首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the effects of the Fennoscandian earthquake that occurred on 4 November 1898 (GMT) on Tornio in Northern Finland. The extra fire inspection conducted in the town on 21, 22 and 23 November 1898 provided insight into the failures caused by this low-magnitude earthquake. The building stock was of timber with masonry stone components. More than 30 heating units sustained damage. The macroseismic intensity in Tornio is estimated at I = 6 (European Macroseismic Scale).  相似文献   

2.
A method is suggested for the analysis of macroseismic intensity data in order to accurately determine an average attenuation structure of the upper part of the crust in an area. The method is based on a model which assumes that the observed intensities depend on source properties (radiation pattern, size, focal depth), geometrical spreading and anelastic attenuation. The method is applied to 13,008 intensity values, observed in corresponding sites of Greece and grouped (in 4228 groups), according to their spatial clustering in order to diminish observational errors and site effects. An average intensity attenuation coefficient,c=–0.0039±0.0016, corresponding to a quality factor, Q=350±140, is determined for the upper 20 km of the crust in this area. This value is relatively low, in good agreement with the relatively high heat flow and high seismic activity of this area. A byproduct of the present study is the determination, for each earthquake, of a macroseismic focal depth and of a macroseismic size, which is strongly correlatted with both the earthquake's magnitude and its seismic moment determined by independent methods.  相似文献   

3.
The earthquakes in Kaliningrad, West Russia on the 21st of September 2004 were unexpected in a seismically quiet area. The main shock of magnitude mb = 5 was widely felt around the Baltic Sea. A comparison with some historic earthquakes in Northern Europe shows that its perceptibility area is smaller than that of the 1904 Oslo Graben earthquake of an estimated magnitude (ML) 5.4 but larger than those of the 1759 Kattegat and 1819 Lurøy earthquakes. The latter are claimed to have had magnitudes (MS) in the range of 5.7-6.0. An analysis of the Lg phase of the Kaliningrad earthquakes as recorded at a number of European stations accords only weakly with the macroseismic intensity pattern that shows fast attenuation towards west-northwest and southeast. The strike-slip focal mechanism of the main shock is discussed in the context of remnant glacial rebound stresses in generating present-day seismicity in N. Europe.  相似文献   

4.
Upgrading the Earthquake Catalog of Switzerland (ECOS) included revising the earthquake of 1720. This change has major importance for history and seismology.Although that quake has been the subject of several publications, none was based on critical methods. This re-evaluation of the event is built upon a new and more reliable database established after investigating archives and libraries. Using data from such historical sources, we assigned new site intensities, adopting the criteria established by the European macroseismic scale EMS 98 (Grünthal, 1998).We discovered that the event had been assigned an overestimated intensity, due to interpretation errors in former earthquake catalogs and compilations. We recommend reducing the intensity from I0= VIII to I0= VI (EMS 98). The moment magnitude is given as MW= 4.6. Since the event had been considered the largest for its respective area, downgrading it now will influence the seismic hazard assessment for this region.  相似文献   

5.
连尉平  李丽  唐方头  胡彬  李晓璇 《地震学报》2014,36(6):1010-1021
本文构建一种应用有限元开展特征地震数值模拟的新方法, 并以龙门山断裂带中段的浅层构造和动力学机制为背景, 研究了平行逆冲断层分布格局对区域地震活动性的影响. 结果表明, 从断层活动相互影响的角度看, 包含3条平行逆断层的断裂带的整体地震活动性并不适用严格周期的特征地震模型, 当断层间距在20 km以下时, 随着断层间距的缩短, 对单条断层应用特征地震模型的适用性会逐渐降低. 龙门山断裂带中段的模拟计算结果显示, 后山断裂的地震活动相对独立, 区域活动性和中央断裂的断层活动很可能不适用严格周期的特征地震模型.   相似文献   

6.
选取山东省3个洞体应变台2007-2011年观测数据,分析资料的完整性、内在质量及干扰因素.结果表明:①观测资料连续性和完整性较好;②仪器零漂满足设计指标要求;③M2波振幅因子相对误差和相对噪声水平达到Ⅰ类应变台标准;④仪器更新后观测质量提升;⑤洞体应变观测主要受仪器调修、气压、降雨和观测环境变化等因素影响.  相似文献   

7.
In the monitoring of earthquakes and nuclear explosions using a sparse worldwide network of seismic stations, it is frequently necessary to make reliable location estimates using a single seismic array. It is also desirable to screen out routine industrial explosions automatically in order that analyst resources are not wasted upon detections which can, with a high level of confidence, be associated with such a source. The Kovdor mine on the Kola Peninsula of NW Russia is the site of frequent industrial blasts which are well recorded by the ARCES regional seismic array at a distance of approximately 300 km. We describe here an automatic procedure for identifying signals which are likely to result from blasts at the Kovdor mine and, wherever possible, for obtaining single array locations for such events. Carefully calibrated processing parameters were chosen using measurements from confirmed events at the mine over a one-year period for which the operators supplied Ground Truth information. Phase arrival times are estimated using an autoregressive method and slowness and azimuth are estimated using broadband f{-}k analysis in fixed frequency bands and time-windows fixed relative to the initial P-onset time. We demonstrate the improvement to slowness estimates resulting from the use of fixed frequency bands. Events can be located using a single array if, in addition to the P-phase, at least one secondary phase is found with both an acceptable slowness estimate and valid onset-time estimate. We evaluate the on-line system over a twelve month period; every event known to have occured at the mine is detected by the process and 32 out of 53 confirmed events were located automatically. The remaining events were classified as “very likely” Kovdor events and were subsequently located by an analyst. The false alarm rate is low; only 84 very likely Kovdor events were identified during the whole of 2003 and none of these were subsequently located at a large distance from the mine. The location accuracy achieved automatically by the single-array process is remarkably good, and is comparable to that obtained interactively by an experienced analyst using two-array observations. The greatest problem encountered in the single array location procedure is the difficulty in determining arrival times for secondary phases, given the weak Sn phase and the complexity of the P-coda. The method described here could be applied to a wide range of locations and sources for which the monitoring of seismic activity is desirable. The effectiveness will depend upon the distance between source and receiver, the nature of the seismic sources and the level of regional seismicity.  相似文献   

8.
Statistical analysis of extremes currently assumes that data arise from a stationary process, although such an hypothesis is not easily assessable and should therefore be considered as an uncertainty. The aim of this paper is to describe a Bayesian framework for this purpose, considering several probabilistic models (stationary, step-change and linear trend models) and four extreme values distributions (exponential, generalized Pareto, Gumbel and GEV). Prior distributions are specified by using regional prior knowledge about quantiles. Posterior distributions are used to estimate parameters, quantify the probability of models and derive a realistic frequency analysis, which takes into account estimation, distribution and stationarity uncertainties. MCMC methods are needed for this purpose, and are described in the article. Finally, an application to a POT discharge series is presented, with an analysis of both occurrence process and peak distribution.  相似文献   

9.
The study of groundwater hydrogeochemistry of the Paleozoic Basses-Laurentides sedimentary rock aquifer system in Québec produced a large geochemical dataset. Groundwater samples were collected at 153 sites over a 1500 km2 study area and analyzed for major and minor ions. The large number of data can lead to difficulties in the integration, interpretation and representation of the results. Two multivariate statistical methods, hierarchical cluster analysis (HCA) and principal components analysis (PCA), were applied to a subgroup of the dataset to evaluate their usefulness to classify the groundwater samples, and to identify geochemical processes controlling groundwater geochemistry. This subgroup consisted of 144 samples and 14 parameters (Ca2+, Mg2+, Na+, K+, , Cl, , Fe2+, Mn2+, Br, Sr2+, F, Ba2+, HS). Seven geochemically distinct clusters, C1–C7, resulted from the HCA. Samples from clusters C3, C4, C6 and C7 are mostly located in preferential recharge areas. The majority of these samples have Ca–Mg–HCO3 recharge groundwater (C3, C6, C7) and Na–HCO3 evolved groundwater (C4). Samples from the other three clusters (C1, C2, C5) are characteristic of an aquifer system under confined conditions. The majority of these samples have Na–HCO3 evolved groundwater (C1, C5) and Na–Cl ancient groundwater that exhibits elevated concentrations in Br (C2). In addition to recognizing the importance of hydrogeological conditions on groundwater geochemistry, the distribution of clusters also showed the importance of the geological formations on minor and trace elements, such as Fe2+, Mn2+, Sr2+, F and Ba2+. The first five components of the PCA account for 78.3% of the total variance in the dataset. Component 1 is defined by highly positive loadings in Na+, Cl and Br and is related to groundwater mixing with Champlain Sea water and solute diffusion from the marine clay aquitard. The high positive loadings in Ca2+ and Mg2+ of component 2 suggest the importance of dissolution of carbonate rocks in this aquifer system. From their characteristic loadings, the first two components are defined as the “salinity” and “hardness” components, respectively. Components 3–5 are related to more local and geological effects. The integration of the HCA and the PCA, with conventional classification of groundwater types, as well as with the hydrogeological and geological contexts, allowed the division of the region into four main geochemical areas, providing an improved regional picture of the aquifer system dynamics and hydrogeochemical evolution of groundwater. The following factors were recognized as influencing the evolution of groundwater identified in every geochemical area: (1) geological characteristics including sedimentary rock type and till mineralogy; (2) hydrogeological characteristics represented by the level of confinement and the hydraulic gradient; and (3) the geological history including the latest glaciation and the Champlain Sea invasion. With its integrated approach, this hydrogeochemical study contributes to the characterization and understanding of complex groundwater flow systems, and provides an example of the long-term geochemical evolution of hydrogeological systems after a major perturbation, in this case seawater invasion.  相似文献   

10.
Hydrologic model development and calibration have continued in most cases to focus only on accurately reproducing streamflows. However, complex models, for example, the so‐called physically based models, possess large degrees of freedom that, if not constrained properly, may lead to poor model performance when used for prediction. We argue that constraining a model to represent streamflow, which is an integrated resultant of many factors across the watershed, is necessary but by no means sufficient to develop a high‐fidelity model. To address this problem, we develop a framework to utilize the Gravity Recovery and Climate Experiment's (GRACE) total water storage anomaly data as a supplement to streamflows for model calibration, in a multiobjective setting. The VARS method (Variogram Analysis of Response Surfaces) for global sensitivity analysis is used to understand the model behaviour with respect to streamflow and GRACE data, and the BORG multiobjective optimization method is applied for model calibration. Two subbasins of the Saskatchewan River Basin in Western Canada are used as a case study. Results show that the developed framework is superior to the conventional approach of calibration only to streamflows, even when multiple streamflow‐based error functions are simultaneously minimized. It is shown that a range of (possibly false) system trajectories in state variable space can lead to similar (acceptable) model responses. This observation has significant implications for land‐surface and hydrologic model development and, if not addressed properly, may undermine the credibility of the model in prediction. The framework effectively constrains the model behaviour (by constraining posterior parameter space) and results in more credible representation of hydrology across the watershed.  相似文献   

11.
Environmental data are highly variable. They also include uncertainties resulting from all steps of the analytical process e. g. sampling, or sampling pre‐treatment. However, a lot of information is unfortunately often lost because only univariate statistical methods are used for data evaluation and interpretation. This neglects correlation between different pollutants and relationships among various sampling points. It is therefore necessary to apply additional methods of analysis that can accommodate such relationships. This ability is provided by the established, and by the more modern, multivariate statistical methods because they can analyze complex sets of multidimensional data. These methods are used to visualize large amounts of data and to extract latent information (e. g. differently polluted areas, dischargers, or interactions between different environmental compartments). The goal of this paper is to present the use of established statistical techniques, like cluster or factor analysis, and the progress made in basic modern techniques (e. g. cluster imaging, multiway‐partial least squares regression, projection pursuit, or information theory) and to demonstrate each with examples and illustrations.  相似文献   

12.
The biological processes have been proposed as climate variability contributors. Dimethylsulfide (DMS) is the main biogenic sulfur compound in the atmosphere; it is mainly produced by the marine biosphere and plays an important role in the atmospheric sulfur cycle. Currently it is accepted that terrestrial biota not only adapts to environmental conditions but also influences them through regulations of the chemical composition of the atmosphere. In the present study we used a wavelet method to investigate the relationship between DMS, Low cloud cover (LCC), Ultraviolet Radiation A (UVA), Total Solar Irradiance (TSI) and Sea Surface Temperature (SST) in the so called pristine zone of the Southern Hemisphere. We found that the series analyzed have different periodicities which can be associated with large scale climatic phenomena such as El Niño (ENSO) or the Quasi-Biennial Oscillation (QBO), and/or to solar activity. Our results show an intermittent but sustained DMS-SST correlation and a DMSUVA anti correlation; but DMS-TSI and DMS-LCC show nonlinear relationships. The time-span of the series allow us to study only periodicities shorter than 11 years, then we limit our analysis to the possibility that solar radiation influences the Earth climate in periods shorter than the 11-year solar cycle. Our results also suggest a positive feedback interaction between DMS and solar radiation.  相似文献   

13.
The 20 May 2016 MW 6.1 Petermann earthquake in central Australia generated a 21 km surface rupture with 0.1 to 1 m vertical displacements across a low-relief landscape. No paleo-scarps or potentially analogous topographic features are evident in pre-earthquake Worldview-1 and Worldview-2 satellite data. Two excavations across the surface rupture expose near-surface fault geometry and mixed aeolian-sheetwash sediment faulted only in the 2016 earthquake. A 10.6 ± 0.4 ka optically stimulated luminescence (OSL) age of sheetwash sediment provides a minimum estimate for the period of quiescence prior to 2016 rupture. Seven cosmogenic beryllium-10 (10Be) bedrock erosion rates are derived for samples < 5 km distance from the surface rupture on the hanging-wall and foot-wall, and three from samples 19 to 50 km from the surface rupture. No distinction is found between fault proximal rates (1.3 ± 0.1 to 2.6 ± 0.2 m Myr−1) and distal samples (1.4 ± 0.1 to 2.3 ± 0.2 m Myr−1). The thickness of rock fragments (2–5 cm) coseismically displaced in the Petermann earthquake perturbs the steady-state bedrock erosion rate by only 1 to 3%, less than the erosion rate uncertainty estimated for each sample (7–12%). Using 10Be erosion rates and scarp height measurements we estimate approximately 0.5 to 1 Myr of differential erosion is required to return to pre-earthquake topography. By inference any pre-2016 fault-related topography likely required a similar time for removal. We conclude that the Petermann earthquake was the first on this fault in the last ca. 0.5–1 Myr. Extrapolating single nuclide erosion rates across this timescale introduces large uncertainties, and we cannot resolve whether 2016 represents the first ever surface rupture on this fault, or a > 1 Myr interseismic period. Either option reinforces the importance of including distributed earthquake sources in fault displacement and seismic hazard analyses.  相似文献   

14.
Provision of reliable scientific support to socio‐economic development and eco‐environmental conservation is challenged by complexities of irregular nonlinearities, data uncertainties, and multivariate dependencies of hydrological systems in the Three Gorges Reservoir (TGR) region, China. Among them, the irregular nonlinearities mainly represent unreliability of regular functions for robust simulation of highly complicated relationships between variables. Based on the proposed discrete principal‐monotonicity inference (DPMI) approach, streamflow generation in the Xingshan Watershed, a representative watershed in this region, is examined. Based on system characterization, predictor identification, and streamflow distribution transformation, DPMI parameters are calibrated through a two‐stage strategy. Results indicate that the modelling efficiency of DPMI is satisfactory for streamflow simulation under these complexities. The distribution transformation method and the two‐stage calibration strategy can deal with non‐normality of streamflow and temporally unstable accuracy of hydrological models, respectively. The DPMI process and results reveal that both streamflow uncertainty and its rising tendency increase with flow levels. The dominant driving forces of streamflow generation are daily lowest temperature and daily cumulative precipitation in consideration of performances in global and local scales. The temporal heterogeneity of local significances to streamflow is insignificant for meteorological conditions. There is significant nonlinearity between meteorological conditions and streamflow and dependencies among meteorological conditions. The generation mechanism of low flows is more complicated than medium flows and high flows. The DPMI approach can facilitate improving robustness of hydro‐system analysis studies in the Xingshan Watershed or the TGR region. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Water chemical data from the Botucatu Sandstone aquifer in the São Paulo State part of the Paraná Basin, Brazil, was evaluated using geochemical methods and two statistical analyses: cluster analysis and factor analysis. The results were used to develop a conceptual geochemical model, in which three geochemical regions were identified, and their chemical behavior was modeled. The characteristic chemicals, changing from the recharge area to the center of the basin, are: SiO2—(HCO3 and Ca2+)—(Na+, CO32−, and SO42−). The distribution of the chemicals is interpreted as controlled by different water–rock interaction processes in the different regions. In the recharge area, dissolution of alkali–feldspar minerals in the sandstone is the main reaction observed; in the mid-section of the basin, calcite dissolution results in high calcium and bicarbonate concentration; in the center of the basin, leakage from underlying layers becomes the governing factor.  相似文献   

16.
There is an urgent need for the development and implementation of modern statistical methodology for long-term risk assessment of extreme hydrological hazards in the Caribbean. Notwithstanding the inevitable scarcity of data relating to extreme events, recent results and approaches call into question standard methods of estimation of the risks of environmental catastrophes that are currently adopted. Estimation of extreme hazards is often based on the Gumbel model and on crude methods for estimating predictive probabilities. In both cases the result is often a remarkable underestimation of the predicted probabilities for disasters of large magnitude. Simplifications do not stop here: assumptions of data homogeneity and temporal independence are usually made regardless of potential inconsistencies with genuine process behaviour and the fact that results may be sensitive to such mis-specifications. These issues are of particular relevance for the Caribbean, given its exposure to diverse meteorological climate conditions.In this article we present an examination of predictive methodologies for the assessment of long-term risks of hydrological hazards, with particular focus on applications to rainfall and flooding, motivated by three data sets from the Caribbean region. Consideration is given to classical and Bayesian methods of inference for annual maxima and daily peaks-over-threshold models. We also examine situations where data non-homogeneity is compromised by an unknown seasonal structure, and the situation in which the process under examination has a physical upper limit. We highlight the fact that standard Gumbel analyses routinely assign near-zero probability to subsequently observed disasters, and that for San Juan, Puerto Rico, standard 100-year predicted rainfall estimates may be routinely underestimated by a factor of two.  相似文献   

17.
A streamflow drought climatology was developed over the Central Andes of Argentina, a semi-arid region highly vulnerable to climatic variations, based on the analysis of daily historical streamflow records. A threshold level approach was applied on a daily basis for three different severity levels in order to depict the main characteristics of droughts – number of drought events, mean duration and mean severity – over the period 1957–2014. Based on three annual indices that summarize the frequency of drought events, their duration and severity, we identified the main regional dry periods and the main modes of variability through an empirical decomposition. These modes are linked to La Niña conditions on inter-annual time scales and the Pacific Decadal Oscillation for the decadal variations, showing the influence of the tropical Pacific Ocean in the development of streamflow drought conditions and its relevance for potential predictability of hydroclimatic variations over the region.  相似文献   

18.
Meandering rivers have dynamic evolution characteristics of lateral migration and longitudinal creeping movement, and studies on the migration rate of meandering rivers have both scientific and practical significance for understanding the evolution process. A river source region often is sparsely populated and lacks long-term monitoring data, making it difficult to estimate the migration rate of river bends. In the source region of the Yellow River, located in the northeastern part of the Qinghai-Tibet Plateau, China, meandering rivers have extensively developed. Combined with field investigation and sampling in the source region in 2016 and 2017, 9 river bends in the middle Baihe River were selected to attempt estimation of migration rates of the river bends using tree ring analysis. The tree core and disc samples were collected using an increment borer and a crosscut saw, and the ages of the trees were estimated based on tree ring analysis. A method for estimating the migration rate of river bends based on the relation between positions and ages of trees grown on the point bars in inner banks is proposed. The estimated migration rates of the 9 river bends of the Baihe River ranged 0.38–6.10 m/yr, and the migration rates were found to be related to the flow rate, channel slope, height of the outer bank, and width of the river valley. The maximum migration rate was determined to be at the No. 9 River Bend where the ratio of the meander-bend radius to the channel width (R/W) was 2.31, which is consistent with previous findings that the bend migration is most rapid in the ‘migration phase’. The proposed method for estimating the migration rate of river bends provides a potential alternative option for future study on the morphodynamic process of a meandering river.  相似文献   

19.
The water-use efficiency has direct impacts on the water consumption of agriculture production and is vital to water conservation at both local and regional extent. The agricultural water-use efficiency is a critical indicator that reflects the effective water allocation and water productivity improvement among different agricultural sectors. Taking the Heihe River Basin as the case study area, this study explores the changing trajectories of agricultural water use based on the input–output data of 2003–2012, and estimates the water-use efficiency with Data Envelopment Analysis, Malmquist Total Productivity Index and the decomposition of total factor productivity. Further, the influence of driving factors on the water-use efficiency is analyzed with the Tobit model. The research results indicate that the average agricultural water-use efficiency in different counties is all lower than 1 during 2003–2012, indicating that there is still improvement space in the agricultural water-use efficiency. In addition, there is obvious heterogeneity in the agricultural water-use efficiency among different counties, especially prior to 2009. The research results from the Tobit model indicate that agricultural investment and production, economic growth, industrial restructuring and agricultural plants structural adjustment have significant influence on the agricultural water-use efficiency. The research results can provide significant references for agricultural water-use management in the middle reaches of the Heihe River Basin and other similar regions in Northwest China.  相似文献   

20.
Spatially explicit modeling plays a vital role in land use/cover change and urbanization research as well as resources management;however,current models lack proper validation and fail to incorporate uncertainty into the formulation of model predictions.Consequently,policy makers and the general public may develop opinions based on potentially misleading research,which fails to allow for truly informed decisions.Here we use an uncertainty strategy of spatially explicit modeling combined with the series stat...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号