首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The major sources of cassiterite in Nigeria are the alluvial and eluvial deposits from the biotite granites within the Jurassic alkaline ring complex (the Younger Granites) of the Jos Plateau. Less than 5% of the total production has been recovered from pegmatites within the largely Precambrian basement complex consisting of migmatites, gneisses, the Pan-African (Older) Granites and pegmatites, but with the rapidly depleting reserves of the former source new reserves have to be found.This study presents the first report on an important new source of cassiterite in basement-complex gneisses, migmatites, pegmatites and aplites in the Gurum area near Jos. The cassiterite, which has been economically concentrated by the leaching and weathering of these rocks, is generally finer grained and darker than the alluvial cassiterite derived from the Jurassic biotite granites. This new find has important petrogenetic and economic implications, suggesting that the basement complex could be a suitable parent rock for the Younger Granites and a significant potential source of cassiterite in Nigeria.  相似文献   

2.
The Jutulsessen area, can provide a vital clue to the supercontinent assembly of Gondwana Land as it is situated within the Circum East Antarctic Mobile Belt just east of the Penksockett rift marking the divide between the central Dronning Maud Land from the Western Dronning Maud Land. This landmass is dominated by migmatitic quartzo-feldspathic rocks intruded by syn to post-tectonic granites. The work highlights the data from western part cDML area with a view to arrive at a more comprehensive model for the cDML and subsequently to the super continent assembly. Granitic and migmatitic gneisses comprising of amphibolitic and biotite rich enclaves. The gneisses show variations from quartzo-felspathic gneiss to amphibolitic gneiss. The area has witnessed complex geological history involving at different deformational episodes with concomitant metamorphism. The pervasive dominant foliation trends NW-SE with shallow to medium dips towards SW. In the Stabben area, a nonfoliated intrusive syenite-gabbro pluton limits the gneissic exposures. Compositionally, the orthogneisses plot in the monzogranitegranodiorite field where as the mafic dykes/enclaves plot in the basalt-andesite-rhyodacite field. The bulk geochemical characteristics suggest significant crustal contamination. Garnet-biotite Fe-Mg exchange thermometry gives peak metamorphic temperature of 483° C for the gneisses and 628° C for the dioritic enclave within gneisses. A peak metamorphic grade of upper amphibolite to granulite facies is deduced from the mineral assemblages. Widespread anatexis has led to extensive occurrence of migmatites in the area. Recent geochronological studies assign an age of 1170 Ma to 970 Ma for the migmatites/gneisses and an emplacement age of 501 Ma for the Stabben gabbro and syenite. The discriminant plots of the Jutulsessen rocks indicate diverse origin ranging from pre-plate collision to post-collision orogenic tectonic setting. The mafic enclaves/dykes show ocean island arc to MORB affinities. Voluminous addition of juvenile crust during the Pan-African orogeny strongly overprints earlier structures.  相似文献   

3.
This study aims to discriminate and to map the basement rocks as well as the barite mineralization exposed at El Hudi area, Southeastern Desert, Egypt using the processed short-wave infrared bands of advanced space-borne thermal emission and reflection radiometer (ASTER) in collaboration with the field verification and petrographic analysis. El Hudi area is covered dominantly by the Late Precambrian high-grade metamorphic complex of metasedimentary rocks (gneisses, schists, migmatites, and minor amphibolites) which are intruded by the younger granitoids. Nubian sandstones unconformably overlie the basement outcrops and occur as a remnant caps. The metasedimentary rocks cover the area of interest forming a belt of biotite gneisses and migmatites intercalated with hornblende biotite schists and minor amphibolites. Their exposures exhibit well-foliated and banded structures. The metasedimentary rocks have gray and dark gray image signatures on the ASTER band ratio image 8/5, which correspond to biotite gneiss, migmatites, and hornblende biotite schists, respectively. Presence of absorption feature near band 8 (2.295 – 2.365 μm) for the chlorite alteration product is probably responsible for the lowering of the 8/5 band ratio value and the dark gray image signature exhibited by hornblende biotite schists. The granitoid rocks in El Hudi area are late to postorogenic younger granitoids including three main rock types, Abu Aggag granites, El Hudi garnetiferous muscovite granites, and coarse-grained biotite granites. The acidic dykes are cutting across the granitoids and the gneisses and they form a highly elevated ridges and peaks showing sharp contact with the invaded rocks. Abu Aggag granites are highly dissected by great number of both strike- and dip-slip faults as well as joints trending in NNW–SSE, NNE–SSW, N–S, ENE–WSW, and WNW–ESE directions. On 7/8 band ratio image, Abu Aggag granites have dark gray image signature whereas postgranitic dykes have white image signature. Under the microscope, Abu Aggag granites are homogenous medium to coarse-grained rocks composed mainly of quartz, plagioclase, microcline, and biotite. Zircon, apatite, and opaques are accessories, while chlorite, kaolinite, and epidote are secondary minerals. Presence of absorption feature around band 7 (2.235–2.285 μm) for the kaolinite mineral may be responsible for the dark gray image signature exhibited by Abu Aggag granites. El Hudi garnetiferous muscovite granites are hosting El Hudi barite veins which extend mainly in NNW–SSE and NW–SE. Garnetiferous muscovite granites have gray image signature on 5/4 band ratio image whereas pegmatites and postgranitic dykes have black image signature. Barite veins can be distinguished within garnetiferous muscovite granites by their dark gray image signature on 5/4 band ratio image. The spectral reflectance curve of barite exhibits absorption feature around 2.1 μm (band 5), which leads to lower the ratio value and yields the dark image signature to barite veins. The above-described ASTER band ratio images were integrated into one false-color composite image (8/5:R; 5/4G; and 7/8B) which was used to produce 1:100,000 geological map for El Hudi area and to locate the barite mineralization.  相似文献   

4.
We describe a suite of metamorphic and migmatitic rocks fromthe Sierra de Comechingones (Sierras Pampeanas of Central Argentina)that include unmelted gneisses, migmatites and refractory granulites.The gneisses are aluminous greywackes metamorphosed in the amphibolitegrade and are likely to have been the protoliths for the higher-grademigmatites and granulites. Mineralogical characteristics andmajor and trace element compositions show that metatexite migmatites,diatexite migmatites and granulites are all melt-depleted rocks.The migmatites (both metatexites and diatexites) have undergoneH2O-fluxed melting and lost  相似文献   

5.
This paper presents materials of granitoids from the western Angara-Vitim batholith and the country gneisses and migmatites of the Talanchan Metamorphic Complex. The granitoids of the older intrusive phases of the Barguzin Complex are characterized by high dispersions in the contents of most trace element. The similarities in their trace-element signatures to those of metavolcanics of the Talanchan Group indicate that the latter could have served as a source of the granitoid melts. The increase in the K, Rb, Sn, Be, and REE contents from granitoids of the older phase of the Barguzin Complex to the main phase of this complex and further to the granites of the Zazin Complex is a result of melt fractionation which simultaneously became more uniform and acquired Eu minima. The group of calc-alkaline diorites is identical in composition to the metavolcanics and probably complements the latter. Metagabbro of normal alkalinity and synplutonic subalkali gabbro of the Oshurkov type are distinguished by composition and the relationships with the country gneisses and granitoids.  相似文献   

6.
The granites of the Ukrainian shield are secondary; the “shield,” in the first instance, is a segment of a fold belt which extends from the Black Sea, via the Voronezh Arch, to the Kola Peninsula. The metamorphic ungranitized anticlines are narrow folds in which are found iron, copper, zirconium and precious metals. Iron, titanium, copper, graphite and mica deposits are found in the folds of granitized gneisses, migmatites, anatektites and granites. The crystalline metal ores are associated with metamorphosed elastics and evaporites; the titanium, copper, cobalt, gold, vanadium, mercury, chromium and nickel deposits – associated with sedimentary volcanics and evaporites. The high-grade metamorphics Contained the deposits of titanium, iron, calcium, magnesium, copper, vanadiuta, lead and zinc. The chromites and nickel silicates are associated with the intrusives. In short, metamorphic history and mineralogy exercised a direct control over the size and grade of ore deposits.  相似文献   

7.
在研究金溪—南城变质混合岩带中混合岩、花岗岩的矿物岩石学基础上,详细研究了它们的Nd、Sr、Pb、O同位素组成.混合岩、花岗岩初始钕同位素组成(143Nd/144Nd)i=0.511689~0.511853,在εNd-T图中位于该地区结晶基底变粒岩、片岩Nd同位素演化域上方,褶皱基底绢云千枚岩Nd同位素演化线下方;初始锶同位素组成(  相似文献   

8.
The Irkut Block with dominant rocks of the Sharyzhalgai Series and Kitoi Block with prevalence of the Kitoi Series rocks are the main structures of the Presayanian basement elevation of the Siberian Craton. Two stages of metamorphism, Neoarchean (2.6–2.7 Ga) and Paleoproterozoic (1.85–1.87 Ga), were established for the granulitic complexes of these blocks. The rocks of the Kitoi sillimanite schist deposit composed of sillimanite, andalusite-sillimanite, and garnet-sillimanite schists and gneisses underwent by intense ultrametamorphic transformations which led to the formation of sillimanite- and garnet-bearing plagioclase and feldspar migmatites, and also granites, sienites, and granite-pegmatites. The geochronological study of melanocratic schists and leucocratic plagiogneisses-the typical rocks of the Kitoi deposit-showed the manifestation of metamorphism only at the Archean and Proterozoic boundary (2450–2550 Ma).  相似文献   

9.
The oldest crystalline complexes of the Early Caledonian superterrane of Central Asia were formed in the Early Precambrian. They are exposed in the basement of microcontinents, which represent old cratonic fragments. Among the latters are the crystalline complexes of the Tarbagatai block previously ascribed to the Dzabkhan microcontinent. It was shown that the crystalline complexes of the Tarbagatai block have a heterogeneous structure, consisting of the Early Precambrian and later Riphean lithotectonic complexes. Structurally, the Early Precambrian complexes are made up of tectonic sheets of gneisses, migmatites, and gneiss granites of the Ider Complex that are cut by gabbroanorthosite massif. The Riphean Jargalant Complex comprises alternating hornblende crystalline schists and biotite (sometimes sillimanite-bearing) gneisses with marble horizons. The upper age boundary of the Riphean Complex is determined by the subautochthonous granitoids with age about 810 Ma. The presence of the Riphean high-grade rocks indicates that structures with newly formed crust were formed in the paleooceanic framing of the Early Precambrian blocks of the Rodinia supercontinent by the Mid-Late Riphean. Divergence that began at that time within old Rodinian cratons and caused rifting and subsequent break-up of the supercontinent was presumably changed by convergence in the paleooceanic area.  相似文献   

10.
平阳片麻状奥长花岗岩位于河北阜平县平阳镇一带,围岩为包括混合岩和片麻岩在内的变质表壳岩,层位上相当于阜平群的下部,产阳地区空间上存在高级变质作用、混合岩化作用和深熔作用的“三位一体”,因而由变质岩到花岗岩显示了系统的岩石学、岩相学以及产出关系上的渐变过渡特点,花岗岩中的变质表壳岩以及部分包体不仅在岩性上可和外围的同类岩石对比,而且也显示了明显的深熔作用改造的痕迹,有较为充分的语气表明平阳片麻状花岗岩总体上是原地深熔的奥长花岗岩,局部发生了一定尺度的位移。平阳地区变质表壳岩的深熔作用经历了以流体活动占主导地位、以矿物的溶解和重结晶为主要特点的早期阶段,演变为以部分矿物的熔融占主导地位的高级阶段,平阳片麻状奥长花岗岩的形成代表了阜平岩群变质表壳岩深熔作用的高级演化阶段,对于客观认识阜平岩群的组成和地质演化具有重大意义。  相似文献   

11.
The Velay dome (French Massif Central) offers a quasi-continuous section across an anatectic domain comprising low- to high-grade schists, gneisses and granites. Two main tectonometamorphic events, and their related generation of granitic material, were recognized in addition to a major Barrrovian tangential event (D2) attributed to intracontinental collision tectonics: (i) a medium- to low- P , high- T event (D3) which gave rise to migmatites and syntectonic monzonitic granites and granodiorites, and (ii) a widespread melting event (D4) which led to the generation of migmatities, the Velay granite and post-anatectic granites.
Thermobarometry on samples collected from both the metamorphic envelope and the granitic core distinguishes two distinct geotherms: (i) a first, associated with the D3 event, characterized by P > 5 kbar, T ≤ 750° C and water-present melting (biotite remains stable) which led to large-scale migmatization but minor amount of granites; (ii) a second, associated with the D4 event and characterized by vapour-absent melting ( P = 4–5 kbar, T = 760–850° C) which gave rise to the Velay granites and late-migmatitic granites. The temperature increase during the D4 event is attributed to the intrusion of hot mafic magmas within the crust.
The time-integrated features of the different granitic rocks in the Velay dome can be directly related to a H2O in the source region and illustrate the progressive dehydration of a middle to lower crustal segment over 60 Ma.  相似文献   

12.
The Mount Athos Peninsula is situated in the south-easternmost part of the Chalkidiki Peninsula in northern Greece. It belongs to the Serbo-Macedonian Massif (SMM), a large basement massif within the Internal Hellenides. The south-eastern part of the Mount Athos peninsula is built by fine-grained banded biotite gneisses and migmatites forming a domal structure. The southern tip of the peninsula, which also comprises Mount Athos itself, is built by limestone, marble and low-grade metamorphic rocks of the Chortiatis Unit. The northern part and the majority of the western shore of the Mount Athos peninsula are composed of highly deformed rocks belonging to a tectonic mélange termed the Athos-Volvi-Suture Zone (AVZ), which separates two major basement units: the Vertiskos Terrane in the west and the Kerdillion Unit in the east. The rock-types in this mélange range from metasediments, marbles and gneisses to amphibolites, eclogites and peridotites. The gneisses are tectonic slivers of the adjacent basement complexes. The mélange zone and the gneisses were intruded by granites (Ierissos, Ouranoupolis and Gregoriou). The Ouranoupolis intrusion obscures the contact between the mélange and the gneisses. The granites are only slightly deformed and therefore postdate the accretionary event that assembled the units and created the mélange. Pb–Pb- and U–Pb-SHRIMP-dating of igneous zircons of the gneisses and granites of the eastern Athos peninsula in conjunction with geochemical and isotopic analyses are used to put Athos into the context of a regional tectonic model. The ages form three clusters: The basement age is indicated by two samples that yielded Permo-Carboniferous U–Pb-ages of 292.6?±?2.9?Ma and 299.4?±?3.5?Ma. The main magmatic event of the granitoids now forming the gneiss dome is dated by Pb–Pb-ages between 140.0?±?2.6?Ma and 155.7?±?5.1?Ma with a mean of 144.7?±?2.4?Ma. A within-error identical age of 146.6?±?2.3?Ma was obtained by the U–Pb-SHRIMP method. This Late Jurassic age is also known from the Kerdillion Unit and the Rhodope Terrane. The rather undeformed granites are interpreted as piercing plutons. The small granite stocks sampled have Late Cretaceous to Early Tertiary ages of 66.8?±?0.8?Ma and 68.0?±?1.0?Ma (U–Pb-SHRIMP)/62.8?±?3.9?Ma (Pb–Pb). The main accretionary event was according to these data in the Late Jurassic since all younger rocks show little or no deformation. The age distribution together with the geochemical and isotopic signature and the lithology indicates that the eastern part of the Mount Athos peninsula is part of a large-scale gneiss dome also building the Kerdillion Unit of the eastern SMM and the Rhodope Massif. This finding extends the area of this dome significantly to the south and indicates that the tectonic boundary between the SMM and the Rhodope Massif lies within the AVZ.  相似文献   

13.
The Vaikrita Group made up of coarse mica-garnet-kyanite and sillimanite-bearing psammitic metamorphics constituting the bulk of the Great Himalaya in Kumaun is divisible into four formations, namely theJoshimath comprising streaky, banded psammitic gneisses and schists, the Pandukeshwar consisting predominantly of quartzite with intercalations of schists, thePindari made up of gneisses and schists with lenses of calc-silicate rocks and overwhelmingly injected by Tertiary pegmatites and granites (Badrinath Granite) leading to development of migmatites, and theBudhi Schist comprising biotite-rich calc-schists. The Vaikrita has been thrust along the Main Central Thrust over the Lesser Himalayan Munsiari Formation made up of highly mylonitized low-to meso-grade metamorphics, augen gneisses and phyllonites. Petrological studies demonstrate contrasting nature of metamorphism experienced by the Vaikrita and the Munsiari rocks. Sillimanite-kyanite-garnet-biotite-muscovite (±K-feldspar and ± plagioclase).—quartz metapelites and interbanded calc-schists and calc-gneisses with mineral assemblages of calcite-hornblende-grossular garnet, labradorite (An50?An65), (± K-feldspar)-quartz (± biotite), and hornblende-diopside ± labradorite ± quartz, suggest medium to high grade of metamorphism or indicate upper amphibolite facies experienced by the rocks of the Vaikrita Group. The associated migmatites, granite-gneisses and granites of the Pindari Formation were formed largely as a result of anatexis of metapelites and metapsammites. While, the sericite-chlorite-quartz and muscovite-chlorite-chloritoid-garnet-quartz, assemblages in metapelites and epidote-actinolite-oligoclase (An20)-quartz and epidote-hornblende-andesine (An29) ± quartz in the metabasites suggest a low-grade metamorphism (greenschist facies) for the Munsiari Formation, locally attaining the lower limit of medium-grade (epidote-amphibolite) facies. The inferred P-T conditions obtained from textural relations of various mineral phases and the stability relationship of different coexisting phases in equilibrium, suggest that the temperature ranged between 600° and 650° C and pressure was over 5 kb for the Vaikrita rocks. The mineral assemblages of the Munsiari Formation indicate comparatively lower P-T conditions, where the temperature reached approximately 450° C and pressure was near 4 kb. The rocks of the two groups were later subjected to intense shearing, cataclasis and attendant retrograde metamorphism within the zone of the Main Central (=Vaikrita) Thrust.  相似文献   

14.
In Maine, Siluro-Devonian turbidites were metamorphosed underhigh-T–low-P facies series conditions during deformationwithin a Devonian crustal-scale shear zone system, defined bykilometer-scale straight belts of apparent flattening strainthat anastomose around lozenges of apparent constrictional strain.At upper amphibolite facies grade, metapelites are partiallymelted, the onset of which is recorded by a migmatite front.The resulting migmatites are stromatic or heterogeneous, andsmaller-volume granites form sheets or cylinders according tothe structural zone in which they occur, suggesting that migmatitesand granites record syntectonic melt flow through the deformingcrust. Common leucogranite of the nearby coeval Phillips pluton,which was emplaced syntectonically, was sourced from crustalrocks with geochemical characteristics similar to those of thehost Siluro-Devonian succession. Migmatites have melt-depletedcompositions relative to metapelites. Leucosomes are peraluminousand represent the cumulate products of fractional crystallizationand variable loss of evolved fractionated liquid. Among theheterogeneous migmatites are schlieric granites, the geochemistryof which suggests melt accumulation before fractional crystallizationand loss of the evolved liquid. Smaller-volume granites areperaluminous with a range of chemistries that reflect variableentrainment of residual plagioclase and biotite, accumulationof products of fractional crystallization and loss of most ofthe evolved liquid. Common leucogranite of the Phillips plutonand larger granites in the migmatites have compositions thatsuggest crystallization of evolved liquids derived by fractionalcrystallization of primary muscovite dehydration melts. We inferthat the leucogranite represents the crystallized fugitive liquidfrom a migmatite source similar to that exposed nearby. Watertransported through the shear zone system dissolved in meltwas exsolved at the wet solidus to cause retrogression in sub-solidusrocks and retrograde muscovite growth in migmatites. KEY WORDS: anatexis of pelite; Maine; migmatite; peraluminous granite; plutons  相似文献   

15.
This paper investigates the denudation rates in the Quadrilátero Ferrífero, Minas Gerais State (Brazil). The aim is to compare chemical weathering rates from measurements of solute fluxes in rivers and long-term mean erosion rates deduced from in situ-produced cosmogenic 10Be concentrations measured in fluvial sediments. Both water samples and sediments were collected in fifteen stations (checkpoints) located in four hydrographic basins with low anthropogenic perturbations.Depending of the type of substratum, three degrees of chemical denudation rates from water samples are observed: (i) high rates in marbles; (ii) medium rates in schists, phyllites, granites, gneisses and migmatites; (iii) low rates in quartzites and itabirites. Preliminary results of long-term erosion rates deduced from in situ-produced 10Be are comparable with those of chemical rates.  相似文献   

16.
The Banded Gneissic Complex of central Rajasthan, the only gneissic basement in India considered to underlie an early Precambrian sedimentary suite unconformably, comprises composite gneisses formed by extensive migmatization of metasedimentary rocks of diverse composition. The migmatites and the metasedimentaries maintain a structural continuity in a plan of superposed deformations, with the migmatite front involved in the early folding but transgressing the stratigraphic boundaries. Structures in the metasedimentary palaeosomes within the gneisses match in their entirety those in the migmatite host and the metasedimentary bands outside. On a smaller scale of microsections, migmatites show para tectonic crystallization with reference to the first deformation. The Banded Gneissic Complex thus loses its unique position in the Indian Precambrians as older than the earliest decipherable sedimentary series, but is older than the Aravalli rocks of the type area, the partially migmatized metasedimentaries belonging to an earlier series.  相似文献   

17.
Mineral and isotope studies were undertaken on migmatites from the Schwarzwald, Moldanubian zone of the Variscan belt. The aims of the study were to date the migmatite formation and to determine the processes involved in migmatization in order to evaluate their influence on isotopic resetting. Textural evidence and the comparison of mineral compositions from leucosomes and mesosomes of two centimetre-scale migmatite profiles, respectively, suggest that migmatitic textures and mineral assemblages were formed by metamorphic segregation (deformation-enhanced mass transport) rather than by partial melting (anatexis). The results of Rb-Sr thin-slab dating on these profiles indicate that Sr isotopes were not completely reset during migmatization. No true isochron ages, but ages of approximate isotopic homogenization were obtained on the thin slabs by calculating 87Sr/86Sr ratios back to various stages in their evolution. The coincidence of these Rb-Sr data with U-Pb ages of monazites from migmatites and non-migmatitic gneisses shows that gneisses and migmatites were formed during the same high-temperature event in the Carboniferous (330-335 Ma). The observation that high-temperature metamorphism failed to equilibrate Sr isotopes on the centimetre-scale imposes limitations on the use of conventional whole-rock isochron techniques in dating migmatites.  相似文献   

18.
The crystalline sheet of the Higher Himalaya, referred to as the Central Crystallines, is a continuous lithotectonic unit which can be traced from the River Kali of eastern Kumaun in the east to Sankoo in the Suru River valley of Kashmir in the west. The principal lithostratigraphic units of this zone are pelites, psammites, gneisses, amphibolites, migmatites and leucocratic granites. The rocks of this zone show progressive regional metamorphism of normal as well as reverse types, the metamorphic grade ranging from chlorite to sillimanite zone. The Main Central Thrust, which demarcates the southern boundary of the Central Crystallines, has brought the crystalline rocks to rest over the sediments of Deoban Group in Kumaun and Garhwal and over the Outer Crystallines (=Chail-Jutogh Nappe) in Himachal Pradesh. The evidence obtained from metamorphism, deformation and radiometric dating indicate that the Central Crystallines is an old Precambrian basement which has been reactivated during Caledonian and Alpine orogenic movements.  相似文献   

19.
粤西云炉地区混合岩的成因研究   总被引:10,自引:0,他引:10  
陈斌  黄福生 《地质学报》1994,68(3):231-240
在两广交界的云开大山加里东造山带中,从广东高州新垌向云炉方向依次发育部分混合岩化岩石、条带状混合岩、眼球条带状混合岩及片麻状混合岩等混合岩带。笔者通过对混合岩进行质量平衡计算,结构系统统计分析、矿物学、地球化学及云炉地区变质前景的研究,确定该区混合岩的主要形成机制为深溶作用。在深溶作用过程中,没有显著的钾、钠、硅等外来组分的带入和钙、铁、镁等组分的带出。  相似文献   

20.
Augen gneisses occur east of the postorogenic Småland granites in south-eastern Sweden. These augen gneisses are generally folded conformably with the surrounding rocks but in several areas they seem to pass transitionally into the otherwise cross-cutting postorogenic granites. The augen gneisses in the Finspång area are suggested to be caps or down-pointing flukes of the postorogenic granites in a structure similar to one of Ramberg's (1967) centrifuged model experiments. Several factors suggest that these granites intruded as congealing magmas. The proposed evolutionary model has some features in common with the balloon tectonic model (Ramsay 1981). However, rather than the magma expanding an outer skin around a simple balloon-like structure, the concept is extended to include the magmatic inflation and distortion of the cap resulting also in down pointing, folded fluke structures.If the proposed relationship can be established, it follows that extensive metamorphism and deformation took place in southeast Sweden as a marginal effect of the intrusion of the Småland granites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号