首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Young kerogens isolated from seven freshwater lakes, six river mouths and four marine surface sediments were subjected to pyrolysis in vacuo. Their pyrolysates were trapped and separated subsequently for determination of hydrocarbons, fatty acids and alcohols. The abundances, carbon number distributions of long (C12) polymethylene chain lipid compounds and relative abundances of pristenes are proposed as possible indices applicable to discrimination between young kerogens from freshwater lacustrine and marine sediments. Some oil-shale kerogens of Eocene and Permian age were pyrolyzed in the same way, where the chain-length distributions of the pyrolysis products showed similar trends as those observed for the pyrolysis of young kerogens.  相似文献   

2.
Mathematical models of hydrocarbon formation can be used to simulate the natural evolution of different types of organic matter and to make an overall calculation of the amounts of oil and/or gas produced during this evolution. However, such models do not provide any information on the composition of the hydrocarbons formed or on how they evolve during catagenesis.From the kinetic standpoint, the composition of the hydrocarbons formed can be considered to result from the effect of “primary cracking” reactions having a direct effect on kerogen during its evolution as well as from the effect of “secondary cracking” acting on the hydrocarbons formed.This report gives experimental results concerning the “primary cracking” of Types II and III kerogens and their modelling. For this, the hydrocarbons produced have been grouped into four classes (C1, C2–C5, C6–C15 and C15+). Experimental data corresponding to these different classes were obtained by the pyrolysis of kerogens with temperature programming of 4°C/min with continuous analysis, during heating, of the amount of hydrocarbons corresponding to each of these classes.The kinetic parameters of the model were optimized on the basis of the results obtained. This model represents the first step in the creation of a more sophisticated mathematical model to be capable of simulating the formation of different hydrocarbon classes during the thermal history of sediments. The second step being the adjustment of the kinetic parameters of “secondary cracking”.  相似文献   

3.
A Cambrian solid bitumen from northwestern Sichuan Basin, southern China was analyzed using two different flash pyrolysis methods coupled with gas chromatography–mass spectrometry analysis, including Pyroprobe® and analytical laser micropyrolysis. Results show that pyrolysis products from a Pyroprobe® (model 5000) analysis are dominated by mono-, di- and tricyclic aromatic hydrocarbons, whilst those from laser micropyrolysis are dominated by aliphatic hydrocarbons (n-alk-1-ene/n-alkane doublets), which is consistent with the results from an FT-IR spectrum of the solid bitumen. According to the molecular compositions of the pyrolysates from two types of pyrolysis, results from a 532 nm continuous wave laser may be more suitable for pyrolysis research of bitumen/asphaltene. Thus, differences in pyrolysis techniques must be considered when used to characterize oil asphaltenes or source rock kerogens.  相似文献   

4.
通过密封金管-高压釜体系对珠江口盆地番禺低隆起-白云凹陷北坡恩平组炭质泥岩的干酪根(PY),在24.1 MPa压力、20℃/hr(373.5~526℃)和2℃/h(343~489.2℃)两个升温速率条件下进行热模拟生烃实验,分析气态烃(C1 5)和液态烃(C6 14和C14+)的产率,以及沥青质和残余有机质碳同位素组成。同时与Green River页岩(GR)和Woodford泥岩(WF)的干酪根,分别代表典型的I型和II型干酪根进行对比研究。结果显示PY热演化产物中总油气量明显低于GR和WF干酪根,且气态烃(C1 5)最高产率是液态烃的1.5倍,揭示恩平组炭质泥岩主要以形成气态烃为主。在热演化过程中,有机质成熟度和母质类型是控制油气比的主要因素,气态烃和轻烃的产率比值主要受热演化成熟度的影响。干酪根残余有机质碳同位素和沥青质碳同位素在热演化过程中受有机质成熟度的影响较小,δ13C残余和δ13C沥青质可以间接反映原始母质的特征,为高演化烃源岩油气生成提供依据。  相似文献   

5.
The newly discovered Changkeng Au-Ag deposit is a new type of sediment-hosted precious metal deposit. Most of the previous researchers believed that the deposit was formed by meteoric water convection. By using a high vacuum quadrupole gas mass spectrometric system, nine light hydrocarbons have been recognized in the fluid inclusions in ore minerals collected from the Changkeng deposit. The hydrocarbons are composed mainly of saturated alkanes C1-4 and unsaturated alkenes C2-4 and aromatic hydrocarbons, in which the alkanes are predominant, while the contents of alkenes and aromatic hydrocarbons are very low. The Σalka/Σalke ratio of most samples is higher than 100, suggesting that those hydrocarbons are mainly generated by pyrolysis of kerogens in sedimentary rocks caused by water-rock interactions at medium-low temperatures, and the metallogenic processes might have not been affected by magmatic activity. A thermodynamic calculation shows that the light hydrocarbons have reached chemical equilibrium  相似文献   

6.
Pyrolysis experiments were carried out on Monterey formation kerogen and bitumen and Green River formation kerogen (Type II and I, respectively), in the presence and absence of montmorillonite, illite and calcite at 200 and 300°C for 2–2000 hours. The pyrolysis products were identified and quantified and the results of the measurements on the gas and condensate range are reported here.A significant catalytic effect was observed for the pyrolysis of kerogen with montmorillonite, whereas small or no effects were observed with illite and calcite, respectively. Catalytic activity was evident by the production of up to five times higher C1–C6 hydrocarbons for kerogen with montmorillonite than for kerogen alone, and by the dominance of branched hydrocarbons in the C4–C6 range (up to 90% of the total amount at any single carbon number). This latter effect in the presence of montmorillonite is attributed to cracking via a carbonium-ion [carbocation] intermediate which forms on the acidic sites of the clay. No catalytic effect, however, was observed for generation of methane and C2 hydrocarbons which form by thermal cracking. The catalysis of montmorillonite was significantly greater during pyrolysis of bitumen than for kerogen, which may point to the importance of the early formed bitumen as an intermediate in the production of low molecular weight hydrocarbons. Catalysis by minerals was also observed for the production of carbon dioxide.These results stress the importance of the mineral matrix in determining the type and amount of gases and condensates forming from the associated organic matter under thermal stress. The literature contains examples of gas distributions in the geologic column which can be accounted for by selective mineral catalysis, mainly during early stages of organic matter maturation.  相似文献   

7.
The suspended particulate organic matter, SPOM, in the autumnal Black Sea has been characterised using catalytic hydropyrolysis (HyPy) of the total (bound plus free) lipid material. The technique, which generates maximum yields of volatile products from sediments, kerogens and phytoplankton, was followed using gas chromatography and gas chromatography/mass spectrometry. The generated alkanes were dominated by n-C18, hypothesised to arise predominantly from unsaturated C18 fatty acids. Steranes were generated from reductive conversion of free and bound sterols. The generation of branched alkanes and especially of hopanes provided formal evidence for the participation of bacteria in the mineralisation of the SPOM. Whereas similar distributions of n-alkanes were generated from SPOM sampled from different depths of the comparatively well-stirred Rhodes Gyre (eastern Mediterranean), mineralisation of the SPOM at each depth of the central Black Sea produced characteristic changes in the composition and concentration of the HyPy products. Depth profiles of the n-alkanes generated from SPOM in the region of the Rim Current were affected by the local hydrography. Polynuclear aromatic hydrocarbons (PAHs) of anthropogenic origin were present in the surface waters of the central Black Sea. Some methyl benzenes, thiophenes and pyrroles were also generated.  相似文献   

8.
The effect of mineral matter on the laboratory pyrolysis of sediments, kerogens and coals, and of coal macerals mixed with either alumina, bentonite, kaolinite, or calcium carbonate has been investigated. Some minerals are more active than others in effecting changes in the composition of the pyrolysate. The relative content of low molecular weight pyrolysis products is higher for kerogens pyrolyzed in a mineral matrix than for isolated kerogens. Our limited data suggests that this is due to both condensation and gasification of higher molecular weight constituents in the ‘primary’ pyrolysate. Differences in the content of aromatic versus aliphatic compounds have been noted when pyrograms from coal macerals are compared with pyrograms from coal maceral-mineral mixtures. We conclude that mineralogy is important in controlling the composition of kerogen pyrolysis products.  相似文献   

9.
Micro-scale sealed vessel (MSSV) pyrolysis experiments have been conducted at temperatures of 150, 200, 250, 300, 330 and 350°C for various times on a thermally immature Type II-S kerogen from the Maastrichtian Jurf ed Darawish Oil Shale (Jordan) in order to study the origin of low-molecular-weight (LMW) alkylthiophenes. These experiments indicated that the LMW alkylthiophenes usually encountered in the flash pyrolysates of sulphur-rich kerogens are also produced at much lower pyrolysis temperatures (i.e. as low as 150°C) as the major (apart from hydrogen sulfide) sulphur-containing pyrolysis products. MSSV pyrolysis of a long-chain alkylthiophene and an alkylbenzene indicated that at 300°C for 72 h no β-cleavage leading to generation of LMW alkylated thiophenes and benzene occurs. In combination with the substantial production of LMW alkylthiophenes with a linear carbon skeleton at these conditions, this indicated that these thiophenes are predominantly formed by thermal degradation of multiple (poly)sulfide-bound linear C5–C7 skeletons, which probably mainly originate from sulphurisation of carbohydrates during early diagenesis. LMW alkylthiophenes with linear carbon skeletons seem to be unstable at MSSV pyrolysis temperatures of ≥330°C either due to thermal degradation or to methyl transfer reactions. LMW alkylthiophenes with a branched carbon skeleton most likely derive from both multiple (poly)sulfide-bound branched C5–C7 skeletons and alkylthiophene units present in the kerogen.  相似文献   

10.
We have conducted the first systematic analyses of molecular distribution and δD values of individual compounds in pyrolysates of insoluble organic matter (IOM) from different carbonaceous chondrite groups, using flash pyrolysis coupled to gas chromatography-mass spectrometry and compound-specific D/H analysis. IOM samples from six meteorites of different classifications, Elephant Moraine (EET) 92042 (CR2), Orgueil (CI1), Allan Hills (ALH) 83100 (CM1/2), Murchison (CM2), ALH 85013 (CM2), and Tagish Lake (C2) were isolated and studied. Except for the pyrolysate of Tagish Lake IOM, pyrolysates of all five meteorite IOM samples were dominated by an extensive series of aromatic (C1 to C7 alkyl-substituted benzenes, C0 to C2 alkyl-substituted naphthalenes), with aliphatic (straight chain and branched C10 to C15 alkanes) hydrocarbons and several S- and O- containing compounds (C1 to C2 alkylthiophenes, benzothiophene, benzaldehyde) being also present. The strong similarity in the pyrolysates of different carbonaceous chondrites suggests certain common characteristics in the formation mechanisms of IOM from different meteorites. The Tagish Lake IOM sample is unique in that its pyrolysate lacks most of the alkyl-substituted aromatic hydrocarbons detected in other meteorite IOM samples, suggesting distinctively different formation processes. Both bulk δD values of meteorite IOMs and weighted-average δD values of individual compounds in pyrolysates show a decreasing trend: CR2 > CI1 > CM2 > C2 (Tagish Lake), with the EET 92042 (CR2) IOM having the highest δD values (∼2000‰ higher than other samples). We attribute the high D contents in the IOM to primitive interstellar organic sources.  相似文献   

11.
Comparison of biological marker alkanes in the kerogen pyrolyzate and bitumen from a sediment is a useful test for the indigenous nature of sediment extracts. For the pyrolysis conditions used, the bulk of the hydrocarbons is released from the kerogen matrix between 375° and 550°C; and its steriochemistry is almost the same as that observed in the extractable bitumen in a genuine source rock. Examples are given to demonstrate that, during pyrolysis, the sterane/terpane ratio decreases and secondary terpanes are generated at the expense of primary ones.The mechanism of artificial petroleum generation by pyrolysis differs from ‘natural’ diagenesis during geological time and is reflected in the composition of certain C27-C29 steranes, as demonstrated by simulation experiments and C29-C30 moretanes and hopanes. The -sterane ratios, jointly with 17α(H)-hopane17β(H)-moretane ratios, tricyclic terpane concentrations and 17α(H)17β(H)-trisnorhopane ratios, allow the differentiation of kerogens from adjacent stratigraphies.  相似文献   

12.
Isotope systematics are well defined for conventional sapropelic, Type I/II kerogens and their associated bacterial and thermogenic natural-gas products. These geochemical tools are used to estimate source type, maturity and depositional environment, and as a correlation technique. In many cases the natural gas signatures in near-surface samples and drill cuttings can be used to classify or predict a deeper lying source rock or reservoir.Corresponding interpretative schemes for coals, Type III kerogens and their associated hydrocarbons are progressing quickly. The shift in attention to humic sources is driven primarily by depletion of conventional oil and gas resources and the economic and societal requirements of coal and coal-bed methane.Carbon, hydrogen and nitrogen stable isotope variations can be large between different coals and humic kerogens. These differences can often be recognized in their bulk δ13Corg, δDorg and δ15Norg values. Isotope signatures of coals can be diagnostic of several factors, including deposit age, type, geographic location, maturity and generation history. However, these characteristic isotopic variations are substantially better defined by the C-, H- and N-isotope ratios of the separate maceral groups, such as vitrinite, exinite and inertinite. This new application of stable isotopes, at the maceral and compound levels, have great potential to improve the interpretative precision over conventional whole coal or bulk techniques.Hydrocarbon gases, including coal gases, derived from coals and humic kerogens can be distinguished from Type I/II sources, based on their molecular rations, i.e., C1/(C2 + C3) and by comparing their stable isotope compositions, especially δ13CCH4 and δDCH4. The δ13CC2H6 can also be valuable, but ethane is generally present in small amount (<1 vol. %) and requires  相似文献   

13.
Thermal cracking of kerogens and bitumens is widely accepted as the major source of natural gas (thermal gas). Decomposition is believed to occur at high temperatures, between 100 and 200°C in the subsurface and generally above 300°C in the laboratory. Although there are examples of gas deposits possibly generated at lower temperatures, and reports of gas generation over long periods of time at 100°C, robust gas generation below 100°C under ordinary laboratory conditions is unprecedented. Here we report gas generation under anoxic helium flow at temperatures 300° below thermal cracking temperatures. Gas is generated discontinuously, in distinct aperiodic episodes of near equal intensity. In one three-hour episode at 50°C, six percent of the hydrocarbons (kerogen & bitumen) in a Mississippian marine shale decomposed to gas (C1–C5). The same shale generated 72% less gas with helium flow containing 10 ppm O2 and the two gases were compositionally distinct. In sequential isothermal heating cycles (~1 hour), nearly five times more gas was generated at 50°C (57.4 μg C1–C5/g rock) than at 350°C by thermal cracking (12 μg C1–C5/g rock). The position that natural gas forms only at high temperatures over geologic time is based largely on pyrolysis experiments under oxic conditions and temperatures where low-temperature gas generation could be suppressed. Our results indicate two paths to gas, a high-temperature thermal path, and a low-temperature catalytic path proceeding 300° below the thermal path. It redefines the time-temperature dimensions of gas habitats and opens the possibility of gas generation at subsurface temperatures previously thought impossible.  相似文献   

14.
Sixty-five samples from selected source bed-type shale sequences from three exploration wells were analysed for yield and detailed composition of light hydrocarbons(C2C7) by a new hydrogen stripping/capillary gas chromatographic technique. In spite of low maturation levels (0.35–0.55% vitrinite reflectance), significant generation of ethane and propane was recognized in a Jurassic source bed sequence bearing hydrogen-poor kerogens. Light hydrocarbon generation in another and mature Jurassic source rock sequence is controlled by kerogen quality. Associated with a change from hydrogen-poor to hydrogen-rich kerogens, yields of total and most individual hydrocarbons exhibit orders-of-magnitude increases. At the same time, iso/n-alkane ratios for butanes, pentanes and heptanes decrease significantly. A study of an interbedded marine/nonmarine coal-bearing sequence of Upper Carboniferous age from the Ruhr area, West Germany, revealed that a marine shale unit in comparison to the adjacent coal seam is more prolific in generating n-alkanes of increasing molecular size.A case history for migration of light hydrocarbons by means of diffusion through shales is presented. In two shallow core holes in Campanian/Maastrichtian shales in West Greenland, upward diffusion of ethane to pentane range hydrocarbons is an active process within the near-surface 3 m interval. Diffusive losses within this interval amount to 99.8% for propane, 85.6% for n-butane and 38.9% for n-pentane.  相似文献   

15.
The chemical composition of Cretaceous leaf remains showing exceptionally well preserved cuticles was investigated using pyrolysis gas chromatography–mass spectrometry (Py-GC–MS) and thermally assisted hydrolysis methylation (THM)-GC–MS. Samples of Coniferales (Frenelopsis) and Ginkgoales (Nehvizdya penalveri) leaf remains were collected from freshwater and coastal marine depositional environments. Material for pyrolysis included (i) untreated leaves and cuticles obtained after extraction from mineral rock matrix and bleaching, (ii) kerogen fraction from both materials, (iii) non-hydrolysable fraction from kerogen. The THM-GC–MS data from untreated leaves and bleached cuticles show that the fossil cuticle geopolymer essentially released aliphatic components upon thermal treatment, with a dominance of fatty acids (FAs) and n-alkanes/n-alkenes. The FAs are essentially resistant to bleaching and remain after solvent extraction. They occur mainly as short chain compounds ranging from C6 to C16 and with maximum abundance at C8–C9. The n-alkanes/n-alkenes from kerogen and the non-hydrolysable residue occur mainly as short chain compounds in the range C10–C16, with the highest abundance at C9–C12. The THM-GC–MS pyrograms of the fossil cuticles differ from those of cutan from fresh living plants. They support the preservation model via polymerization of monomers derived from cutin or from unsaturated cell FAs.  相似文献   

16.
Insights into oil cracking based on laboratory experiments   总被引:3,自引:0,他引:3  
The objectives of this pyrolysis investigation were to determine changes in (1) oil composition, (2) gas composition and (3) gas carbon isotope ratios and to compare these results with hydrocarbons in reservoirs. Laboratory cracking of a saturate-rich Devonian oil by confined, dry pyrolysis was performed at T=350–450 °C, P=650 bars and times ranging from 24 h to 33 days. Increasing thermal stress results in the C15+ hydrocarbon fraction cracking to form C6–14 and C1–5 hydrocarbons and pyrobitumen. The C6–14 fraction continues to crack to C1–5 gases plus pyrobitumen at higher temperatures and prolonged heating time and the δ 13Cethaneδ13Cpropane difference becomes greater as oil cracking progresses. There is considerable overlap in product generation and product cracking. Oil cracking products accumulate either because the rate of generation of any product is greater than the rate of removal by cracking of that product or because the product is a stable end member under the experimental conditions. Oil cracking products decrease when the amount of product generated from a reactant is less than the amount of product cracked. If pyrolysis gas compositions are representative of gases generated from oil cracking in nature, then understanding the processes that alter natural gas composition is critical.  相似文献   

17.
N-alkanes in extracts from possible carbonate source rocks of the Lower Ordovician Majiagou Formation in the central gas field of the Shanganning Basin and the Upper Sinian Dengying Formation in the Weiyuan gas field of the Sichuan Basin, are characterized by bimodal distributions with the dominant carbon numbers in the range C17-C21 and C25-C29. In most samples, the lower carbon number components are present in greater abundance than the higher carbon number ones. Most samples contain significant concentrations of waxy hydrocarbons (C22+) with C21-/C22+ ratios between 0.50 to 3. 16, and an average value of 1. 34. The n-alkanes in extracts of outcrops and shallow core samples of Upper Proterozoic and Lower Palaeozoic carbonate rocks in the western and southern parts of the North China Basin are of unimodal distributions dominated by n-alkanes maximizing in the C25-C29 range. These extracts have very high concentrations of waxy hydrocarbons with C21-/C22+ ratios all < 1. 0, ranging from 0. 14 to 0. 90 and averaging 0. 36. All of the extracts have a marked odd/even predominance in the high molecular weight n-alkane range regardless of whether they are from shallow or deep cores or out-crop samples. Simulation experiments were performed using typical sapropelic-type kerogens from the immature Sinian Lower Xiamalin Formation carbonate-rich shales collected at Jixian, Hebei Province, North China Basin, and the contemporary microplanktonic blue-green algaeSpirulina subsala. Results indicate that the unusual distribution of n-alkanes in the extracts of Upper Proterozoic and Lower Palaeozoic carbonate rocks possibly originated from algae in the source rocks at high levels of maturity and overmaturity. This research project was financially supported by the Chinese Academy of Sciences (Grant No. KZCX2-111 ).  相似文献   

18.
Organic geochemical and palynofacies analyses were carried out on shale intervals of the Late Paleocene Patala Formation at Nammal Gorge Section, western Salt Range, Pakistan. The total organic carbon content and Rock-Eval pyrolysis results indicated that the formation is dominated by type II and type III kerogens. Rock-Eval \({T}_{\mathrm{max}}\) vs. hydrogen index (HI) and thermal alteration index indicated that the analysed shale intervals present in the formation are thermally mature. \(S_{1}\) and \(S_{2}\) yields showed poor source rock potential for the formation. Three palynofacies assemblages including palynofacies-1, palynofacies-2 and palynofacies-3 were identified, which are prone to dry gas, wet gas and oil generation, respectively. The palynofacies assessment revealed the presence of oil/gas and gas prone type II and type III kerogens in the formation and their deposition on proximal shelf with suboxic to anoxic conditions. The kerogen macerals are dominated by vitrinite and amorphinite with minor inertinite and liptinite. The kerogen macerals are of both marine and terrestrial origin, deposited on a shallow shelf. Overall, the dark black carbonaceous shales present within the formation act as a source rock for hydrocarbons with poor-to-moderate source rock quality, while the grey shales act as a poor source rock for hydrocarbon generation.  相似文献   

19.
Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300° below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100°C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1) to predominantly light hydrocarbons (56% C1, 8% C5), the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results.  相似文献   

20.
Hydrocarbon results from gas chromatography of 60 recent sediment and 10 benthic algae samples delineate two distinct shelf environments in the northeastern Gulf of Mexico.Sediments off Florida (shell hashes and sands) have moderate amounts of lipids/total sediment (average 113ppm ± 80%) but low hydrocarbon levels (average 3.06 ppm ± 41%). Aliphatic hydrocarbons are dominated by a series of branched or cyclic, unsaturated C25 isomers. The major n-alkane is n-C17. The n-alkane and isoprenoid patterns are consistent with a marine hydrocarbon source.Sediments closer to the Mississippi River (silts and clays) contain large amounts of lipids (average 232 ppm ± 53%) and hydrocarbons (average 11.7 ppm ± 55%) to total sediment. Aliphatic hydrocarbons are mainly odd carbon number high molecular weight n-alkanes, indicating a terrigenous hydrocarbon source. Isoprenoids are present in greater abundance than in sediments off Florida (n-C17/ pristane and n-C18/phytane ratios ~2to 3). Relatively large amounts of n-C16, together with an even distribution of n-alkanes in the range C14–C20 and a substantial unresolved envelope all point to a fossil fuel input to the Mississippi samples.Samples off the Alabama coast show intermediate characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号