首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T. E. Gergely 《Solar physics》1986,104(1):175-178
The relationship of moving type IV bursts and coronal mass ejections (CMEs) is of interest, because it may yield insights into the origin and the physics of the ejecta. We discuss the statistical association of moving type IV bursts and CMEs, and find that about one-third to one-half of the IVs occur in association with CMEs, while only about 5% of the CMEs are accompanied by moving type IVs. We also find that the mean speed of the moving IVs is smaller than the mean speed of CMEs, and conclude that the type IVs move out with the bulk of the ejecta.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

2.
Preflare state     
Discussion on the preflare state held at the Ottawa Flares 22 Workshop focused on the interpretation of solar magnetograms and of H filament activity. Magnetograms from several observatories provided evidence of significant build up of electric currents in flaring regions. Images of X-ray emitting structures provided a clear example of magnetic relaxation in the course of a flare. Emerging and cancelling magnetic fields appear to be important for triggering flares and for the formation of filaments, which are associated with eruptive flares. Filaments may become unstable by the build up of electric current helicity. Examples of heliform eruptive filaments were presented at the Workshop. Theoretical models linking filaments and flares are briefly reviewed.Report of Team 1, Flares 22 Workshop, Ottawa, May 25–28, 1993  相似文献   

3.
We probe the spectral hardening of solar flares emission in view of associated solar proton events (SEPs) at earth and coronal mass ejection (CME) acceleration as a consequence. In this investigation we undertake 60 SEPs of the Solar Cycle 23 along with associated Solar Flares and CMEs. We employ the X-ray emission in Solar flares observed by Reuven Ramaty Higly Energy Solar Spectroscopic Imager (RHESSI) in order to estimate flare plasma parameters. Further, we employ the observations from Geo-stationary Operational Environmental Satellites (GOES) and Large Angle and Spectrometric Coronagraph (LASCO), for SEPs and CMEs parameter estimation respectively. We report a good association of soft-hard-harder (SHH) spectral behavior of Flares with occurrence of Solar Proton Events for 16 Events (observed by RHESSI associated with protons). In addition, we have found a good correlation (R=0.71) in SEPs spectral hardening and CME velocity. We conclude that the Protons as well as CMEs gets accelerated at the Flare site and travel all the way in interplanetary space and then by re-acceleration in interplanetary space CMEs produce Geomagnetic Storms in geospace. This seems to be a statistically significant mechanism of the SEPs and initial CME acceleration in addition to the standard scenario of SEP acceleration at the shock front of CMEs.  相似文献   

4.
Team 2 of the Ottawa FLARES 22 Workshop dealt with observational and theoretical aspects of the characteristics and processes of energy release in flares. Main results summarized in this article stress the global character of the flaring phenomenon in active regions, the importance of discontinuities in magnetic connectivity, the role of field-aligned currents in free energy storage, and the fragmentation of energy release in time and space.Report of Team 2, Flares 22 Workshop, Ottawa, May 25–28, 1993.  相似文献   

5.
We report findings concerning energy transport and dynamics in flares during the impulsive and gradual phases based on new ground-based and space observations (notably fromYohkoh). A preheating sometimes occurs during the impulsive phase. Caxix line shifts are confirmed to be good tracers of bulk plasma motions, although strong blue shifts are not as frequent as previously claimed. They often appear correlated with hard X-rays but, forsome events, the concept that electron beams provide the whole energy input to the thermal component seems not to apply. Theory now yields: new diagnostics of low-energy proton and electron beams; accurate hydrodynamical modeling of pulse beam heating of the atmosphere; possible diagnostics of microflares (based on X-ray line ratio or on loop variability); and simulated images of chromospheric evaporation fronts. For the gradual phase, the continual reorganization of magnetic field lines over active regions determines where and when magnetic reconnection, the mechanism favoured for energy release, will occur. Spatial and temporal fragmentation of the energy release, observed at different wavelengths, is considered to be a factor as well in energy transport and plasma dynamics.Report of Team 4, Flares 22 Workshop, Ottawa, May 25–28, 1993.  相似文献   

6.
Hudson  Hugh 《Solar physics》1999,190(1-2):91-106
This paper surveys coronal motions detected by the Yohkoh soft X-ray telescope SXT, emphasizing `global restructuring'. Large-scale structures in the solar corona can persist for time scales much longer than those of the supergranulation, and may have larger spatial scales. Flares and coronal mass ejections (CMEs) can disrupt these structures. A grazing-incidence telescope such as SXT provides a view of the corona biased in temperature towards the hotter components, but in a thick `observing slice' (spatial contribution function). This helps in seeing excitation (energy release) but may conceal some of the structural changes. The observations of restructuring largely appear to consist of expanding or outwards magnetic motions, which are endoergic. This suggests a conjecture regarding the existence of magnetic implosions on scales not yet detected, as a source of free energy.  相似文献   

7.
K. F. Tapping 《Solar physics》1986,104(1):199-206
Very Long Baseline Interferometry offers the only technique for resolving the transient compact sources which, according to an increasing weight of observational and theoretical evidence, occur during solar flares. In this paper we discuss the problems of applying VLBI to observing the Sun, the results obtained so far and how the technique may be effectively employed in future studies of compact emission structures in solar flares.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

8.
A simple model as given which aims at explaining how electrons could be accelerated within solar coronal loops due to their trapping by quasi-monochromatic whistler waves.Proceedings of the Second CESRA Workshop on Particle Acceleration and Trapping in Solar Flares, held at Aubigny-sur-Nère (France), 23–26 June, 1986.  相似文献   

9.
M. R. Kundu 《Solar physics》1986,104(1):223-226
Radio observations offer an important means for providing estimates of magnetic fields in post-flare loops.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

10.
Images of post-flare coronal structures in X-rays   总被引:1,自引:0,他引:1  
This is an extended abstract of several papers mentioned in the references describing extensive coronal structures related to radio continua and imaged in > 3.5 keV X-rays.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

11.
In order to investigate the relationship between magnetic-flux emergence, solar flares, and coronal mass ejections (CMEs), we study the periodicity in the time series of these quantities. It has been known that solar flares, sunspot area, and photospheric magnetic flux have a dominant periodicity of about 155 days, which is confined to a part of the phase of the solar cycle. These periodicities occur at different phases of the solar cycle during successive phases. We present a time-series analysis of sunspot area, flare and CME occurrence during Cycle 23 and the rising phase of Cycle 24 from 1996 to 2011. We find that the flux emergence, represented by sunspot area, has multiple periodicities. Flares and CMEs, however, do not occur with the same period as the flux emergence. Using the results of this study, we discuss the possible activity sources producing emerging flux.  相似文献   

12.
We study kinematics of 22 coronal mass ejections (CMEs) whose motion was traced from the gradual pre-acceleration phase up to the post-acceleration stage. The peak accelerations in the studied sample range from 40, up to 7000 m s−2, and are inversely proportional to the acceleration phase duration and the height range involved. Accelerations and velocities are, on average, larger in CMEs launched from a compact source region. The acceleration phase duration is proportional to the source region dimensions; i.e., compact CMEs are accelerated more impulsively. Such behavior is interpreted as a consequence of stronger Lorentz force and shorter Alfvén time scales involved in compact CMEs (with stronger magnetic field and larger Alfvén speed being involved at lower heights). CMEs with larger accelerations and velocities are on average wider, whereas the widths are not related to the source region dimensions. Such behavior is explained in terms of the field pile-up ahead of the erupting structure, which is more effective in the case of a strongly accelerated structure.  相似文献   

13.
H. W. Urbarz 《Solar physics》1986,104(1):125-129
A total number of 460 DCIM events, single or groups, were observed during the period of October 1980 to December 1984 with the Weissenau spectrograph as dynamic film spectra. Several parameters describing these data were evaluated statistically and the main features were discussed in context with associated burst types.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

14.
G. Trottet 《Solar physics》1986,104(1):145-163
Observations relevant to the relative timing of hard X-ray, microwave and lower frequency radio bursts in different phases of flare are reviewed. It is shown that such timing comparisons give important information concerning the electron acceleration/injection process, the magnetic field topology at the acceleration site and the flare development itself. In particular it is shown that acceleration begins before the flash phase of flares and that it keeps going on continuously during the entire duration of a flare. Moreover, despite their wide separation in altitude, hard X-ray, microwave and lower frequency sources appear to arise from a common injection of electrons going on continuously through the different phases of flare. In situ acceleration by shock waves giving rise to type II radio emission is briefly discussed. As an alternative interactions between small and large scale magnetic structures is proposed.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

15.
We have investigated the characteristics of magnetic cloud (MC) and ejecta (EJ) associated coronal mass ejections (CMEs) based on the assumption that all CMEs have a flux rope structure. For this, we used 54 CMEs and their interplanetary counterparts (interplanetary CMEs: ICMEs) that constitute the list of events used by the NASA/LWS Coordinated Data Analysis Workshop (CDAW) on CME flux ropes. We considered the location, angular width, and speed as well as the direction parameter, D. The direction parameter quantifies the degree of asymmetry of the CME shape in coronagraph images, and shows how closely the CME propagation is directed to Earth. For the 54 CDAW events, we found the following properties of the CMEs: i) the average value of D for the 23 MCs (0.62) is larger than that for the 31 EJs (0.49), which indicates that the MC-associated CMEs propagate more directly toward the Earth than the EJ-associated CMEs; ii) comparison between the direction parameter and the source location shows that the majority of the MC-associated CMEs are ejected along the radial direction, while many of the EJ-associated CMEs are ejected non-radially; iii) the mean speed of MC-associated CMEs (946 km?s?1) is faster than that of EJ-associated CMEs (771 km?s?1). For seven very fast CMEs (≥?1500 km?s?1), all CMEs with large D (≥?0.4) are associated with MCs and the CMEs with small D are associated with EJs. From the statistical analysis of CME parameters, we found the superiority of the direction parameter. Based on these results, we suggest that the CME trajectory essentially determines the observed ICME structure.  相似文献   

16.
The acceleration of the influential 100 keV electrons in flares observed in hard X-rays and several radio emissions is unknown. Shock-waves and MHD turbulence, successfully applied to interprete interplanetary energetic particles, have recently been called in question concerning energetic flare electrons and ions. Other possible mechanisms are considered which are closely related to the primary flare energy release. In particular, runaway acceleration by the electric field of the reconnection current sheet, bulk heating by microturbulence, and cross-field ion currents due to bulk motion as a primary result of reconnection are reviewed. All three are likely to occur in some way. Their relative importance cannot be definitively assessed due to the lack of information on non-thermal, low energy protons.Proceedings of the Second CESRA Workshop on Particle Acceleration and Trapping in Solar Flares, held at Aubigny-sur-Nère (France), 23–26 June, 1986.  相似文献   

17.
A model is presented using the electron cyclotron maser instability driven by a loss-cone distribution (taking account of the relativistic effects for electron cyclotron frequency and electron velocity as well as Landau damping and cyclotron damping) to excite the UFFS (Ultra-Fast Fine Structures) of microwave bursts and adopting a nonlinear density wave as a trigger mechanism to explain the millisecond time structure of the UFFS.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

18.
The present study investigates the energy and mass distributions of all (11 322) coronal mass ejections (CMEs), 1406 CMEs associated solely with flares (FL CMEs), and 325 CMEs associated solely with filament eruptions (FE CMEs), all of which were observed by the Large Angle and Spectrometric Coronagraph on board the Solar and Heliospheric Observatory (SOHO/LASCO) from January 1996 to December 2009. The results show the following. i) The mean energy of FL CMEs is significantly lower than that of all CMEs. The mean energy of FE CMEs is significantly higher than those of FL CMEs and all CMEs. ii) The mean mass of FL CMEs is slightly larger than that of all CMEs. The mean mass of FE CMEs is significantly larger than those of FL CMEs and all CMEs. Our results suggest that CMEs should shed excess helicity stored in the corona and that the magnetic complexity determines the likelihood of CMEs.  相似文献   

19.
M. Pick 《Solar physics》1986,104(1):19-32
Different components and successive stages of type IV bursts are reviewed. Some simplifications in the schematic representation of well developed type IV bursts are proposed. The existence of two physically distinct acceleration/injection mechanisms is discussed. Suggestions for further work are proposed.Proceedings of the Workshop on Radio ontinua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

20.
Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, -rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.Report of Team 3, Flares 22 Workshop, Ottawa, May 25–28, 1993.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号