首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
Towards the detection and attribution of an anthropogenic effect on climate   总被引:1,自引:0,他引:1  
It has been hypothesized recently that regional-scale cooling caused by anthropogenic sulfate aerosols may be partially obscuring a warming signal associated with changes in greenhouse gas concentrations. Here we use results from model experiments in which sulfate and carbon dioxide have been varied individually and in combination in order to test this hypothesis. We use centered [R (t)] and uncentered [C (t)] pattern similarity statistics to compare observed time-evolving surface temperature change patterns with the model-predicted equilibrium signal patterns. We show that in most cases, the C (t) statistic reduces to a measure of observed global-mean temperature changes, and is of limited use in attributing observed climate changes to a specific causal mechanism. We therefore focus on R (t), which is a more useful statistic for discriminating between forcing mechanisms with different pattern signatures but similar rates of global mean change. Our results indicate that over the last 50 years, the summer (JJA) and fall (SON) observed patterns of near-surface temperature change show increasing similarity to the model-simulated response to combined sulfate aerosol/CO2 forcing. At least some of this increasing spatial congruence occurs in areas where the real world has cooled. To assess the significance of the most recent trends in R (t) and C (t), we use data from multi-century control integrations performed with two different coupled atmosphere-ocean models, which provide information on the statistical behavior of 'unforced' trends in the pattern correlation statistics. For the combined sulfate aerosol/CO2 experiment, the 50-year R (t) trends for the JJA and SON signals are highly significant. Results are robust in that they do not depend on the choice of control run used to estimate natural variability noise properties. The R (t) trends for the CO2-only signal are not significant in any season. C (t) trends for signals from both the CO2-only and combined forcing experiments are highly significant in all seasons and for all trend lengths (except for trends over the last 10 years), indicating large global-mean changes relative to the two natural variability estimates used here. The caveats regarding the signals and natural variability noise which form the basis of this study are numerous. Nevertheless, we have provided first evidence that both the largest-scale (global-mean) and smaller-scale (spatial anomalies about the global mean) components of a combined CO2/anthropogenic sulfate aerosol signal are identifiable in the observed near-surface air temperature data. If the coupled-model noise estimates used here are realistic, we can be highly confident that the anthropogenic signal that we have identified is distinctly different from internally generated natural variability noise. The fact that we have been able to detect the detailed spatial signature in response to combined CO2 and sulfate aerosol forcing, but not in response to CO2 forcing alone, suggests that some of the regional-scale background noise (against which we were trying to detect a CO2-only signal) is in fact part of the signal of a sulfate aerosol effect on climate. The large effect of sulfate aerosols found in this study demonstrates the importance of their inclusion in experiments designed to simulate past and future climate change. Received: 10 November 1994 / Accepted: 19 July 1995  相似文献   

3.
 The multi-variate optimal fingerprint method for the detection of an externally forced climate change signal in the presence of natural internal variability is extended to the attribution problem. To determine whether a climate change signal which has been detected in observed climate data can be attributed to a particular climate forcing mechanism, or combination of mechanisms, the predicted space–time dependent climate change signal patterns for the candidate climate forcings must be specified. In addition to the signal patterns, the method requires input information on the space–time dependent covariance matrices of the natural climate variability and of the errors of the predicted signal patterns. The detection and attribution problem is treated as a sequence of individual consistency tests applied to all candidate forcing mechanisms, as well as to the null hypothesis that no climate change has taken place, within the phase space spanned by the predicted climate change patterns. As output the method yields a significance level for the detection of a climate change signal in the observed data and individual confidence levels for the consistency of the retrieved climate change signal with each of the forcing mechanisms. A statistically significant climate change signal is regarded as consistent with a given forcing mechanism if the statistical confidence level exceeds a given critical value, but is attributed to that forcing only if all other candidate climate change mechanisms (from a finite set of proposed mechanisms) are rejected at that confidence level. Although all relations can be readily expressed in standard matrix notation, the analysis is carried out using tensor notation, with a metric given by the natural-variability covariance matrix. This simplifies the derivations and clarifies the invariant relation between the covariant signal patterns and their contravariant fingerprint counterparts. The signal patterns define the reduced vector space in which the climate trajectories are analyzed, while the fingerprints are needed to project the climate trajectories onto this reduced space. Received: 19 April 1996/Accepted: 21 April 1997  相似文献   

4.
In the conventional approach to the detection of an anthropogenic or other externally forced climate change signal, optimal filters (fingerprints) are used to maximize the ratio of the observed climate change signal to the natural variability noise. If detection is successful, attribution of the observed climate change to the hypothesized forcing mechanism is carried out in a second step by comparing the observed and predicted climate change signals. In contrast, the Bayesian approach to detection and attribution makes no distinction between detection and attribution. The purpose of filtering in this case is to maximize the impact of the evidence, the observed climate change, on the prior probability that the hypothesis of an anthropogenic origin of the observed signal is true. Whereas in the conventional approach model uncertainties have no direct impact on the definition of the optimal detection fingerprint, in optimal Bayesian filtering they play a central role. The number of patterns retained is governed by the magnitude of the predicted signal relative to the model uncertainties, defined in a pattern space normalized by the natural climate variability. Although this results in some reduction of the original phase space, this is not the primary objective of Bayesian filtering, in contrast to the conventional approach, in which dimensional reduction is a necessary prerequisite for enhancing the signal-to-noise ratio. The Bayesian filtering method is illustrated for two anthropogenic forcing hypotheses: greenhouse gases alone, and a combination of greenhouse gases plus sulfate aerosols. The hypotheses are tested against 31-year trends for near-surface temperature, summer and winter diurnal temperature range, and precipitation. Between six and thirteen response patterns can be retained, as compared with the one or two response patterns normally used in the conventional approach. Strong evidence is found for the detection of an anthropogenic climate change in temperature, with some preference given to the combined forcing hypothesis. Detection of recent anthropogenic trends in diurnal temperature range and precipitation is not successful, but there remains strong net evidence for anthropogenic climate change if all data are considered jointly.
R. SchnurEmail:
  相似文献   

5.
 Atmosphere-only general circulation models are shown to be a useful tool for detecting an anthropogenic effect on climate and understanding recent climate change. Ensembles of atmospheric runs are all forced with the same observed changes in sea surface temperatures and sea-ice extents but differ in terms of the combinations of anthropogenic effects included. Therefore, our approach aims to detect the `immediate' anthropogenic impact on the atmosphere as opposed to that which has arisen via oceanic feedbacks. We have adapted two well-used detection techniques, pattern correlations and fingerprints, and both show that near-decadal changes in the patterns of zonal mean upper air temperature are well simulated, and that it is highly unlikely that the observed changes could be accounted for by sea surface temperature variations and internal variability alone. Furthermore, we show that for zonally averaged upper air temperature, internal `noise' in the atmospheric model is small enough that a signal emerges from the data even on interannual time scales; this would not be possible in a coupled ocean-atmosphere general circulation model. Finally, although anthropogenic forcings have had a significant impact on global mean land surface temperature, we find that their influence on the pattern of local deviations about this mean is so far undetectable. In order to achieve this in the future, as the signal grows, it will also be important that the response of the Northern Hemisphere mid-latitude westerly flow to changing sea surface temperatures is well simulated in climate model detection studies. Received: 3 December 1999 / Accepted: 30 October 2000  相似文献   

6.
Fingerprint techniques for the detection of anthropogenic climate change aim to distinguish the climate response to anthropogenic forcing from responses to other external influences and from internal climate variability. All these responses and the characteristics of internal variability are typically estimated from climate model data. We evaluate the sensitivity of detection and attribution results to the use of response and variability estimates from two different coupled ocean atmosphere general circulation models (HadCM2, developed at the Hadley Centre, and ECHAM3/LSG from the MPI für Meteorologie and Deutsches Klimarechenzentrum). The models differ in their response to greenhouse gas and direct sulfate aerosol forcing and also in the structure of their internal variability. This leads to differences in the estimated amplitude and the significance level of anthropogenic signals in observed 50-year summer (June, July, August) surface temperature trends. While the detection of anthropogenic influence on climate is robust to intermodel differences, our ability to discriminate between the greenhouse gas and the sulfate aerosol signals is not. An analysis of the recent warming, and the warming that occurred in the first half of the twentieth century, suggests that simulations forced with combined changes in natural (solar and volcanic) and anthropogenic (greenhouse gas and sulfate aerosol) forcings agree best with the observations.  相似文献   

7.
 A multi-fingerprint analysis is applied to the detection and attribution of anthropogenic climate change. While a single fingerprint is optimal for the detection of climate change, further tests of the statistical consistency of the detected climate change signal with model predictions for different candidate forcing mechanisms require the simultaneous application of several fingerprints. Model-predicted climate change signals are derived from three anthropogenic global warming simulations for the period 1880 to 2049 and two simulations forced by estimated changes in solar radiation from 1700 to 1992. In the first global warming simulation, the forcing is by greenhouse gas only, while in the remaining two simulations the direct influence of sulfate aerosols is also included. From the climate change signals of the greenhouse gas only and the average of the two greenhouse gas-plus-aerosol simulations, two optimized fingerprint patterns are derived by weighting the model-predicted climate change patterns towards low-noise directions. The optimized fingerprint patterns are then applied as a filter to the observed near-surface temperature trend patterns, yielding several detection variables. The space-time structure of natural climate variability needed to determine the optimal fingerprint pattern and the resultant signal-to-noise ratio of the detection variable is estimated from several multi-century control simulations with different CGCMs and from instrumental data over the last 136 y. Applying the combined greenhouse gas-plus-aerosol fingerprint in the same way as the greenhouse gas only fingerprint in a previous work, the recent 30-y trends (1966–1995) of annual mean near surface temperature are again found to represent a significant climate change at the 97.5% confidence level. However, using both the greenhouse gas and the combined forcing fingerprints in a two-pattern analysis, a substantially better agreement between observations and the climate model prediction is found for the combined forcing simulation. Anticipating that the influence of the aerosol forcing is strongest for longer term temperature trends in summer, application of the detection and attribution test to the latest observed 50-y trend pattern of summer temperature yielded statistical consistency with the greenhouse gas-plus-aerosol simulation with respect to both the pattern and amplitude of the signal. In contrast, the observations are inconsistent with the greenhouse-gas only climate change signal at a 95% confidence level for all estimates of climate variability. The observed trend 1943–1992 is furthermore inconsistent with a hypothesized solar radiation change alone at an estimated 90% confidence level. Thus, in contrast to the single pattern analysis, the two pattern analysis is able to discriminate between different forcing hypotheses in the observed climate change signal. The results are subject to uncertainties associated with the forcing history, which is poorly known for the solar and aerosol forcing, the possible omission of other important forcings, and inevitable model errors in the computation of the response to the forcing. Further uncertainties in the estimated significance levels arise from the use of model internal variability simulations and relatively short instrumental observations (after subtraction of an estimated greenhouse gas signal) to estimate the natural climate variability. The resulting confidence limits accordingly vary for different estimates using different variability data. Despite these uncertainties, however, we consider our results sufficiently robust to have some confidence in our finding that the observed climate change is consistent with a combined greenhouse gas and aerosol forcing, but inconsistent with greenhouse gas or solar forcing alone. Received: 28 April 1996 / Accepted: 27 January 1997  相似文献   

8.
The adjoint of a one-layer model of tropospheric-average temperature advection is used to examine a general circulation model (GCM) doubled CO2 scenario experiment locally over Europe. The adjoint technique enables a regional temperature anomaly to be accounted for in terms of horizontal advection and thermodynamic sources and sinks, both local and remote. Although the time-averaged regional signal in tropospheric-average temperature over Central Europe in the doubled CO2 GCM experiment is very small ( 0.1 K) once the Northern Hemispheric mean (+2.2 K) has been subtracted, there is a large variability on decadal time scales, and it is toward one such event that we direct our attention. It is found that a 10-January-mean regional anomaly (2×CO2-Control) of –1.7 K (with respect to hemispheric average) is primarily accounted for by changes in the advecting winds. The main thermodynamic forcing anomalies during January are situated over Europe itself and upstream over the Atlantic, but these are found to have a secondary direct effect, although their indirect effect via changes in the flow pattern remains to be determined.  相似文献   

9.
Theoretical and Applied Climatology - Climate is changing and evidence suggests that the impact of climate change would influence our everyday lives, including agriculture, built environment,...  相似文献   

10.
A statistical downscaling procedure based on an analogue technique is used to determine projections for future climate change in western France. Three ocean and atmosphere coupled models are used as the starting point of the regionalization technique. Models' climatology and day to day variability are found to reproduce the broad main characteristics seen in the reanalyses. The response of the coupled models to a similar CO2 increase scenario exhibit marked differences for mean sea-level pressure; precipitable water and temperature show arguably less spread. Using the reanalysis fields as predictors, the statistical model parameters are set for daily extreme temperatures and rain occurrences for seventeen stations in western France. The technique shows some amount of skill for all three predictands and across all seasons but failed to give reliable estimates of rainfall amounts. The quality of both local observations and large-scale predictors has an impact on the statistical model skill. The technique is partially able to reproduce the observed climatic trends and inter annual variability, showing the sensitivity of the analogue approach to changed climatic conditions albeit an incomplete explained variance by the statistical technique. The model is applied to the coupled model control simulations and the gain compared with direct model grid-average outputs is shown to be substantial at station level. The method is then applied to altered climate conditions; the impact of large-scale model uncertain responses and model sensitivities are quantified using the three coupled models. The warming in the downscaled projections are reduced compared with their global model counterparts.  相似文献   

11.
Five simple indices of surface temperature are used to investigate the influence of anthropogenic and natural (solar irradiance and volcanic aerosol) forcing on observed climate change during the twentieth century. These indices are based on spatial fingerprints of climate change and include the global-mean surface temperature, the land-ocean temperature contrast, the magnitude of the annual cycle in surface temperature over land, the Northern Hemisphere meridional temperature gradient and the hemispheric temperature contrast. The indices contain information independent of variations in global-mean temperature for unforced climate variations and hence, considered collectively, they are more useful in an attribution study than global mean surface temperature alone. Observed linear trends over 1950–1999 in all the indices except the hemispheric temperature contrast are significantly larger than simulated changes due to internal variability or natural (solar and volcanic aerosol) forcings and are consistent with simulated changes due to anthropogenic (greenhouse gas and sulfate aerosol) forcing. The combined, relative influence of these different forcings on observed trends during the twentieth century is investigated using linear regression of the observed and simulated responses of the indices. It is found that anthropogenic forcing accounts for almost all of the observed changes in surface temperature during 1946–1995. We found that early twentieth century changes (1896–1945) in global mean temperature can be explained by a combination of anthropogenic and natural forcing, as well as internal climate variability. Estimates of scaling factors that weight the amplitude of model simulated signals to corresponding observed changes using a combined normalized index are similar to those calculated using more complex, optimal fingerprint techniques.  相似文献   

12.
Indices for extreme events in projections of anthropogenic climate change   总被引:3,自引:2,他引:1  
Indices for temperature and precipitation extremes are calculated on the basis of the global climate model ECHAM5/MPI-OM simulations of the twentieth century and SRES A1B and B1 emission scenarios for the twenty-first century. For model evaluation, the simulated indices representing the present climate were compared with indices based on observational data. This comparison shows that the model is able to realistically capture the observed climatological large-scale patterns of temperature and precipitation indices, although the quality of the simulations depends on the index and region under consideration. In the climate projections for the twenty-first century, all considered temperature-based indices, minimum Tmin, maximum Tmax, and the frequency of tropical nights, show a significant increase worldwide. Similarly, extreme precipitation, as represented by the maximum 5-day precipitation and the 95th percentile of precipitation, is projected to increase significantly in most regions of the world, especially in those that are relatively wet already under present climate conditions. Analogously, dry spells increase particularly in those regions that are characterized by dry conditions in present-day climate. Future changes in the indices exhibit distinct regional and seasonal patterns as identified exemplarily in three European regions.  相似文献   

13.
14.
The La Plata Basin (LPB) is one of the most important regions for agriculture and livestock production in South America, playing a central role in the world food production and food security. Within its borders is also located the whole Brazilian Pantanal region. Identifying the most important land use sectors in LPB as well as the changes observed in the past years is fundamental to recognize which areas of the basin might be more vulnerable to climate change in order to design adaptation strategies. A general characterization of land use and livestock production of Brazilian LPB was done by using the System of Automatic Retrieving (SIDRA) of Brazilian Institute of Geography and Statistics (IBGE) platform as the major source of data. It was observed expressive increases in land areas used for temporary crops, such as soybean, sugarcane, and maize, as well as increases in poultry and swine production. These important changes in agricultural land use and livestock production are currently associated to non-climatic drivers, but this dynamic might be strongly affected by the consequences of climate change and variability, with negative socio-economic impacts for the whole region.  相似文献   

15.
This paper introduces an original method for climate change detection, called temporal optimal detection method. The method consists in searching for a smooth temporal pattern in the observations. This pattern can be either the response of the climate system to a specific forcing or to a combination of forcings. Many characteristics of this new method are different from those of the classical “optimal fingerprint” method. It allows to infer the spatial distribution of the detected signal, without providing any spatial guess pattern. The spatial properties of the internal climate variability doesn’t need to be estimated either. The estimation of such quantities being very challenging at regional scale, the proposed method is particularly well-suited for such scale. The efficiency of the method is illustrated by applying it on real homogenized datasets of temperatures and precipitation over France. A multimodel detection is performed in both cases, using an ensemble of atmosphere-ocean general circulation models for estimating the temporal patterns. Regarding temperatures, new results are highlighted, especially by showing that a change is detected even after removing the uniform part of the warming. The sensitivity of the method is discussed in this case, relatively to the computation of the temporal patterns and to the choice of the model. The method also allows to detect a climate change signal in precipitation. This change impacts the spatial distribution of the precipitation more than the mean over the domain. The ability of the method to provide an estimate of the spatial distribution of the change following the prescribed temporal patterns is also illustrated.  相似文献   

16.
We synthesize existing evidence on the ecological history of the Florida Everglades since its inception ??7?ka (calibrated kiloannum) and evaluate the relative impacts of sea level rise, climate variability, and human alteration of Everglades hydrology on wetland plant communities. Initial freshwater peat accumulation began between 6 and 7?ka on the platform underlying modern Florida Bay when sea level was ??6.2?m below its current position. By 5?ka, sawgrass and waterlily peats covered the area bounded by Lake Okeechobee to the north and the Florida Keys to the south. Slower rates of relative sea level rise ??3?ka stabilized the south Florida coastline and initiated transitions from freshwater to mangrove peats near the coast. Hydrologic changes in freshwater marshes also are indicated ??3?ka. During the last ??2?ka, the Everglades wetland was affected by a series of hydrologic fluctuations related to regional to global-scale fluctuations in climate and sea level. Pollen evidence indicates that regional-scale droughts lasting two to four centuries occurred ??1?ka and ??0.4?ka, altering wetland community composition and triggering development of characteristic Everglades habitats such as sawgrass ridges and tree islands. Intercalation of mangrove peats with estuarine muds ??1?ka indicates a temporary slowing or stillstand of sea level. Although sustained droughts and Holocene sea level rise played large roles in structuring the greater Everglades ecosystem, twentieth century reductions in freshwater flow, compartmentalization of the wetland, and accelerated rates of sea level rise had unprecedented impacts on oxidation and subsidence of organic soils, changes/loss of key Everglades habitats, and altered distribution of coastal vegetation.  相似文献   

17.
This study used “factor separation” to quantify the sensitivity of simulated present and future surface temperatures and precipitation to alternative regional climate model physics components. The method enables a quantitative isolation of the effects of using each physical component as well as the combined effect of two or more components. Simulation results are presented from eight versions of the Mesoscale Modeling System Version 5 (MM5), one-way nested within one version of the Goddard Institute for Space Studies Atmosphere-Ocean Global Climate Model (GISS AOGCM). The MM5 simulations were made at 108 km grid spacing over the continental United States for five summers in the 1990s and 2050s. Results show that the choice of cumulus convection parameterization is the most important “factor” in the simulation of contemporary surface summer temperatures and precipitation over both the western and eastern USA. The choice of boundary layer scheme and radiation package also increases the range of model simulation results. Moreover, the alternative configurations give quite different results for surface temperature and precipitation in the 2050s. For example, simulated 2050s surface temperatures by the scheme with the coolest 1990s surface temperatures are comparable to 1990s temperatures produced by other schemes. The study analyzes the spatial distribution of 1990s to 2050s projected changes in the surface temperature for the eight MM5 versions. The predicted surface temperature change at a given grid point, averaged over all eight model configurations, is generally about twice the standard deviation of the eight predicted changes, indicating relative consensus among the different model projections. Factor separation analysis indicates that the choice of cumulus parameterization is the most important modeling factor amongst the three tested contributing to the computed 1990s to 2050s surface temperature change, although enhanced warming over many areas is also attributable to synergistic effects of changing all three model components. Simulated ensemble mean precipitation changes, however, are very small and generally smaller than the inter-model standard deviations. The MM5 versions therefore offer little consensus regarding 1990s to 2050s changes in precipitation rates.  相似文献   

18.
The fifth-generation Canadian Regional Climate Model (CRCM5) was used to dynamically downscale two Coupled Global Climate Model (CGCM) simulations of the transient climate change for the period 1950–2100, over North America, following the CORDEX protocol. The CRCM5 was driven by data from the CanESM2 and MPI-ESM-LR CGCM simulations, based on the historical (1850–2005) and future (2006–2100) RCP4.5 radiative forcing scenario. The results show that the CRCM5 simulations reproduce relatively well the current-climate North American regional climatic features, such as the temperature and precipitation multiannual means, annual cycles and temporal variability at daily scale. A cold bias was noted during the winter season over western and southern portions of the continent. CRCM5-simulated precipitation accumulations at daily temporal scale are much more realistic when compared with its driving CGCM simulations, especially in summer when small-scale driven convective precipitation has a large contribution over land. The CRCM5 climate projections imply a general warming over the continent in the 21st century, especially over the northern regions in winter. The winter warming is mostly contributed by the lower percentiles of daily temperatures, implying a reduction in the frequency and intensity of cold waves. A precipitation decrease is projected over Central America and an increase over the rest of the continent. For the average precipitation change in summer however there is little consensus between the simulations. Some of these differences can be attributed to the uncertainties in CGCM-projected changes in the position and strength of the Pacific Ocean subtropical high pressure.  相似文献   

19.
The “optimal fingerprint” method, usually used for detection and attribution studies, requires to know, or, in practice, to estimate the covariance matrix of the internal climate variability. In this work, a new adaptation of the “optimal fingerprints” method is presented. The main goal is to allow the use of a covariance matrix estimate based on an observation dataset in which the number of years used for covariance estimation is close to the number of observed time series. Our adaptation is based on the use of a regularized estimate of the covariance matrix, that is well-conditioned, and asymptotically more precise, in the sense of the mean square error. This method is shown to be more powerful than the basic “guess pattern fingerprint”, and than the classical use of a pseudo-inverted truncation of the empirical covariance matrix. The construction of the detection test is achieved by using a bootstrap technique particularly well-suited to estimate the internal climate variability in real world observations. In order to validate the efficiency of the detection algorithm with climate data, the methodology presented here is first applied with pseudo-observations derived from transient regional climate change scenarios covering the 1960–2099 period. It is then used to perform a formal detection study of climate change over France, analyzing homogenized observed temperature series from 1900 to 2006. In this case, the estimation of the covariance matrix is only based on a part of the observation dataset. This new approach allows the confirmation and extension of previous results regarding the detection of an anthropogenic climate change signal over the country.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号