首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In arid and semiarid rangelands, soil erosion has been widely considered an important soil degradation process and one of the main factors responsible for declining soil fertility. In this study, we determined the sediment production and the enrichment ratios of clay, organic C, and total N by using rainfall simulations on runoff plots (0.60 × 1.67 m) in three plant communities of northeastern Patagonia: grass (GS), degraded grass with scattered shrubs (DGS), and degraded shrub steppes (DSS). Our results clearly indicate that spatial variability in soil loss rate and enrichment process exists as a result of the local differences in both plant composition and soil surface characteristics. Sediment production was significantly lower in the GS (14.2 g m−2) compared with the DGS and DSS (38.2 and 51.5 g m−2, respectively). In the GS, the enrichment ratio of clay was significantly greater (3.9) and enrichment ratio of organic C was lower (3.1) than in the DGS and the DSS, though differences in enrichment ratios of total N were not significant. The high rate of soil loss and nutrients through overland-flow may limit the opportunities that promote the pathway from DGS back to GS community, favoring the dominance of shrubs.  相似文献   

2.
The sustainability of ecosystem restoration of refuse dumps in open-pit coal mines depends on plant species selection, their configuration, and the optimal usage of water resources. This study is based on field experiments in the northern refuse dump of the Heidaigou open-pit coal mine in Inner Mongolia of China established in 1995. Eight plant configurations, including trees, shrubs, grasses, and their combinations, as well as the adjacent community of natural vegetation, were selected. The succession of the revegetated plants, soil water storage, the spatiotemporal distribution of plant water deficits degree and its compensation degree were also studied. Results indicated that the vegetation cover (shrubs and herbaceous cover), richness, abundance, soil nutrients (soil organic matter, N and P), and biological soil crust coverage on the soil surface are significantly influenced by the vegetation configurations. The average soil water storage values in the shrub+grass and grass communities throughout the growing season are 208.69 mm and 206.55 mm, which are the closest to that of in the natural vegetation community (215.87 mm). Plant water deficits degree in the grass and shrub+grass communities were the lowest, but the degrees of water deficit compensation in these configuration were larger than those of the other vegetation configurations. Differences in plant water deficit degree and water compensation among the different configurations were significant (P<0.05). Plant water deficit degrees were predominantly minimal on the surface, increased with increasing soil depth, and remained stable at 80 cm soil depth. The soil moisture compensation in the natural vegetation, shrub+grass, and grass communities changed at 10%, while that in other vegetation communities changed between 20% and 40%. Overall, we conclude that the shrub+grass and grass configuration modes are the optimal vegetation restoration models in terms of ecohydrology for future ecological engineering projects.  相似文献   

3.
The direct short-term impact of three rates of stocking (4, 8 and 16 small-stock units [SSU] ha?1) was quantified in terms of soil characteristics of arid Nama Karoo vegetation (subshrub/grass). Mature Merino wethers grazed in the experimental plots throughout May in 1995 and 1996 (the plots were not subjected to grazing at any other time). Stocking rate proved inversely related to initial infiltration rate. Light trampling (4 SSU ha?1) loosened the topsoil sufficiently to increase the initial infiltration rate: infiltration capacity of soil in fields stocked at 4 SSU ha?1 and 16 SSU ha?1 was 17% higher and 14% lower respectively than that of soil of ungrazed rangeland over the two grazing periods. Increased soil compaction and greater bulk density due to higher stocking rates significant decreased the infiltration rate. Compared to ungrazed rangeland stocking rates of 4, 8 and 16 SSU ha?1 over the two grazing periods increased bulk density respectively by 2.73%, 6.67% and 8.945% and compaction by 10.90%, 16.78% and 20.90%. No grazing also increased bulk density and soil compaction and decreased infiltration rate. Light stocking (4 SSU ha?1) influenced all soil parameters most favourably. From a hydrologic point of view, grazing levels and rotation schemes need to be tailored for sustainable utilization of arid subshrub/grass vegetation by livestock.  相似文献   

4.
云南元谋干热河谷造林区植被生长与土壤渗透性的关系   总被引:8,自引:3,他引:8  
张建辉  李勇  杨忠 《山地学报》2001,19(1):25-28
通过云南元谋干热河谷造林区林分生物量及生产力指标与双环入渗试验的土壤入渗性能指标的相关分析,发现乔木生长与土壤渗透性具有显著正相关关系(P<0.01),地表枯枝落叶量与土壤渗透性的相关关系也较密切(P<0.05),而灌草生长与土壤渗透性无显著相关。研究指出,改善土壤入渗性能的措施,如沿等高线开深沟种植、禁止放牧践踏、保护地表枯枝落叶等均对林木生长有积极的影响。  相似文献   

5.
Restoration treatments are based on the largely untested notion that desired recovery of plant communities following disturbance wouldn’t occur in the absence of active intervention. We identified rate of short-term (10 year) floristic changes following removal of plant functional groups in Wyoming big sagebrush plant communities in 1999-2005 and 2008. Treatments imposed on 6 × 6 m plots were: 1) removal of all plant functional groups, 2) perennial grass removal, 3) shrub removal and 4) control. Our data suggest recovery of the shrub component on shrub removal plots could take decades. Similarly, perennial grass cover and density on perennial grass removal plots was less than half that of unaltered plots 10 years after treatment. When all functional groups were removed, cover of annual forbs, annual grasses, and shrubs returned to unaltered levels within ten years or less. Perennial forbs were unaffected (p > 0.05) by treatment. The fact that natural recovery of some components occurred within a relatively short post-disturbance time interval (i.e. <10 years) suggests that intervention may not be necessary for some functional groups. Restoring shrubs in areas dominated by perennial grasses may require targeted reductions of competing perennial grasses. Conversely, shrub dominance may limit perennial grass re-establishment.  相似文献   

6.
为进一步研究不同草本植物和边坡坡面形态对坡面产流产沙的影响,以西宁盆地毛鸡湾流域长岭绿化区作为试验区,设计了直形和阶梯形2种坡形,选取3种优势草本老芒麦(Elymus sibiricus Linn.)、垂穗披碱草(Elymus nutans Griseb.)和细茎冰草(Agropyron trachycaulum Linn.Gaertn.)作为试验供试种,通过人工模拟降雨试验,探讨了种植不同草本和坡形条件下,边坡坡面的产流、产沙和入渗特征。结果表明,在直形边坡中,裸坡坡面的产流时间小于种植草本植物坡面,且垂穗披碱草坡面和老芒麦坡面的形成产流时间相对较长,为4 min。与直形边坡相比,垂穗披碱草阶梯形坡面产流时间相对最长,为8 min;在直形边坡中,垂穗披碱草坡面和老芒麦坡面累积径流量、累积产沙量和径流系数相对最小,分别为51.42 L/min、160 g、14.98%,51.25 L/min、210 g、14.93%,细茎冰草坡面的累积径流量、累积产沙量和径流系数分别为96.97 L/min, 700 g, 28.25%;垂穗披碱草坡面和老芒麦坡面稳定入渗速率相对最大,其值为0.38~...  相似文献   

7.
以安溪官桥为研究区,在已有研究工作的基础上采取野外调查与人工降雨野外模拟试验相结合的方法,研究了植被对山坡地土壤侵蚀的调控机理.研究表明,翻耕地在生草覆盖的条件下,产流量与径流系数均减少70%左右,平均入渗率提高3倍多.说明生草覆盖条件下大量的降雨以入渗的形式流入土壤中,且径流含沙量与产流产沙量均显著低于生草覆盖前,其中平均含沙量减少87.5%,产沙量减少97%.根据对野外试验小区的多年观察,说明植物篱具有缓解坡度、提高土壤抗冲性等明显的保水保土效益.因此,采取适当措施减少产流量以及提高降雨向土壤水分的转化率,均可有效减少坡地土壤流失量.  相似文献   

8.
A hypothesis for understanding the stability of northern Chihuahuan Desert landscapes is that the distribution of soil resources changes from spatially homogeneous in arid grasslands to spatially heterogeneous in invading shrublands. Since radioactive fallout 137Cesium (137Cs) was deposited uniformly across the landscape during the 1950s and 1960s and was quickly adsorbed to soil particles, any redistribution of 137Cs across the landscape would be due to soil redistribution or instability at either plant-interspaces or on a landscape scale. The concentration of 137Cs in soils collected from different vegetation communities (black grama grass, tarbush, tobosa grass, and mesquite) at the USDA-ARS Jornada Experimental Range in the Northern Chihuahuan Desert in New Mexico was determined. At the black grama grass and tobosa grass sites, 137Cs was uniformly distributed at the plant interspace scale. At the mesquite sites, 137Cs was concentrated in the dune area under mesquite shrubs with little to no 137Cs in the interdune areas. 137Cs data support the hypothesis that significant soil redistribution has occurred at dune sites created by invading mesquite. In the arid grassland-shrub sites with black grama grass, tobosa grass, and tarbush the 137Cs data support the hypothesis of spatially homogeneous distribution of soil resources. High concentrations of 137Cs in the biological soil crusts (0–5 mm) at the tarbush sites indicate that biological soil crusts can contribute to the stability of these sites.  相似文献   

9.
Water is well established as a major driver of the geomorphic change that eventually reduces mountains to lower relief landscapes. Nonetheless, within the altitudinal limits of continuous vegetation in humid climates, water is also an essential factor in slope stability. In this paper, we present results from field experiments to determine infiltration rates at forested sites in the Andes Mountains (Ecuador), the southern Appalachian Mountains (USA), and the Luquillo Mountains (Puerto Rico). Using a portable rainfall simulator–infiltrometer (all three areas), and a single ring infiltrometer (Andes), we determined infiltration rates, even on steep slopes. Based on these results, we examine the spatial variability of infiltration, the relationship of rainfall runoff and infiltration to landscape position, the influence of vegetation on infiltration rates on slopes, and the implications of this research for better understanding erosional processes and landscape change.Infiltration rates ranged from 6 to 206 mm/h on lower slopes of the Andes, 16 to 117 mm/h in the southern Appalachians, and 0 to 106 mm/h in the Luquillo Mountains. These rates exceed those of most natural rain events, confirming that surface runoff is rare in montane forests with deep soil/regolith mantles. On well-drained forested slopes and ridges, apparent steady-state infiltration may be controlled by the near-surface downslope movement of infiltrated water rather than by characteristics of the full vertical soil profile. With only two exceptions, the local variability of infiltration rates at the scale of 10° m overpowered other expected spatial relationships between infiltration, vegetation type, slope position, and soil factors. One exception was the significant difference between infiltration rates on alluvial versus upland soils in the Andean study area. The other exception was the significant difference between infiltration rates in topographic coves compared to other slope positions in the tabonuco forest of one watershed in the Luquillo Mountains. Our research provides additional evidence of the ability of forests and forest soils to preserve geomorphic features from denudation by surface erosion, documents the importance of subsurface flow in mountain forests, and supports the need for caution in extrapolating infiltration rates.  相似文献   

10.
Effects of soil and vegetation on runoff along a catena in semi-arid Spain   总被引:1,自引:0,他引:1  
Runoff and infiltration were investigated on abandoned fields of patchy vegetation in semi-arid Spain during 15 months of natural rainfall and by rainfall simulations. The aim was to ascertain sources and sinks of runoff and the effects of soils and plant cover. Soils of the catena developed from mica schists of the upper hillslopes, fan deposits of the lower hillslopes, and an alluvial terrace at the bottom. Runoff from natural events were from three sets of three pairs each of 10 × 2 m runoff plots. The pairs of each set had different densities of plant cover; the sets were vegetated with tussock grass, Stipa tenacissima, a shrub, Anthyllis cytisoides, and a bush, Retama sphaerocarpa. Nineteen natural rainfall events of intensities up to 18 mm/h produced 400 mm of rain during the study period. Because the rainfall threshold for runoff production was about 20 mm, only eight events produced runoff. The rainfall simulations used a sprinkler that produced 50 mm/h of rain for 30 minutes; runoff was recorded each minute in 0.24 m2 bounded plots.The depth and structure of the soil mantle provide the main controls on runoff rates, which are lowest on the lower fan deposits and highest on the thin upslope soils. The river-bank terrace, with a surface covered by crusts and mosses, also yields relatively high runoff. In general, vegetation density varies inversely with runoff. Nevertheless, shrub and bush litter favor runoff, as does a particular spatial distribution of individual plants on the hillslope. Settling of the upper few centimeters of soils of the alluvial fan following cessation of cultivation 15 to 40 years ago has produced a near-surface compacted layer favoring shallow subsurface runoff. Apparently contradictory results between runoff plots and rainfall simulations are the result of differing processes.  相似文献   

11.
This study investigated the effects of land use change on infiltration and moisture content of soils in three land use types. A total of 81 soil and core samples (3 replications × 3 treatments × 3 profiles × 3 soil depths) were used to determine parameters that may affect the infiltration properties of soils. The infiltration rate was measured in the field using double-ring infiltrometer with three replicates in each land use type. Results showed that infiltration rates were generally slow in the open grazed and cultivated lands suggesting high potential for runoff, limited percolation, and very low amount of water available in the soil profiles. The accumulated infiltration in soils under cultivation and open-grazing was smaller than the controlled grazing by approximately 57%. Similarly, cultivation and open-grazing had reduced the soil moisture content by 29 and 33%, respectively, compared to the controlled grazing. Surface soil compaction, higher dry bulk density and lower soil organic carbon, appeared to be the principal factors for the low infiltration capacity and moisture content of the soils. Therefore, dry land management, with long term tree cover and well regulated grazing system, is very crucial for the sustainable ecosystem functioning of this environmentally fragile area.  相似文献   

12.
This paper describes and compares the hydrological responses of runoff, soil moisture and groundwater levels to rainfall events for two small semi-arid catchments over a 2-year period. Romwe received 1430 and 756 mm of rainfall in the 19999/00 and 2000/01 season, respectively. Mutangi received 756 and 615 mm of rainfall in the same years. Romwe generated 520 and 102 mm of runoff in the 19999/00 and 2000/01 seasons, respectively, while Mutangi generated 82 and 69 mm of runoff in the same years. The runoff response of the catchments was dominated by a relatively quick response to rainfall and with little or no significant contribution from regional groundwater or ‘old water’ sources. Total soil moisture storage to a depth of 120 cm was higher at Romwe than Mutangi for the entire study period reflecting the differences in the soil types. The groundwater level was closer to the surface and responded more quickly to rainfall at Romwe compared to Mutangi where water levels were between 12 and 16 m below the surface. There was a significant relationship between profile soil moisture and water table level at Romwe and none was observed at all in Mutangi. Significant (p<0.05) monthly rainfall runoff relationships were observed at both Romwe and Mutangi. At Romwe and Mutangi 91% and 76% of the runoff variation was accounted for by rainfall in the 1999/00 season, respectively. The rainfall–runoff relationship were different at Romwe for the two seasons, it was higher in the 1999/00 season than the 2000/01 season when 91% and 49% of the runoff variation was due to rainfall, respectively. The relationships were almost similar at Mutangi during the two seasons.  相似文献   

13.
基于甘肃省清水县汤峪河径流小区2015—2017年的观测数据,研究不同植被恢复模式条件下坡面次降雨入渗、产流产沙特征。结果表明:不同植被恢复模式条件下的土壤入渗量与降雨强度呈二次函数关系,存在入渗量达到最大值的临界降雨强度。入渗速率与降雨历时可以用幂函数关系表达,符合考斯恰可夫入渗模型。不同植被恢复模式条件下的产流率在0.003 3~0.003 6 mm·min-1之间,相对裸地的减流率为54%~58%。产流率与降雨强度之间呈二次函数关系(R2>0.88),产流率的主要影响因素是降雨强度。径流含沙量平均值乔灌混合区(3.13 g·L-1)>灌木林(2.95 g·L-1)>乔木林(2.79 g·L-1)>草地(2.58 g·L-1),径流含沙量与降雨强度呈线性递增函数关系。裸地的产沙量显著高于各植被小区(P<0.05),是各植被小区的43~57倍,各植被小区的减沙率在93%~94%之间,减沙效益高于其减流效益。各植被坡面土壤流失量与降雨侵蚀力呈线性递增函数关系;产流率与侵蚀产沙率之间呈极显著正相关关系(P<0.01),二者间可采用二次函数关系表达。本研究成果可为黄土高原丘陵沟壑区水土保持优化配置提供理论依据。  相似文献   

14.
花岗岩崩岗侵蚀劣地的生态恢复试验研究   总被引:2,自引:0,他引:2  
李先琨  叶惊春 《热带地理》1997,17(4):405-411
花岗岩崩岗侵蚀是红壤区最严重的侵蚀方式,本研究根据生态学的原理和方法,探索了花岗岩崩岗区水土流失治理和生态恢复的途径,提出了植被重建的模式。  相似文献   

15.
ABSTRACT. Runoff generation and soil erosion were investigated at the Guadalperalón experimental watershed (western Spain), within the land‐use system known as dehesa, or open, managed evergreen forests. Season and type of surface were found to control runoff and soil‐loss rates. Five soil units were selected as representative of surface types found in the study area: hillslope grass, bottom grass, tree cover, sheep trails, and shrub cover. Measurements were made in various conditions with simulated rainfall to gain an idea of the annual variation in runoff and soil loss. Important seasonal differences were noted due to surface cover and moisture content of soil, but erosion rates were determined primarily by runoff. Surfaces covered with grass and shrubs always showed less erosion; surfaces covered with holm oaks showed higher runoff rates, due to the hydrophobic character of the soils. Concentrations of runoff sediment during the simulations confirmed that erosion rates at the study site depended directly on the sediment available on the soil surface.  相似文献   

16.
Spatial patterns of soil surface components (vegetation, rock fragments, crusts, bedrock outcrops, etc.) are a key factor determining hydrological functioning of hillslopes. A methodological approach to analyse the patterns of soil surface components at a detailed scale is proposed in this paper. The methods proposed are applied to two contrasting semi-arid Mediterranean hillslopes, and the influence of soil surface component patterns on the runoff response of the slopes was analysed. A soil surface components map was derived from a high resolution photo-mosaic obtained in the field by means of a digital camera. Rainfall simulation experimental data were used to characterise the hydrological behaviour of areas with a specific pattern of soil surface components by means of the parameters of the Horton equation. Plot runoff data were extrapolated at the hillslope scale based on the soil surface component maps and their hydrological characterisation. The results show that in both slopes runoff generation is concentrated up- and downslope, with a water accepting area in the centre of both slopes disrupting the hydrological connectivity at the slope scale. This reinfiltration patch at the centre of the slope is related to the type of soil surface component and its spatial pattern. Herbaceous vegetation and ‘on top rock fragments’ increase the infiltration capacity of soils at the centre of the slope. In contrast, embedded rock fragments, rock outcrops, as well as crusted surfaces located in the upper and lower slopes favour runoff generation in these areas. In addition, a general pattern of water contribution areas downslope is apparent on both slopes. The south-facing slope shows a higher hydrological connectivity and more runoff. 55% of the surface of the south-facing slope produces runoff at the end of a 1 hour rainfall event and 17.3% of the surface is covered by a runoff depth between 0.5 and 1 mm. While on the north-facing slope only 38% of the surface produces runoff under the same conditions. Longitudinal connectivity of runoff is higher at the south-facing slope where more runoff-generating surfaces appear and where the vegetation pattern favours the connectivity of bare areas.  相似文献   

17.
Almost half of the 16,942 km2 of South Africa's subtropical thicket with a substantial Portulacaria afra (spekboom) component has been heavily degraded by domestic herbivores. The subtropical thicket biome is a drought-prone and water-stressed area, and many of the region's watersheds comprise of eroded landscapes clothed in degraded spekboom thicket. The objective of this study was to determine the impact of degradation of spekboom thicket on hydrological processes. We hypothesised that degradation of spekboom thicket would reduce infiltration and, hence, reduce soil moisture retention and increase run-off and erosion. We tested this hypothesis by collecting data on rainfall, infiltration, soil moisture retention and run-off in degraded thicket, and – as a reference site – in an adjacent stand of relatively intact thicket. The results showed clear trends in the impacts of spekboom thicket degradation on hydrological processes. The more than hundred-fold lower infiltration in soils associated with degraded thicket relative to the soils beneath the intact, spekboom canopy, resulted in lower levels and less retention of soil moisture, almost double the amount of runoff, and an almost six-fold increase in sediment load. Thus, restoring degraded thicket will reduce erosion and likely improve baseflows, in addition to sequestering carbon.  相似文献   

18.
南澳岛植被恢复过程中不同阶段土壤的变化   总被引:14,自引:0,他引:14  
周厚诚  任海  向言词  彭少麟  李萍 《热带地理》2001,21(2):104-107,112
采用时空互代法研究南澳岛植被恢复过程中不同阶段土壤变化,在植被恢复的过程中,该岛土壤pH值按退化草坡→人工林→次生林的顺序呈现出逐步降低的趋势,土壤全氮含量、速效磷和交换性K、Ca、Mg都随植被从草坡向次生林恢复过程而呈现逐步增加的趋势,虽然草坡10cm土壤有机质比10年龄的人工林群落2种群落3高,但却比群4、群落5、群落和群落8低,植被恢复过程中凋落物贮量也增加,其趋势同土壤养分增加是一致的,南澳岛在植被恢复过程中土壤结构和营养得到改善,而这又会促进植被恢复,同大陆相比,海岛土壤的交换性K、Ca、Mg含量较高,这可能同海岛特殊生境有关。  相似文献   

19.
Soil erosion is an important process of land degradation in many rangelands and a significant driver of desertification in the world's drylands. Dendrogeomorphology is an alternative to traditional methods for determining soil erosion rate. Specifically, the vertical distance between the upper portion of exposed roots and the actual soil surface can be used as a bioindicator of erosion since plant establishment. In this study, we determined (i) the soil erosion rate from exposed roots of the dwarf shrub Margyricarpus pinnatus [Lam.] Kuntze in two ecological sites in the northeastern rangelands of Patagonia and (ii) the relationship between shrub age and upper root diameter. We selected two ecological sites, a pediment-like plateau and a flank pediment, where the dominant soils were Xeric Haplocalcids and Xeric Calciargids, respectively. The soil erosion rates in the pediment-like plateau and in the flank pediment were 2.4 and 3.1 mm yr− 1, respectively. Data clearly indicate a high rate of soil erosion during the mean 8-year life span of the dwarf shrubs in degraded patches, which represent ~ 10% of surface cover in the study area. Simple linear regression analysis yielded a highly significant predictive model for age estimation of M. pinnatus plants using the upper root diameter as a predictor variable. The measurement of ground lowering against datable exposed roots represents a simple method for the determination of soil erosion rates. In combination with other soil surface features, it was used to infer the episodic nature of soil erosion. This approach could be particularly useful for monitoring the effects of land management practices on recent soil erosion and for the establishment of records in regions where historical data regarding this process are scarce or absent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号