首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The soil liquefaction potential has been evaluated for the Ariana Region because of its important socio-economic interest and its location. Liquefaction susceptibility mapping is carried out using a decisional flow chart for evaluation of earthquake-induced effects, based on available data such as paleoliquefaction, geological, groundwater depth, seismotectonic, sedimentary features and geotechnical parameters in particular laboratory testing like grain size analyses and state parameters. Survey results showed that some of these localities are considered as possible sites to soil liquefaction. Indeed, Quaternary alluvium deposits, paleo beaches and recent deposits that edge the lake and the sebka constitute the most susceptible locations to liquefaction. In the east and the west sides of the studied zone, Quaternary deposits are less susceptible to the liquefaction due to the groundwater level deepening and to the relatively old age of the deposits. Elsewhere sedimentary formations are classified as non-liquefiable as they are heavily compacted and old.  相似文献   

2.
成果的有效应用服务是城市地质调查工作的核心驱动力,城市地质数据集作为城市地质调查工作的核心成果,是决定城市地质调查研究成果应用服务有效性的关键。中国地质调查局部署开展丹阳小城镇地质环境综合调查试点,本次共完成遥感解译1 047 km2(3期数据),调查点767个,钻探115个,累计钻探进尺8 720 m(其中第四系孔915 m,水文孔2 366 m,工程孔5 439 m),采集第四纪地质样品2 904组,地下水样品240组,原状土样1 108组,土壤样2 482组,地下水位统测点70个,抽水试验18组等。查清了丹阳市水文地质、工程地质、地质灾害等分布规律,并围绕丹阳市规划建设对地质工作的实际需求,对各类调查原始数据进行了专项加工,建立了数据集,为丹阳市规划建设提供了良好的支撑服务。文章对数据来源、数据收集方法、处理技术等方面进行了整理和归纳,形成了小城镇地质调查应用服务地质数据集的构建方法,为今后小城镇地质调查和数据集处理及应用提供参考。  相似文献   

3.
Suffusion involves fine particles migration within the matrix of coarse fraction under seepage flow, which usually occurs in the gap-graded material of dams and levees. Key factors controlling the soil erodibility include confining pressure (p′) and fines content (Fc), of which the coupling effect on suffusion still remains contradictory, as concluded from different studies considering narrow scope of these factors. For this reason, a systematical numerical simulation that considers a relative wide range of p′ and Fc was performed with the coupled discrete element method and computational fluid dynamics approach. Two distinct macroresponses of soil suffusion to p′ were revealed, ie, for a given hydraulic gradient = 2, an increase in p′ intensifies the suffusion of soil with fines overfilling the voids (eg, Fc = 35%), but have negligible effects on the suffusion of gap-graded soil containing fines underfilling the voids (eg, Fc = 20%). The micromechanical analyses, including force chain buckling and strain energy release, reveal that when the fines overfilled the voids between coarse particles (eg, Fc = 35%) and participated heavily in load-bearing, the erosion of fines under high i could cause the collapse of the original force transmission structure. The release of higher strain energy within samples under higher p′ accelerated particle movement and intensified suffusion. Conversely, in the case where the fines underfilled the voids between coarse particles (eg, F= 20%), the selective erosion of fines had little influence on the force network. High p′ in this case prevented suffusion.  相似文献   

4.
The selection of the disposal site is probably the most important step in the development of solid waste management. In site selection, geology plays a determining role. This study evaluates the characteristics of the environment on the basis of the geological, hydrogeological and geo-engineering properties of the solid waste site of the Sivas city, Turkey. The area is underlain by the Oligocene-Miocene rocks which have limited aquifer properties. Thin Quaternary alluvium and soil cover overlie the Oligo-Miocene rocks, which are represented as well graded sand and inorganic silt of low plasticity. The Quaternary alluvium and soil cover are classified as inorganic clays having a low plasticity and the permeability varies from 1.2×10−6 to 3.11×10−6 m/s. These values are much higher than 1×10−8 m/s, which is accepted for waste disposal standards. Seepage waters have a potential to pollute the ground water and the Kızılırmak River, which is 500 m to the southwest of the waste disposal area and because the disposal site is close to the river, the potential for flash flooding poses a high pollution risk. The waste disposal area must be covered by clay layers or an impervious artificial membrane. In addition, seepage must be controlled and removed from the site.  相似文献   

5.
Porosity change model for watered super absorbent polymer-treated soil   总被引:2,自引:0,他引:2  
Drought is a great concern in agricultural production, because it restricts normal plant growth, brings about enormous economic loss and deteriorates ecological environment. Proper use of super absorbent polymers (SAP) is helpful in the agricultural and horticultural industry in arid and semi-arid areas, because SAP can ease the burden of water shortage. Because porosity is one of the most important soil physical properties, it is a priority to study SAP to quantitatively express the swelling of watered SAP-treated soil. This study was aimed to evaluate the bulk density curve of watered SAP-treated soil and to construct and test the model for porosity change of watered SAP-treated soil. The results showed that the application of SAP can reduce soil bulk density, improve soil permeability and cause soil swelling. In addition, using three factors, i.e., water content, change in swelling ratio and SAP application rate, the paper constructed a model for porosity change of watered SAP-treated soil, which is {ln[(P m − P)(P m − P 0)−1]} βP 0 θ = −η 0  − η 0 a. This is a generic model. Two soil samples, namely, loam and sandy loam, were used to calculate the parameters and test the model. The results of the model were satisfying, thus this model is reliable.  相似文献   

6.
The high‐precision δ60/58Ni values of twenty‐six geological reference materials, including igneous rocks, sedimentary rocks, stream sediments, soils and plants are reported. The δ60/58Ni values of all samples were determined by double‐spike MC‐ICP‐MS (Nu Plasma III). Isotope standard solution (NIST SRM 986) and geological reference materials (BHVO‐2, BCR‐2, JP‐1, PCC‐1, etc.) were used to evaluate the measurement bias and intermediate precision over a period of six months. Our results show that the intermediate precision of Ni isotope determination was 0.05‰ (2s, n = 69) for spiked NIST SRM 986 and typically 0.06‰ for actual samples, and the δ60/58Ni NIST SRM 986 values were in excellent agreement with previous studies. Eighteen high‐precision Ni isotope ratios of geological reference materials are first reported here, and their δ60/58Ni values varied from ?0.27‰ to 0.52‰, with a mean of 0.13 ± 0.34‰ (2s, n = 18). Additionally, SGR‐1b (0.56 ± 0.04‰, 2s), GSS‐1 (?0.27 ± 0.06‰, 2s), GSS‐7 (?0.11 ± 0.01‰, 2s), GSD‐10 (0.46 ± 0.06‰, 2s) and GSB‐12 (0.52 ± 0.06‰, 2s) could potentially serve as candidate reference materials for Ni isotope fractionation and comparison of Ni isotopic compositions among different laboratories.  相似文献   

7.
We report major and trace element composition, Sr–Nd isotopic and seismological data for a picrite–basalt–rhyolite suite from the northern Tarim uplift (NTU), northwest China. The samples were recovered from 13 boreholes at depths between 5,166 and 6,333 m. The picritic samples have high MgO (14.5–16.8 wt%, volatiles included) enriched in incompatible element and have high 87Sr/86Sr and low 143Nd/144Nd isotopic ratios (εNd (t) = −5.3; Sri = 0.707), resembling the Karoo high-Ti picrites. All the basaltic samples are enriched in TiO2 (2.1–3.2 wt%, volatiles free), have high FeOt abundances (11.27–15.75 wt%, volatiles free), are enriched in incompatible elements and have high Sr and low Nd isotopic ratios (Sri = 0.7049–0.7065; εNd (t) = −4.1 to −0.4). High Nb/La ratios (0.91–1.34) of basalts attest that they are mantle-derived magma with negligible crustal contamination. The rhyolite samples can be subdivided into two coeval groups with overlapping U–Pb zircon ages between 291 ± 4 and 272 ± 2 Ma. Group 1 rhyolites are enriched in Nb and Ta, have similar Nb/La, Nb/U, and Sr–Nd isotopic compositions to the associated basalts, implying that they are formed by fractional crystallization of the basalts. Group 2 rhyolites are depleted in Nb and Ta, have low Nb/La ratios, and have very high Sr and low Nd isotopic ratios, implying that crustal materials have been extensively, if not exclusively, involved in their source. The picrite–basalt–rhyolite suite from the NTU, together with Permian volcanic rocks from elsewhere Tarim basin, constitute a Large Igneous Province (LIP) that is characterized by large areal extent, rapid eruption, OIB-type chemical composition, and eruption of high temperature picritic magma. The Early Permian magmatism, which covered an area >300,000 km2, is therefore named the Tarim Flood Basalt.  相似文献   

8.
A novel preconcentration method is presented for the determination of Mo isotope ratios by multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS) in geological samples. The method is based on the separation of Mo by extraction chromatography using N‐benzoyl‐N‐phenylhydroxylamine (BPHA) supported on a microporous acrylic ester polymeric resin (Amberlite CG‐71). By optimising the procedure, Mo could be simply and effectively separated from virtually all matrix elements with a single pass through a small volume of BPHA resin (0.5 ml). This technique for separation and enrichment of Mo is characterised by high selectivity, column efficiency and recovery (~ 100%), and low total procedural blank (~ 0.18 ng). A 100Mo‐97Mo double spike was mixed with samples before digestion and column separation, which enabled natural mass‐dependent isotopic fractionation to be determined with a measurement reproducibility of  < 0.09‰ (δ98/95Mo, 2s) by MC‐ICP‐MS. The mean δ98/95MoSRM 3134 (NIST SRM 3134 Mo reference material; Lot No. 891307) composition of the IAPSO seawater reference material measured in this study was 2.00 ± 0.03‰ (2s, n = 3), which is consistent with previously published values. The described procedure facilitated efficient and rapid Mo isotopic determination in various types of geological samples.  相似文献   

9.
About 24 samples from hand-dug wells and boreholes were used to characterize concentrations of the main inorganic ions in a laterite environment under semi-arid climatic conditions in Tikaré, northern Burkina Faso. It was found that the most represented groundwater anion in groundwater was HCO3 with average levels of 49.1 mg/L in the dry season and 33.5 mg/L in the rainy season. The most represented cation was Ca2+ with mean concentrations of 13.7 and 9.5 mg/L, respectively. The main processes, which influence the concentrations of these ions, are evaporation (dry season), local enrichment of recharge water in some elements, ion exchange and fixation by clay minerals (in case of K+). The best correlations were found between Ca2+ and Mg2+ (r = 0.95), Cl and Na+ (r = 0.95), HCO3 and Mg2+ (r = 0.89), HCO3 and Ca2+ (r = 0.89), and between HCO3 and Na+ (r = 0.80). In general, the quality of the groundwater from the different wells sampled for this study was good enough to serve as drinking water. However, there were situations where the quality of water was polluted because of anthropogenic contaminants (mainly NO3 , K+, Cl) from septic tanks and manure pits located in the vicinity of some sampled wells. In addition, application of fertilizers also represents a potential anthropogenic contamination source with regard to SO4 2−, Ca2+, K+, Na+, and Mg2+. Considering the high concentrations of SO4 2−, Mg2+, Na+ and Ca2+ found in one borehole, the deeper, fractured aquifers were also likely to be enriched in these elements. In contrast, the shallow aquifers are likely to be contaminated with Cl, NO3 and K+. Cl and K+ seem to be locally present in recharge water as shown by their relative higher mean concentrations in the rainy season samples.  相似文献   

10.
Holocene variations in annual precipitation (Pann) were reconstructed from pollen data from southern Argentinian Patagonia using a transfer function developed based on a weighted-averaging partial least squares (WA-PLS) regression. The pollen–climate calibration model consisted of 112 surface soil samples and 59 pollen types from the main vegetation units, and modern precipitation values obtained from a global climate database. The performance (r2 = 0.517; RMSEP = 126 mm) of the model was comparable or slightly lower than in other comparable pollen–climate models. Fossil pollen data were obtained from a sediment core from Cerro Frias site (50°24'S, 72°42'W) located at the forest-steppe ecotone. Reconstructed Pann values of about 200 mm suggest dry conditions during the Pleistocene–Holocene transition (12,500–10,500 cal yr BP). Pann values were about 300–350 mm from 10,500 to 8000 cal yr BP and increased to 400–500 mm between 8000 and 1000 cal yr BP. An abrupt decrease in Pann at about 1000 cal yr BP was associated with a Nothofagus decline. The reconstructed Pann suggests a weakening and southward shift of the westerlies during the early Holocene and intensification, with no major latitudinal shifts, during the mid-Holocene at high latitudes in southern Patagonia.  相似文献   

11.
The structural evolution with pressure and the equations of state of three members of the brownmillerite solid solution, Ca2(Fe2−x Al x )O5, have been determined by single-crystal X-ray diffraction up to a maximum pressure of 9.73 GPa. The compositions of the samples were x = 0.00 and x = 0.37 (with Pnma symmetry) and x = 0.55 (with I2mb symmetry). No phase transitions were observed in the experiments. The equation of state parameters determined from the pressure-volume data are K 0T = 128.0 (7) GPa, K0 = 5.8 (3) for the sample with x = 0.00, K 0T = 131 (2) GPa, K0 = 5.5 (4) for x = 0.37, and K 0T = 137.5 (6) GPa, K′0 = 4 for x = 0.55. The bulk modulus therefore increases with Al content, being 11% higher in the x = 0.55 sample than in the Al-free sample. The unit-cell compression is anisotropic, with the c-axis being stiffer than a or b, and the anisotropy increases with increasing Al content of the structure. The structural response to pressure of all samples is similar. The (Al,Fe)O4 tetrahedra and the (Al,Fe)O6 octahedra undergo approximately isotropic compression. There is an increase in the twists of the chains of corner-sharing (Al,Fe)O4 tetrahedra, and an increase in the tilts of the (Al,Fe)O6 octahedra, because these framework polyhedra are stiffer than the Ca–O bonds to the extra-framework Ca site. The alignment of the two shortest Ca–O bonds sub-parallel to [001] accounts for the relative stiffness of the c-axis and thus the elastic anisotropy. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Fault slip analysis of Quaternary faults in southeastern Korea   总被引:1,自引:0,他引:1  
The Quaternary stress field has been reconstructed for southeast Korea using sets of fault data. The subhorizontal direction of the maximum principal stress (σ1) trended ENE and the direction of the minimum principal stress (σ3) was nearly vertical. The stress ratio (Φ = (σ2 − σ3) / (σ1 − σ3)) value was 0.65. Two possible interpretations for the stress field can be made in the framework of eastern Asian tectonics; (1) The σHmax trajectory for southeast Korea fits well with the fan-shaped radial pattern of maximum principal stress induced by the India–Eurasia collision. Thus, we suggest that the main source for this recent stress field in southeast Korea is related to the remote India–Eurasia continental collision. (2) The stress field in Korea shows a pattern similar to that in southwestern Japan. The origin for the E–W trending σHmax in Japan is known to be related to the mantle upwelling in the East China Sea. Thus, it is possible that Quaternary stress field in Korea has evolved synchronously with that in Japan. We suggest further studies (GPS and in situ stress measurement) to test these hypotheses.  相似文献   

13.
Mercury contents in Precambrian banded iron formation-hosted hematite ores are virtually unknown. In an attempt to provide information on the abundance and distribution of Hg in Fe ore, we present analyses for Hg in samples of high-grade soft hematite ore from Gongo Soco, Minas Gerais, Brazil. Bulk samples contain from <  5 to 25  ppb Hg without obvious correlation with major elements. Granulometric fractions of follow-up samples have amounts of Hg from 6 to 48  ppb and display positive linear correlations with total Mn as MnO (r = 0.87), LOI (r = 0.87) and SiO2 (r = 0.76), as well as a negative linear correlation with total Fe as Fe2O3 (r = −  0.87). The correlations suggest that Hg is associated with a hydrated ferruginous groundmass bearing residual Mn, Al and Si, which replaced gangue minerals in itabirite in the process of formation of the Gongo Soco soft hematite ore.  相似文献   

14.
Geochemical and environmental magnetic studies were carried out to identify the effect of iron oxyhydroxides on arsenic mobilization in high arsenic aquifer system. Using high arsenic sediment samples from two boreholes, specifically drilled for this study, chemical composition and magnetic properties including magnetic susceptibility, saturation remnant magnetization, and isothermal remnant magnetization were measured. Results of correlation analysis of element contents show that arsenic and iron are closely associated with each other (r 2 = 0.40, α = 0.05, n = 21). In contrast, the correlation of phosphorus with iron (r = 0.11, α = 0.05, n = 21) and arsenic (r 2 = 0.18, α = 0.05, n = 21) was poor, which might result from competitive adsorption of phosphorus and arsenic on the surface of Fe-oxyhydroxides. The high correlation coefficients between arsenic contents and magnetic parameters suggest that the ferrimagnetic minerals including maghemite and hematite are the dominant carrier of arsenic in aquifer sediments. The results of sequential extraction experiments also revealed the association of arsenic with reducible iron oxides, such as maghemite and hematite in aquifer sediments. Therefore, under reducing conditions, reductive dissolution and desorption of arsenic from Fe-oxyhydroxides into the aqueous phase should be the dominant geochemical processes for its enrichment in groundwater at Datong. An erratum to this article can be found at  相似文献   

15.
Shanghai Administrative Region (SAR) is located on the deltaic deposit of the Yangtze River. The bed rock under SAR is generally buried in the depth of 200 m to 300 m except for several massifs, where the bed rock is exposed to the ground surface. The Quaternary deposit in Shanghai is soft sediment. The variation of palaeoclimate influenced the sea level and resulted in a very complicated sedimentary environment. The Quaternary deposit in SAR is composed of an alternated multi-aquifer-aquitard system (MAAS). The groundwater system is composed of one artesian aquifer and five confined aquifer layers with very high groundwater pressure head. The MAAS was formed mainly within the warm geological era updated to 2.6 million years ago. Between two aquifers, there is an aquitard which is composed of soft clayey soil formed mainly within the cold era. The aquitards are composed of very soft clayey silt with very high compressibility and humus content. The humus material was transformed into methane gas under a long-term geological process. With the development of economy, the infrastructures were (or are being) constructed in the top shallow soft clayey deposit, aquifer I and aquifer II. In SAR, the following geohazards occurred or possibly occur during the construction and maintenance of infrastructures: i) quicksand and piping hazards; ii) pumping-induced hazards and recharge-cutoff hazards; iii) long-term settlement due to the seasonal fluctuation of groundwater level; and iv) geohazards of methane gas.  相似文献   

16.
In highlands of semiarid Turkey, ecosystems have been significantly transformed through human actions, and today changes are taking place very rapidly, causing harmful consequences such as soil degradation. This paper examines two neighboring land use types in Indagi Mountain Pass, Cankiri, Turkey, to determine effects of the conversion of Blackpine (Pinus nigra Arn. subsp. pallasiana) plantation from grassland 40 years ago on soil organic carbon (SOC) and soil erodibility (USLE-K). For this purpose, a total of 302 disturbed and undisturbed soil samples were taken at irregular intervals from two sites and from two soil depths of 0–10 cm (D1) and 10–20 cm (D2). In terms of SOC, conversion did not make any statistical difference between grassland and plantation; however, there were statistically significant differences with soil depth within each land use, and SOC contents significantly decreased with the soil depth (P < 0.05) and mostly accumulated in D1. SOC values were 2.4 and 1.8% for grassland and 2.8 and 1.6% for plantation, respectively, at D1 and D2. USLE-K values also statistically differed significantly with the land use, and in contrast to the statistics of SOC, there was no change in USLE-K with the soil depth. Since USLE-K was estimated using SOC, hydraulic conductivity (HC) and soil textural composition––sand (S), silt (Si), and clay (C) contents of soils––as well as SOC did not change with the land use, we ascribed the changes of USLE-K with the land uses to the differences in the HC as strongly affected by the interactions between SOC and contents of S, Si, and C. On an average, the soil of the grassland (USLE-K = 0.161 t ha h ha−1 MJ−1 mm−1) was more erodible than those of the plantation (USLE-K = 0.126 t ha h ha−1 MJ−1 mm−1). Additionally, topographic factors, such as aspect and slope, were statistically effective on spatial distribution of the USLE-K and SOC.  相似文献   

17.
Deuterium, δ 18O, major ions and dissolved silica in groundwater from semi-arid Mayo-Tsanaga river basin in the Far North Province, Cameroon were used to trace hydrogeochemical processes that control their concentrations and to explore for usability of the water. Electrical conductivity ranges from 57–2,581 μs/cm with alternating low and high values along the hydraulic gradient. Waters from piedmont alluvium show low concentrations in major cations, which peak in Mg within basalt, Na within plain alluvium, and Ca within basalt and the sandy Limani-Yagoua ridge. The initial dominant groundwater composition is CaHCO3, which did not evolve within the basalt and piedmont alluvium, but evolved to NaHCO3 in the granite and plain alluvium. The main processes controlling the major ions composition include the following: (1) dissolution of silicates and fluorite; (2) precipitation of fluorite and carbonate; (3) cation exchange of Ca in water for Na in clay; (4) and anthropogenic activities. The δD and δ 18O ratios vary from −35 to 0.7 and −5.3 to 1.1‰, respectively. The lowest and highest isotope ratios are observed in groundwater within the downstream sandy Limani-Yagoua ridge and the upstream graintes respectively. Variation in isotope ratios depends on altitude effect of −0.48‰ per 100 m between 600 and 850 m asl, and on evaporation, which had insignificant effect on the water salinity. Seventy percent of the groundwater shows poor drinking quality and 90% is suitable for irrigation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Organic material in metal contaminated soils around an abandoned magnetite mine–smelter complex in the critical Highlands watershed protects the groundwater and surface water from contamination. Metals in these waters were consistently below local and national water standards. Two groups of soil types cover the area: (1) Group A disturbed metal-rich soils, and (2) Group B undisturbed organic soils. Chromium and nickel were more elevated than other metals with Cr more widespread than Ni. In Group A, Cr correlated strongly with sesquioxides in the lower horizons (Fe2O3: r = 0.74, p < 0.025; Al2O3: r = 0.92, p < 0.005). In Group B, Cr correlated strongly (r = 0.96, p < 0.005) with soil organic matter (SOM) in the O-horizons. Ni–Cr (Group A: 52 and 70% in O- and lower horizons, respectively; Group B: ~100% in both horizons) and V–Cr correlations (78% only in Group A lower horizons) suggest similar retention mechanisms for these elements. Average soil \textpH\textCaCl2 {\text{pH}}_{{{\text{CaCl}}_{2} }} for both groups ranged between 3.65 and 5.91, suggesting that soil acidity is determined by organic acids and solubility of Al3+ releasing H+ ions. SOM and sesquioxides contribute significantly to creating naturally occurring filtration systems, removing metals, and protecting water quality. High Ca, Fe, and Ti in Group A soils suggest slag and ash were mixed into the soils. Some low-Cr sources include magnetite, slag, and ash (100, 100 and 200 mg/kg, respectively). Constant ZrO 2 :TiO 2 ratios in the lower soils indicate soil formation from breakdown of underlying tailing rocks, contributing Cr to these layers.  相似文献   

19.
The toxodont megaherbivores Toxodon and Mixotoxodon were endemic to South and Central America during the late Quaternary. Isotopic signatures of 47 toxodont teeth were analyzed to reconstruct diet and ancient habitat. Tooth enamel carbon isotope data from six regions of South and Central America indicate significant differences in toxodont diet and local vegetation during the late Quaternary. Toxodonts ranged ecologically from C3 forest browsers in the Amazon (mean δ13C = −13.4‰), to mixed C3 grazers and/or browsers living either in C3 grasslands, or mixed C3 forested and grassland habitats in Honduras (mean δ13C = −9.3‰), Buenos Aires province, Argentina (δ13C = −8.7‰), and Bahia, Brazil (mean δ13C = −8.6‰), to predominantly C4 grazers in northern Argentina (δ13C = −4.4‰), to specialized C4 grazers in the Chaco of Bolivia (δ13C = −0.1‰). Although these toxodonts had very high-crowned teeth classically interpreted for grazing, the isotopic data indicate that these megaherbivores had the evolutionary capacity to feed on a variety of dominant local vegetation. In the ancient Amazon region, carbon isotope data for the toxodonts indicate a C3-based tropical rainforest habitat with no evidence for grasslands as would be predicted from the Neotropical forest refugia hypothesis.  相似文献   

20.
The Heihe River Basin is a typical arid inland river basin for examining stress on groundwater resources in northwest China. The basin is composed of large volumes of unconsolidated Quaternary sediments of widely differing grain size, and during the past half century, rapid socio-economic development has created an increased demand for groundwater resources. Understanding the hydrogeochemical processes of groundwater and water quality is important for sustainable development and effective management of groundwater resources in the Heihe River basin. To this end, a total of 30 representative groundwater samples were collected from different wells to monitor the water chemistry of various ions and its quality for irrigation. Chemical analysis shows that water presents a large spatial variability of chemical facies (SO4 2−–HCO3, SO4 2−–Cl, and Cl–SO4 2−) as groundwater flow from recharge area to discharge area. The ionic ratio indicates positive correlation between the flowing pairs of parameters: Cl and Na+(r = 0.95), SO4 2− and Na+ (r = 0.84), HCO3 and Mg2+(r = 0.86), and SO4 2− and Ca2+ (r = 0.91). Dissolution of minerals, such as halite, gypsum, dolomite, silicate, and Mirabilite (Na2SO4·10H2O) in the sediments results in the Cl, SO4 2−, HCO3 , Na+, Ca2+ and Mg2+ content in the groundwater. Other reactions, such as evaporation, ion exchange, and deposition also influence the water composition. The suitability of the groundwater for irrigation was assessed based on the US Salinity Laboratory salinity classification and the Wilcox diagram. The results show that most of the groundwater samples are suitable for irrigation uses barring a few locations in the dessert region in the northern sub-basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号