首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
针对嘉陵江流域存在雨热同期,水旱灾害频发的现象,为快速且准确地把握流域内降水与干旱情况,利用覆盖范围广且分辨率高的网格化IMERG卫星降水数据对嘉陵江流域进行多时空尺度反演,并基于卫星降水数据采用标准化降水指数(SPI)对流域实行干旱监测。结果表明:1)根据分类指标与统计指标的计算结果,三种卫星降水数据中的IMERG-F能更准确地反映流域内的日降水量,与地面降水数据CC达0.737,整体高估地面降水2.6%,具有在干旱监测方面的应用潜力。2)三种卫星降水数据驱动的SPI指数在干旱监测方面存在一定的差异,IMERG-F驱动的SPI指数与地面降水数据驱动的SPI指数保持较高的一致性(CC>0.9),较近实时产品IMERG-F更能准确地呈现出流域的干湿特征。3)卫星识别降水与干旱监测的能力受地形地貌的影响,IMERG卫星降水数据在平原丘陵地带具有较好的适用性。  相似文献   

2.
基于标准化降水指数的内蒙古地区干旱时空变化特征   总被引:1,自引:0,他引:1  
李虹雨  马龙  刘廷玺  梁珑腾 《水文》2018,38(5):47-51
利用内蒙古及周边地区70个气象站1951~2014年降水数据,采用标准化降水指数等方法,对内蒙古近64年气候干旱时空变化进行分析。结果表明:研究区近64年来除西部年际、春、秋、冬季,中部春、秋季及东部春、冬季气候趋于湿润外,其他均趋于干旱。中、东部年际、植(作)物生长期SPI在2001年和1990年左右发生突变,东部突变后趋于干旱并在2006年左右又发生明显转折后趋于湿润。西部在1960s干旱严重,中、东部在1990s至2000s干旱严重。西部年际SPI由西北向东南、东部由南向北干旱趋势速率呈阶梯状下降,中部干旱趋势速率较西、东部快;植(作)物生长期SPI空间变化与年际一致,但西、中部干旱趋势明显的区域有所扩大。  相似文献   

3.
The drought during the months of June to September (JJAS) results in significant deficiency in the annual rainfall and affects the hydrological planning, disaster management, and the agriculture sector of India. Advance information on drought characteristics over the space may help in risk assessment over the country. This issue motivated the present study which deals with the prediction of drought during JJAS through standardized precipitation index (SPI) using nine general circulation models (GCM) product. Among these GCMs, three are the atmospheric and six are atmosphere–ocean coupled models. The performance of these GCM’s predicted SPI is examined against the observed SPI for the time period of 1982–2010. After a rigorous analysis, it can be concluded that the skill of prediction by GCM is not satisfactory, whereas the ability of the coupled models is better than the atmospheric models. An attempt has been made to improve the accuracy of predicted SPI using two different multi-model ensemble (MME) schemes, viz., arithmetic mean and weighted mean using singular value decomposition-based multiple linear regressions (SVD-MLR) of GCMs. It is found that among these MME techniques, SVD-MLR-based MME has more skill as compared to simple MME as well as individual GCMs.  相似文献   

4.
Regional drought frequency analysis was carried out in the Poyang Lake basin (PLB) from 1960–2014 based on three standardized drought indices: the standardized precipitation index (SPI), the standardized precipitation evapotranspiration index (SPEI) and the standardized Palmer drought index (SPDI). Drought events and characteristics were extracted. A Gumbel–Hougaard (GH) copula was selected to construct the bivariate probability distribution of drought duration and severity, and the joint return periods (T a ) were calculated. Results showed that there were 50 (50 and 40) drought events in the past 55 years based on the SPI (SPEI and SPDI), and 9 (8 and 10) of them were severe with T a more than 10 years, occurred in the 1960s, the 1970s and the 2000s. Overall, the three drought indices could detect the onset of droughts and performed similarly with regard to drought identification. However, for the SPDI, moisture scarcity was less frequent, but it showed more severe droughts with substantially higher severity and longer duration droughts. The conditional return period (Ts|d) was calculated for the spring drought in 2011, and it was 66a and 54a, respectively, based on the SPI and SPDI, which was consistent with the record. Overall, the SPI, only considering the precipitation, can as effectively as the SPEI and SPDI identify the drought process over the PLB under the present changing climate. However, drought is affected by climate and land-cover changes; thus, it is necessary to integrate the results of drought frequency analysis based on different drought indices to improve the drought risk management.  相似文献   

5.
The amount and distribution of precipitation play crucial roles in the occurrence of drought in the Weihe River Basin (WRB), China. Using the precipitation data (1960–2010) of 21 meteorological stations, the spatial and temporal characteristics of short-, medium-, and long-term droughts on 3-, 6-, and 12-month time scales, respectively, were examined using the theory of runs and the Standardized Precipitation Index (SPI). The trends of the drought characteristics were analyzed by a modified Mann-Kendall (MMK) test method. Furthermore, comparative analysis of the SPI at different time scales was conducted. The results showed that (1) the main drought type was moderate drought, which occurred frequently in July and October; (2) the drought intensity and frequency were highest in the 1990s, and the drought severity and drought duration in the northwest was more serious than that in the east; (3) an increasing trend of short droughts appeared mainly in the spring and fall; an increasing trend of medium droughts mainly occurred in the 1990s and that of long-term droughts were mainly presented in the northwest region of the WRB; (4) SPI-3 can better reflect precipitation in the current month, SPI-6 has an advantage in characterizing drought persistence, and SPI-12 performs well in capturing extraordinary droughts; and (5) it was also observed that there is a strong relation between the precipitation distribution and drought zones in the basin, and the drought conditions changed continuously with the seasons depending upon the amount and spatial distribution of precipitation .  相似文献   

6.
近300a来塔里木河流域旱涝灾害特征分析   总被引:3,自引:1,他引:2  
干旱与洪涝是极端水文事件中最具有代表性的水文事件,在气候变化的影响下旱涝灾害事件越来越引起人们的关注. 采用传统的气象干旱指标-标准化降水指数SPI和小波分析法、反距离加权法以及线性回归分析,研究了近300 a来塔里木河流域旱涝灾害分布特征及关键影响因素. 结果表明:近300 a来塔里木河流域旱涝灾害呈增加的趋势,且洪涝事件较干旱事件明显. 其中,喀什、阿克苏等地的发生频率最高,并表现为群发性;近60 a塔里木河流域自西向东旱涝灾害事件呈交替现象. 小波分析结果表明,塔里木河流域旱涝灾害呈现15 a的周期性,由此推断未来5~10 a研究区湿润化面积仍有扩大的可能. 大气环流指数与多尺度下的SPI指相关性检验表明,PNA对秋季和冬季的SPI值的影响较为显著;旱涝灾害对农牧业的影响较为严重,其中,洪涝灾害的影响大于干旱.  相似文献   

7.
李敏  张铭锋  朱黎明  黄金柏 《水文》2023,43(4):39-44
气象干旱发展到一定程度可以传递为水文干旱。以潘家口水库流域1961—2010年逐月平均降水数据和潘家口水库的入库径流序列为基础数据,分别计算了1、3、6、12个月时间尺度的标准化降水指数(SPI)和标准化径流指数(SRI),以表征研究区域的气象干旱和水文干旱。基于条件分布模型,分析了不同时间尺度的气象干旱传递到未来的不同等级和不同的预测期(或滞后期)的水文干旱的概率。结果表明,当SPI时间尺度较短或预测期(滞后期)较短时,其对应的SRI水文干旱等级越倾向于维持与SPI相同的干旱等级;随着SPI时间尺度的增长或预测期(滞后期)延长,其对应的SRI水文干旱等级略低于气象干旱或恢复到正常状态。  相似文献   

8.
Drought identification and drought severity characterization are crucial to understand water scarcity processes. Evolution of drought and wetness episodes in the upper Nen River (UNR) basin have been analyzed for the period of 1951–2012 using meteorological drought indices and for the period of 1898–2010 using hydrological drought indices. There were three meteorological indices: one based on precipitation [the Standardized Precipitation Index (SPI)] and the other two based on water balance with different formulations of potential evapotranspiration (PET) in the Standardized Precipitation Evapotranspiration Index (SPEI). Moreover, two hydrological indices, the Standardized Runoff Index and Standardized Streamflow Index, were also applied in the UNR basin. Based on the meteorological indices, the results showed that the main dry period of 1965–1980 and wet periods of 1951–1964 and 1981–2002 affected this cold region. It was also found that most areas of the UNR basin experienced near normal condition during the period of 1951–2012. As a whole, the UNR basin mainly had the drought episodes in the decades of 1910, 1920, 1970 and 2000 based on hydrological indices. Also, the severity of droughts decreased from the periods of 1898–1950 to 1951–2010, while the severity of floods increased oppositely during the same periods. A correlation analysis showed that hydrological system needs a time lag of one or more months to respond to meteorological conditions in this cold region. It was also found that although precipitation had a major role in explaining temporal variability of drought, the influence of PET was not negligible. However, the sole temperature driver of PET had an opposite effect in the UNR basin (i.e., misestimating the drought detection) and was inferior to the SPI, which suggests that the PET in the SPEI should be determined by using underlying physical principles. This finding is an important implication for the drought research in future.  相似文献   

9.
Data reduction methods such as principal components analysis and factor analysis can be used to define drought prone areas of a basin. In this study, factor analysis method applied for the purpose of projecting the information space on the few dominant axes. The main aim of this study is regionalization of Lake Urmia Basin from the view of drought using factor analysis. For this purpose, monthly precipitation data of 30 weather stations in the period 1972–2009 were used. For each of the selected stations, 3- and 12-month Standardized Precipitation Index (SPI) values were calculated. Factor analysis conducted on SPI values to delineate the study area with respect to drought characteristics. Homogeneity of obtained regions tested using the S statistics proposed by Wiltshire. Results of factor analysis of 3- and 12-month SPI values showed that 5 (6) factors having eigenvalues >1 accounted for 68.08 (78.88) % of total variance. The Lake Urmia Basin was delineated into the five distinct homogeneous regions using the 3-month SPI time series. This was six in the case of the 12-month SPI time series. It can be concluded that there are different distinct regions in Lake Urmia Basin according to drought characteristics. The map of regions defined using the 3- and 6-month SPI time series presented in this paper for Lake Urmia Basin.  相似文献   

10.
We present a June–July drought reconstruction based on the standardized precipitation index (SPI) for the Balkan Peninsula over the period 730–2015 CE. The reconstruction is developed using a composite Pinus heldreichii tree‐ring width chronology, from a high‐elevation network of eight sites in the Pindus Mountains in northwest Greece, composed of living trees and relict wood. The dataset includes the ring width series of Europe's currently oldest known living tree, dendrochronologically dated to be more than 1075 years old. The spatial coverage of the reconstruction is improved by using an averaged gridded SPI data target derived from a response field that is located north of the study region. Justification for this approach includes the remoteness of instrumental data, the spatial variability of precipitation and synoptic scale circulation patterns. Over the past 1286 years, there have been 51 dry and 43 pluvial events. The driest year during the 1286‐year‐long period was 1660 and the wettest year was 1482. Comparison with shorter reconstructions and documentary evidence validates the new reconstruction, and provides additional insight into socioeconomic impacts and spatial patterns of extreme events. Fifty‐nine of 72 previously undescribed extremes occurred prior to the 17th century. The new reconstruction reveals long‐term changes in the number of extremes, including substantially fewer drought and pluvial events in the 20th century. Additional tests on the long‐term effects of age structure, replication and covariance changes support the heteroscedastic nature of the reconstructed hydro‐climatic extremes.  相似文献   

11.
The effects of climate change and overexploitation are being strongly perceived in the studied area and the springs discharge is obviously affected. In this paper, Ras El Ain spring discharge and precipitation were analyzed by normalized methods on an yearly timescale. The deficit of Ras El Ain spring discharge due to overexploitation factors and drought effects was estimated. Cumulative drought analyses were carried out using SPI10 and SQI10. Finally, the decreasing trends of the spring discharge due to the deficiency in rainfall were analyzed. The main results reveal that the annual mean deficit of Ras El Ain spring discharge due to overpumping was between 32 and 45%, whereas, annual mean deficit related to drought was between 22 and 35% on average, during the last 30 years (post-1984). The moving averages of SPI and SQI delineate very well the drought periods during last three decades. The cumulative droughts using SPI10 and SQI10 reveal that wet period (pre-1984) with positive values was characterized by high precipitation and spring discharge. Overexploitation period (1984–1989) is distinguished by decreasing SQI10 values whereas, SPI10 is almost stable. The response of the karst system to the precipitation signal has been changed, during the drought period (1990–2000), and the spring behaviour has been modified due to the first overexploitation period. Finally, overexploitation period (2001–2008) is related to the second phase of groundwater intensive pumping for irrigation purposes. Consequently, this period is completely catastrophic causing the drying up of the spring. The decreasing trends analyzed using DPI and DQI showed annual decreasing rates relative to the mean values of ?0.268% and ?0.105%, respectively. Thus, the results of theoretical model reveal that precipitation will decrease by about \(\hbox {DPI} = -20.7\)% and the discharge will decline by about ?9.2% by 2050. Consequently, the declining discharge due to climatic variation under natural conditions as pre-1984 was about 10%. Whereas, the catastrophic drying up of the spring was probably the consequence of the anthropogenic effects. Accordingly, it requires the development of sustainable water resources management program to reduce long-term drought risks, restore the groundwater reservoir and minimize the overexploitation effects on spring discharge.  相似文献   

12.

Recent global warming and more frequent droughts are causing significant damage to maize production. A reliable estimate of drought intensity and duration is essential for testing maize hybrids to drought tolerance. For this purpose, the self-calibrating 10-day palmer drought severity index (scPDSI) and standardized precipitation index (SPI) for 1, 2, 3, 6, 9, 18, 27, and 36 10-day scales were used to estimate the effects of drought on grain yield of 32 maize hybrids evaluated in 2017 and 2018 at eight experimental locations in the Pannonian part of Croatia. Time series of observed 10-day mean air temperature, relative humidity, and precipitation totals for a set of “reference” weather stations of the croatian meteorological and hydrological service (DHMZ) for the period 1981–2018 were used to calculate the scPDSI and SPI indices. According to the 10-day scPDSI and SPI for different time scales, 2018 proved to be a “normal year,” while 2017 experienced a “mild to moderate drought,” which resulted in a 13% reduction in maize grain yield at eight experimental locations compared to 2018. The correlation between grain yield and drought indices for summer months was the highest for the 10-day scPDSI. To some extent, correlations between summer months’ SPI for the 3 10-day time scale and maize grain yield were comparable to the corresponding correlations for the 10-day scPDSI. However, for other SPI time scales considered, the corresponding correlations were weaker and less informative. The dependence of grain yield on scPDSI values was not the same for all hybrids, indicating their different tolerance to drought. The reduction in grain yield due to drought was primarily caused by insufficient grain filling (lower 1000-grain weight) and, to some extent, by a reduction in the number of grains. In this study, application of 10-day scPDSI data proved to be more relevant in detecting effects of drought on agronomic traits than application of SPI data for the most time scales.

  相似文献   

13.
长江流域陆地水储量与多源水文数据对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
王文  王鹏  崔巍 《水科学进展》2015,26(6):759-768
从趋势性、滞后性及相关性三方面,对2002—2013年间GRACE重力卫星反演的长江上游与中游陆地水储量与模型模拟土壤含水量、实测降水和实测径流数据进行了对比分析,并从干旱强度及发展时间两方面评估了标准化陆地水储量指数SWSI、标准化降水指数SPI、标准化径流指数SRI和标准化土壤含水量指数SSMI对区域性干旱的表征能力.结果表明:长江上游地区陆地水储量与降水、径流和土壤水蓄量均无显著变化,而中游地区陆地水储量则与水库蓄量同样具有显著性增加,反映人类活动对中游地区陆地水储量变化有很大影响;各指标指示的各等级干旱月份数量基本相当,但各指标反映的特旱具体月份有较大差别,基于GRACE数据构建的SWSI指标对特大干旱的指示性不好;对比各指标对上游与中游地区干旱事件发展时间,体现出水文干旱、农业干旱对气象干旱存在一定的迟滞关系.  相似文献   

14.
The Eastern Mediterranean region has been exposed to drought episodes, which have been occurring more frequently during the last decades. The objective of the present paper is to study the precipitation regime of the Damascus (Mazzeh) meteoric station by analysing drought characteristics using the Standardized Precipitation Index (SPI) and comparing this with the drought in Cyprus. The cumulative drought conceptis proposed to characterize long-term hydrologic drought, which affects the shallow groundwater productivity in terms of quantity and quality. Gamma probability distribution was fitted to the long-term annual precipitation in Damascus from 1918–1919 to 2007–2008 (n = 90 years). Generally, a decreasing trend of 17% to the mean annual rainfall of Damascus and 13% to the mean annual rainfall of Cyprus was estimated between 1970 and 2000. The SPI identifies three major extended drought periods: (1) 9 years of severe drought (1954–1963) with an average 20% precipitation deficit per year compared to the mean. (2) 8 years of severe drought (1983–1991) with a 27% deficit per year on average. (3) 9 years of extreme drought (1993–2002) with a 31% deficit per year on average. The cumulative standardized precipitation index (SPI 30) demonstrates positive values for the first period and is indicative of having no effect on the global water balance. SPI 30 exhibits sensitive equilibrium with near zero values / a near zero value (±1.5) for the second period. For the third period, however, the SPI 30 decreases below ?10 indicating an extreme hydrological drought that has negative consequences on the recent groundwater recharge. It is required to develop and implement a sustainable groundwater management strategy to reduce long-terms drought risks. Generally, the SPI 30 in Cyprus is parallel to that in Damascus with a 3–5 year delay. Thus, the central zone of the Eastern Mediterranean region is facing big challenges and has been suffering from three decades of moderate to severe hydrological drought (SPI 30=?5 to ?10) causing a severe decrease in springs discharges of the region. Therefore, in order to reduce the climate change effects on water resources, it is necessary to adopt a sustainable proactive management plan during the frequent severe droughts.  相似文献   

15.
邵进  李毅  宋松柏 《水文》2012,32(2):34-39
近年,江汉平原受旱涝灾害影响日趋严重。利用监利水文站1954~2010年的月降水资料并结合SPI模型对江汉平原的旱涝分布及其变化规律做了典型性分析和研究。结果表明:运用SPI模型分析得到的监利地区多时间尺度的旱涝分布及其变化规律与实际基本相符,即该地区旱涝灾害频繁且呈交替发生。将SPI模型应用于旱涝分布及其变化规律的研究具有很好的实用性。  相似文献   

16.
Based on the daily precipitation data of 38 weather stations in the Huai River Basin from 1961 to 2010, this study used SPI index, P-III curve to determine the flood/drought years, under what situations for droughts and floods easily happen, and to analyze the evolution law of flood and drought during inter-annual and intra-annual based on the characteristic of monthly precipitation. The results showed that: (1) annual rainfall of the Huai River Basin presented decreasing trend, maximum rainfall appeared from June to August, and multi-year average precipitation increased gradually from north to south; (2) the variation of monthly precipitation during flood years was more severe than other typical years, and precipitation in drought years showed nearly 50 % decline compared with normal years; (3) high rainfall of flood years was mainly caused by the increase in rainfall in flood season, and the strategy of flood control and drought relief was “short-term flood prevention and long-term drought relief”; (4) while precipitation of most months in drought year was reduced, the relevant strategies “annual basin-wide of long-term drought prevention” should be carried out; (5) combination events of floods and droughts occurred frequently. Persistent drought dominated in spring and summer while droughts and floods that happened alternately were mainly in summer and autumn.  相似文献   

17.
The Niger River basin is drought-prone, and farmers are often exposed to the vagaries of severe weather and extreme climate events of the region. Spatiotemporal characteristics of drought are important for its mitigation. With 52 years of gauged-based monthly rainfall, the study investigates the potentials of Standardized Precipitation Index (SPI) as standard measure for meteorological drought, its characterization, early warning systems and use in weather index-based insurance. Gamma probability distribution type 2, which best fits the rainfall frequency distribution of the region, was used for the transformation of the skewed rainfall data to derive the SPI. Results showed 9, 5, 5 and 6 drought events of severe to extreme intensities occurred in the headwaters of the basin, inner delta, middle Niger, and lower Niger sub-watersheds, respectively. Their magnitudes were in the range 1–5, 2–6, 2–8 and 2–7, respectively. Spatially, results further showed that the 1970s and 1980s drought events were dominantly of moderate (SPI values ?1 to ?1.49) and severe (SPI values ?1.5 to ?1.99) intensities, respectively, with sporadic cases of severe to extreme drought intensities occurring in 1970s and extreme to exceptional intensities in the 1980s. Further investigations show that 3-month SPI indicated 85% of variance in the standardized cereal crop yield, which suites well as weather index insurance variable. The study therefore proposes SPI weather index-based insurance as a pathway forward to ameliorate the negative impacts on insured farmers in this region in terms of indemnity payouts whenever drought disaster occurs.  相似文献   

18.
This article assesses drought status in the Yarmouk Basin (YB), in northern Jordan, using the Standardized Precipitation Index (SPI), the Standardized Water-Level Index (SWI), and the Percent Departure from Normal rainfall (PDNimd) during the years 1993–2014. The results showed that the YB suffers from frequent and irregular periods of drought as variations in drought intensity and frequency have been observed. The SPI results revealed that the highest drought magnitude of ??2.34 appeared at Nuaimeh rainfall station in 1991. This station has also experienced severe drought particularly in years 1995, 1999, 2005, and 2012 with SPI values ranging from ??1.51 to ??1.59. Some other rainfall stations such as Baqura, Ibbin, Khanasiri, Kharja, Mafraq police, Ramtha, Turra, and Umm Qais have also suffered several periods of drought mostly in 1993. The SWI results show the highest extreme drought events in 2001 in Souf well while other extreme drought periods were observed at Wadi Elyabis well in 1994 and at Mafraq well in 1995. As compared to SPI maps, our SWI maps reflect severe and extreme drought events in most years, negatively impacting the groundwater levels in the study area.  相似文献   

19.
为了深入研究近60年来多种气候、水文要素对海河流域干旱变化的影响,采用Mann-Kendall非参数检验法对流域内气温、降水、径流等要素进行了分析,并采用Z指数法对流域的干旱特征进行了研究。结果表明:20世纪50年代以来,海河流域经历了湿润-正常-干旱的变化过程;21世纪初,流域北部地区出现偏旱现象,多次干旱的面积覆盖率低于40%,少部分干旱覆盖率较高,最高达98%;从时间上看,1980年是发生干旱现象的一个临界点,无论是从发生次数还是覆盖面积上,1980年以后要明显大于1980年以前。从干旱发生频率上分析,海河流域发生轻度和一般干旱的高频地区多分布在滦河流域以及北部山区,中部平原地区干旱爆发频率相对较低,重大干旱事件则在中南部平原地区发生频率更高。综合全部干旱事件,滦河流域为干旱频发区,其次为海河流域东部地区,西部地区则频率相对较低。  相似文献   

20.
为了克服目前对标准化降水指数(SPI)计算必须首先假设服从某种分布的不足,依据最大熵理论分布对SPI进行计算,以东江流域为例,分别利用最大熵理论分布、Gamma分布、Weibull分布以及对数正态分布四种概率密度函数拟合多年不同时间尺度的降雨数据,并利用AIC、KS、AD法进行拟合度检验,最后将最大熵理论分布与Gamma分布计算的SPI结果进行对比分析。结果表明:相对于其他三种分布,最大熵理论分布的概率密度函数更适用于东江流域15个站点的3、6、12个月的降雨分布;在极端干旱(洪涝)的情况下,相对于Gamma分布,最大熵理论分布的SPI值更小(大),表明其对极端干旱(洪涝)的识别更为敏感。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号