anomalies were then computed from DOV using the deflection-geoid and inverse Vening Meinesz formulae. The Levitus oceanic dynamic topography was added back to the geoidal heights to obtain a preliminary sea surface grid. The difference between the T/P mean sea surface and the preliminary sea surface was computed on a grid by a minimum curvature method and then was added to the preliminary grid. The comparison of the NCTU01 mean sea surface height (MSSH) with the T/P and the ERS-1 MSSH result in overall root-mean-square (RMS) differences of 5.0 and 3.1 cm in SSH, respectively, and 7.1 and 3.2 μrad in SSH gradient, respectively. The RMS differences between the predicted and shipborne gravity anomalies range from 3.0 to 13.4 mGal in 12 areas of the world's oceans. Received: 26 September 2001 / Accepted: 3 April 2002 Correspondence to: C. Hwang Acknowledgements. This research is partly supported by the National Science Council of ROC, under grants NSC89-2611-M-009-003-OP2 and NSC89-2211-E-009-095. This is a contribution to the IAG Special Study Group 3.186. The Geosat and ERS1/2 data are from NOAA and CERSAT/France, respectively. The T/P data were provided by AVISO. The CLS and GSFC00 MSS models were kindly provided by NASA/GSFC and CLS, respectively. Drs. Levitus, Monterey, and Boyer are thanked for providing the SST model. Dr. T. Gruber and two anonymous reviewers provided very detailed reviews that improved the quality of this paper.  相似文献   

8.
This paper analyzes several systematic errors affecting sea surface gradients derived from Seasat, Geosat/ERM, Geosat/GM, ERS-1/35d, ERS-1/GM and TOPEX/POSEIDON altimetry. Considering the data noises, the conclusion is: (1) only Seasat needs to correct for the non-geocentricity induced error, (2) only Seasat and Geosat/GM need to correct for the one cycle per revolution error, (3) only Seasat, ERS-1/GM and Geosat/GM need to correct for the tide model error; over shallow waters it is suggested to use a local tide model not solely from altimetry. The effects of the sea surface topography on gravity and geoid computations from altimetry are significant over areas with major oceanographic phenomena. In conclusion, sea surface gradient is a better data type than sea surface height. Sea surface gradients from altimetry, land gravity anomalies, ship gravity anomalies and elevation data were then used to calculate the geoid over Taiwan by least-squares collocation. The inclusion of sea surface gradients improves the geoid prediction by 27% when comparing the GPS-derived and the predicted geoidal heights, and by 30% when comparing the observed and the geoid-derived deflections of the vertical. The predicted geoid along coastal areas is accurate to 2 cm and can help GPS to do the third-order leveling. Received 22 January 1996; Accepted 13 September 1996  相似文献   

9.
Solving the geodetic boundary-value problem (GBVP) for the precise determination of the geoid requires proper use of the fundamental equation of physical geodesy as the boundary condition given on the geoid. The Stokes formula and kernel are the result of spherical approximation of this fundamental equation, which is a violation of the proper relation between the observed quantity (gravity anomaly) and the sought function (geoid). The violation is interpreted here as the improper formulation of the boundary condition, which implies the spherical Stokes kernel to be in error compared with the proper kernel of integral transformation. To remedy this error, two correction kernels to the Stokes kernel were derived: the first in both closed and spectral forms and the second only in spectral form. Contributions from the first correction kernel to the geoid across the globe were [−0.867 m, +1.002 m] in the low-frequency domain implied by the GRIM4-S4 purely satellite-derived geopotential model. It is a few centimeters, on average, in the high-frequency domain with some exceptions of a few meters in places of high topographical relief and sizable geological features in accordance with the EGM96 combined geopotential model. The contributions from the second correction kernel to the geoid are [−0.259 m, +0.217 m] and [−0.024 m, +0.023 m] in the low- and high-frequency domains, respectively.  相似文献   

10.
 Starting from the analytical theory of perturbed␣circular motions presented in Celestial Mechanics (Bois 1994) and from specific extended formulations of the perturbations in a uniformly rotating plane of constant inclination, this paper presents an extended formulation of the solution. The actual gain made through this extension is the establishment of a first-order predictive theory written in spherical coordinates and thus free of singularities, whose perturbations are directly expressed in the local orbital frame generally used in satellite geodesy. This new formulation improves the generality, the precision and the field of applications of the theory. It is particularly devoted to the analysis of satellite position perturbations for satellites in low eccentricity orbits usually used for many Earth observation applications. An application to the TOPEX/Poseidon (T/P) orbit is performed. In particular, contour maps are provided which show the geographical location of orbit differences coming from geopotential coefficient differences of two recent gravity field models. Comparison of predicted radial and along-track orbit differences with respect to numerical results provided by the French group (CNES, in Toulouse) in charge of the T/P orbit are convincing. Received 22 January 1996; Accepted 19 September 1996  相似文献   

11.
This analysis was performed with the GEOSAT software developed at NDRE for high-precision analysis of satellite tracking and VLBI data for geodetic and geodynamic applications.For applications to ERS-1, a realistic surface force model is used together with the Jacchia 77 atmospheric model, semi-daily drag coefficients, a 1-cpr sinusoidal along-track acceleration, and the GSFC JGM-2 gravity model. ERS-1 orbits have been derived for 5.5-day arcs of laser tracking data between July 6 and August 12, 1992. Results from overlapping orbits and comparison with precise D-PAF orbits indicate an orbital accuracy of 10–15 cm in the radial direction, ~ 60 cm in the along-track direction and ~ 15 cm in the cross-track direction.  相似文献   

12.
This paper takes advantage of space-technique-derived positions on the Earth’s surface and the known normal gravity field to determine the height anomaly from geopotential numbers. A new method is also presented to downward-continue the height anomaly to the geoid height. The orthometric height is determined as the difference between the geodetic (ellipsoidal) height derived by space-geodetic techniques and the geoid height. It is shown that, due to the very high correlation between the geodetic height and the computed geoid height, the error of the orthometric height determined by this method is usually much smaller than that provided by standard GPS/levelling. Also included is a practical formula to correct the Helmert orthometric height by adding two correction terms: a topographic roughness term and a correction term for lateral topographic mass–density variations.  相似文献   

13.
One year (November 1986 to October 1987) of Geosat altimeter data with improved orbits produced at The Ohio State University has been used to define sea surface heights for 22 ERM and one year averaged Geosat track. All sea surface heights were referenced to the single reference track through the application of geoid gradient corrections. The root mean square (RMS) gradient correction was on the order of ±1 cm although it could reach 20 cm with data points in trench areas. 10 values used to form the mean were considered. Although this study was initially driven by a need for a good reference sea surface for geodetic applications the formation of the reference track yields information on the variability of the ocean surface in the first year of the Geosat ERM. The RMS point variability was ± 12.6 cm with only a very small number of values exceeding 50 cm when a depth editing criteria was used. Global plots of the sea surface variability clearly reveal the major ocean currents and their variations in position in the year. Examination of the 1° × 1° averaged sea surface height variations show average and maximum variability values as follows: Gulf Stream (29 and 50 cm); Kurshio Current (24 and 49 cm); Agulhas Current (24 and 52 cm) and the Gulf of Mexico (18 and 31 cm). These magnitudes may be dependent on the radial orbit correction procedure. To investigate this effect sea slope variations were also computed. These results also showed clear current structures but also high frequency gravity field information despite efforts to average out such information. The data described in the paper is available from the authors for numerous other studies, some of which are suggested in the paper.  相似文献   

14.
The crossover adjustment plays a central role in the processing of satellite altimeter measurements. The usual procedure is to form sea surface height differences at crossover points, solve for the radial orbit error (with due attention to the singular nature of the estimation problem) and then to construct altimetric sea-level maps using the mean sea surface heights at the crossover points. Our approach is very different, to make direct use of measurements at crossover points without differencing and to estimate simultaneously orbit parameters, mean sea surface height and sea surface height variability in a single, unified adjustment. The technique is suited for repeat data over an area small enough that adjoining passes may be considered to be parallel and to permit the solution of a set of linear equations of dimension equal to the number of crossover points. The size of the numerical problem is almost independent of the number of repeat cycles of the altimeter mission. Explicit recognition is given to the rank defect of the least-squares estimation problem; we show that, for an orbit model with r parameters, the rank defect of the local crossover problem is exactly r 2. The defect may be overcome by choosing an appropriate set of constraints – either giving a best fit of mean sea surface heights to a reference surface, or minimising orbit parameters, or a minimum norm solution in which both mean sea surface heights and orbit parameters are minimised. There is no need to choose a reference pass, all passes are treated equally and data gaps are easily accommodated. Numerical results are presented for the south-western Indian Ocean, based on the first 2 years of altimeter data from the Geosat Exact Repeat Mission. Received: 31 May 1996 / Accepted: 19 April 1997  相似文献   

15.
The direct method of vertical datum unification requires estimates of the ocean’s mean dynamic topography (MDT) at tide gauges, which can be sourced from either geodetic or oceanographic approaches. To assess the suitability of different types of MDT for this purpose, we evaluate 13 physics-based numerical ocean models and six MDTs computed from observed geodetic and/or ocean data at 32 tide gauges around the Australian coast. We focus on the viability of numerical ocean models for vertical datum unification, classifying the 13 ocean models used as either independent (do not contain assimilated geodetic data) or non-independent (do contain assimilated geodetic data). We find that the independent and non-independent ocean models deliver similar results. Maximum differences among ocean models and geodetic MDTs reach >150 mm at several Australian tide gauges and are considered anomalous at the 99% confidence level. These differences appear to be of geodetic origin, but without additional independent information, or formal error estimates for each model, some of these errors remain inseparable. Our results imply that some ocean models have standard deviations of differences with other MDTs (using geodetic and/or ocean observations) at Australian tide gauges, and with levelling between some Australian tide gauges, of \({\sim }\pm 50\,\hbox {mm}\). This indicates that they should be considered as an alternative to geodetic MDTs for the direct unification of vertical datums. They can also be used as diagnostics for errors in geodetic MDT in coastal zones, but the inseparability problem remains, where the error cannot be discriminated between the geoid model or altimeter-derived mean sea surface.  相似文献   

16.
 The single- and dual-satellite crossover (SSC and DSC) residuals between and among Geosat, TOPEX/Poseidon (T/P), and ERS 1 or 2 have been used for various purposes, applied in geodesy for gravity field accuracy assessments and determination as well as in oceanography. The theory is presented and various examples are given of certain combinations of SSC and DSC that test for residual altimetry data errors, mostly of non-gravitational origin, of the order of a few centimeters. There are four types of basic DSCs and 12 independent combinations of them in pairs which have been found useful in the present work. These are defined in terms of the `mean' and `variable' components of a satellite's geopotential orbit error from Rosborough's 1st-order analytical theory. The remaining small errors, after all altimeter data corrections are applied and the relative offset of coordinate frames between altimetry missions removed, are statistically evaluated by means of the Student distribution. The remaining signal of `non-gravitational' origin can in some cases be attributed to the main ocean currents which were not accounted for among the media or sea-surface corrections. In future, they may be resolved by a long-term global circulation model. Experience with two current models, neither of which are found either to cover the most critical missions (Geosat & TOPEX/Poseidon) or to have the accuracy and resolution necessary to account for the strongest anomalies found across them, is described. In other cases, the residual signal is due to errors in tides, altimeter delay corrections or El Ni?o. (Various examples of these are also presented.) Tests of the combinations of the JGM 3-based DSC residuals show that overall the long-term data now available are well suited for a gravity field inversion refining JGM 3 for low- and resonant-order geopotential harmonics whose signatures are clearly seen in the basic DSC and SSC sets. Received: 15 January 1999 / Accepted: 9 September 1999  相似文献   

17.
R. H. Rapp  Y. Yi 《Journal of Geodesy》1997,71(10):617-629
Procedures to calculate mean sea surface heights and gravity anomalies from altimeter-derived sea surface heights and along-track sea surface slopes using the least-squares collocation procedure are derived. The slope data is used when repeat track averaging is not possible to reduce ocean variability effects. Tests were carried out using Topex, Geosat, ERS-1 [35-day and 168-day (2 cycle)] data. Calculations of gravity anomalies in the Gulf Stream region were made using the sea surface height and slope data. Tests were also made correcting the sea surface heights for dynamic ocean topography calculated from a degree 360 expansion of data from the POCM-4B global ocean circulation model. Comparisons of the anomaly predictions were carried out with ship data using anomalies calculated for this paper as well as others. Received: 19 August 1996 / Accepted: 14 April 1997  相似文献   

18.
TOPEX/Poseidon orbit error assessment   总被引:1,自引:0,他引:1  
This paper discusses the accuracy of TOPEX/Poseidon orbits computed at Delft University, Section Space Research & Technology (DUT/SSR&T), from several types of tracking data,i.e. SLR, DORIS, and GPS. To quantify the orbit error, three schemes are presented. The first scheme relies on the direct altimeter observations and the covariance of the JGM-2 gravity field. The second scheme is based on crossover difference residuals while the third scheme uses the differences of dynamic orbit solutions with the GPS reduced-dynamic orbit. All three schemes give comparable results and indicate that the radial orbit error of TOPEX/Poseidon is 3–4 cm. From the orbit comparisons with GPS reduced dynamic, both the along-track and cross-track errors of the dynamic orbit solutions were found to be within 10–15 cm.  相似文献   

19.
How to handle topography in practical geoid determination: three examples   总被引:3,自引:1,他引:2  
 Three different methods of handling topography in geoid determination were investigated. The first two methods employ the residual terrain model (RTM) remove–restore technique, yielding the quasigeoid, whereas the third method uses the classical Helmert condensation method, yielding the geoid. All three methods were used with the geopotential model Earth Gravity Model (1996) (EGM96) as a reference, and the results were compared to precise global positioning system (GPS) levelling networks in Scandinavia. An investigation of the Helmert method, focusing on the different types of indirect effects and their effects on the geoid, was also carried out. The three different methods used produce almost identical results at the 5-cm level, when compared to the GPS levelling networks. However, small systematic differences existed. Received: 18 March 1999 / Accepted: 21 March 2000  相似文献   

20.
The Cartesian-to-Geodetic coordinate transformation is re-cast as a minimization algorithm for the height of the Satellite above the reference Earth surface. Optimal necessary conditions are obtained that fix the satellite ground track vector components in the Earth surface. The introduction of an artificial perturbation variable yields a rapidly converging second order power series solution. The initial starting guess for the solution provides 3–4 digits of precision. Convergence of the perturbation series expansion is accelerated by replacing the series solution with a Padé approximation. For satellites with heights < 30,000 km the second-order expansions yields ~mm satellite geodetic height errors and ~10−12 rad errors for the geodetic latitude. No quartic or cubic solutions are required: the algorithm is both non-iterative and non-singular. Only two square root and two arc-tan calculations are required for the entire transformation. The proposed algorithm has been measured to be ~41% faster than the celebrated Bowring method. Several numerical examples are provided to demonstrate the effectiveness of the new algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号