首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We review models of cosmological gamma-ray bursts (GRBs). The statistical and -ray transparency issues are summarized. Neutron-star and black-hole merger scenarios are described and estimates of merger rates are summarized. We review the simple fireball models for GRBs and the recent work on non-simple fireballs. Alternative cosmological models, including models where GRBs are analogs of active galactic nuclei and where they are produced by high-field, short period pulsars, are also mentioned. The value of neutrino astronomy to solve the GRB puzzle is briefly reviewed.  相似文献   

2.
We developmatch probability statistics to test the recurrences of gamma-ray bursts in the BATSE catalog 1B and 2B. We do not find a signal of repetitions at the match level of 10–3.  相似文献   

3.
4.
Tail emission of the prompt gamma-ray burst (GRB) is discussed using a multiple emitting sub-shell (inhomogeneous jet, sub-jets or mini-jets) model, where the whole GRB jet consists of many emitting sub-shells. One may expect that such a jet with angular inhomogeneity should produce spiky tail emission. However, we found that the tail is not spiky but is decaying roughly monotonically. The global decay slope of the tail is not so much affected by the local angular inhomogeneity but affected by the global sub-shell energy distribution. The fact that steepening GRB tail breaks appeared in some events prefers the structured jets. If the angular size of the emitting sub-shell is around 0.01–0.02 rad, some bumps or fluctuations appear in the tail emission observed frequently in long GRBs. If the parameter differences of sub-shell properties are large, the tail has frequent changes of the temporal slope observed in a few bursts. Therefore, the multiple emitting sub-shell model has the advantage of explaining the small-scale structure in the observed rapid decay phase.  相似文献   

5.
We selected a sample of 33 gamma-ray bursts detected by Swift , with known redshift and optical extinction at the host frame. For these, we constructed the de-absorbed and K -corrected X-ray and optical rest-frame light curves. These are modelled as the sum of two components: emission from the forward shock due to the interaction of a fireball with the circumburst medium and an additional component, treated in a completely phenomenological way. The latter can be identified, among other possibilities, as a 'late prompt' emission produced by a long-lived central engine with mechanisms similar to those responsible for the production of the 'standard' early prompt radiation. Apart from flares or re-brightenings, that we do not model, we find a good agreement with the data, despite of their complexity and diversity. Although based, in part, on a phenomenological model with a relatively large number of free parameters, we believe that our findings are a first step towards the construction of a more physical scenario. Our approach allows us to interpret the behaviour of the optical and X-ray afterglows in a coherent way, by a relatively simple scenario. Within this context, it is possible to explain why sometimes no jet break is observed; why, even if a jet break is observed, it is often chromatic and why the steepening after the jet break time is often shallower than predicted. Finally, the decay slope of the late prompt emission after the shallow phase is found to be remarkably similar to the time profile expected by the accretion rate of fall-back material (i.e.  ∝ t −5/3  ), suggesting that this can be the reason why the central engine can be active for a long time.  相似文献   

6.
Population synthesis is used to study the contribution from unresolved sources to the Galactic ridge emission measured by EGRET. Synthesized source counts are compared with the 3rd EGRET catalogue at low and high latitudes. For pulsar-like populations, 5–10% of the emission >100 MeV comes from sources below the EGRET threshold. A steeper luminosity function can increase this to 20% without violating EGRET source statistics. Less luminous populations can produce much higher values without being detected. Since the unresolved source spectrum is different from the interstellar spectrum, it could provide an explanation of the observed MeV and GeV excesses above the predictions, and we give an explicit example of how this could work.  相似文献   

7.
Although the earliest observed gamma-ray burst spectra were well described by thermal bremsstrahlung models, subsequent observations above 1 MeV showed the existence of high energy power law tails in 60% of events. In order to accurately characterise burst spectra, both the low energy turnover and the high energy tail must be accounted for. We have addressed this issue by jointly deconvolving spectra obtained by BATSE and COMPTEL onboard theCompton Observatory. We present preliminary results obtained by application of this method to the gamma-ray burst of February 17, 1994.  相似文献   

8.
We present a Chandra observation of the powerful radio galaxy 3C 294 showing clear evidence for a surrounding intracluster medium. At a redshift of 1.786 this is the most distant cluster of galaxies yet detected in X-rays. The radio core is detected as a point source, which has a spectrum consistent with a heavily absorbed power law, implying an intrinsic 2–10 keV luminosity of ∼1045 erg s−1. A small excess of emission is associated with the southern radio hotspots. The soft, diffuse emission from the intracluster medium is centred on the radio source. It has an hourglass shape in the north–south direction, extending to radii of at least 100 kpc, well beyond the radio source. The X-ray spectrum of this extended component is fitted by a thermal model with temperature ∼5 keV, or by gas cooling from above 7 keV at rates of ∼ 400–700 M yr−1. The rest-frame 0.3–10 keV luminosity of the cluster is ∼ 4.5×1044 erg s−1. The existence of such a cluster is consistent with a low-density universe.  相似文献   

9.
10.
High-energy emission from gamma-ray bursts (GRBs) is widely expected but had been sparsely observed until recently when the Fermi satellite was launched. If >TeV gamma-rays are produced in GRBs and can escape from the emission region, they are attenuated by the cosmic infrared background photons, leading to regeneration of ∼GeV–TeV secondary photons via inverse-Compton scattering. This secondary emission can last for a longer time than the duration of GRBs, and it is called a pair echo. We investigate how this pair echo emission affects spectra and light curves of high-energy afterglows, considering not only prompt emission but also afterglow as the primary emission. Detection of pair echoes is possible as long as the intergalactic magnetic field (IGMF) in voids is weak. We find (1) that the pair echo from the primary afterglow emission can affect the observed high-energy emission in the afterglow phase after the jet break and (2) that the pair echo from the primary prompt emission can also be relevant, but only when significant energy is emitted in the TeV range, typically     . Even non-detections of the pair echoes could place interesting constraints on the strength of IGMF. The more favourable targets to detect pair echoes may be the 'naked' GRBs without conventional afterglow emission, although energetic naked GRBs would be rare. If the IGMF is weak enough, it is predicted that the GeV emission extends to >30–300 s.  相似文献   

11.
We present the radio observations of the afterglow from the intense cosmic gamma-ray burst GRB 030329 performed with the radio telescopes of the Institute of Applied Astronomy, Russian Academy of Sciences, at the Svetloe (λ=3.5 cm) and Zelenchuk (λ=6 cm) Observatories. The difference between the fluxes measured in two different polarization modes suggests the existence of a circular polarization in the radio afterglow from GRB 030329. However, since the measurement errors of the fluxes with different circular polarizations are large, we cannot draw a firm conclusion about its detection; we can only set an upper limit on its value. An analysis of the possible generation mechanisms for the circular polarization of the relativistic jet suggests that there is a helical magnetic field in the jet. The existence of significant flux densities at various wavelengths during a long (≥10 days) period leads us to conclude that the hydrodynamic evolution of the relativistic bow shock takes place in the stellar wind, not in the interstellar medium. We have estimated the total GRB energy (E=1051 erg) (under the assumption of isotropic radiation) and the plasma density of the stellar wind from the presupernova (n=3 cm?3). The magnetic-field strength in the relativistic jet can be estimated as B≈100 G.  相似文献   

12.
We study the possibility of quasar outflows in clusters and groups of galaxies heating the intracluster gas in order to explain the recent observation of excess entropy in this gas. We show that radio galaxies alone cannot provide the energy required to explain the observations but the inclusion of Broad Absorption Line (BAL) outflows can do so, and that in this scenario most of the heating takes place atz ∼ 1–4, the “preheating” epoch being at a lower redshift for lower mass clusters.  相似文献   

13.
We calculate the reverse shock (RS) synchrotron emission in the optical and the radio wavelength bands from electron–positron pair-enriched gamma-ray burst ejecta with the goal of determining the pair content of gamma-ray bursts (GRBs) using early-time observations. We take into account an extensive number of physical effects that influence radiation from the RS-heated GRB ejecta. We find that optical/infrared flux depends very weakly on the number of pairs in the ejecta, and there is no unique signature of ejecta pair enrichment if observations are confined to a single wavelength band. It may be possible to determine if the number of pairs per proton in the ejecta is ≳100 by using observations in optical and radio bands; the ratio of flux in the optical and radio at the peak of each respective RS light curve is dependent on the number of pairs per proton. We also find that over a large parameter space, RS emission is expected to be very weak; GRB 990123 seems to have been an exceptional burst in that only a very small fraction of the parameter space produces optical flashes this bright. Also, it is often the case that the optical flux from the forward shock is brighter than the RS flux at deceleration. This could be another possible reason for the paucity of prompt optical flashes with a rapidly declining light curve at early times as was seen in GRBs 990123 and 021211. Some of these results are a generalization of similar results reported in Nakar & Piran.  相似文献   

14.
We obtained an order-of-magnitude estimate for the dispersion of light caused by the effect of quantum fluctuations on the propagation of electromagnetic waves in four-dimensional spacetime. We calculated the delay of the photons from cosmological gamma-ray bursts (GRBs) for the flat, open, and closed cosmological models. This delay is attributable to the effect of expansion of the Universe on the propagation of a dispersive light wave in space. Analysis shows that the delay of GRB photons contains a regular component related to the expansion of the Universe. We conclude that cosmological models of the Universe can be selected by the delay of emission of various energies from GRBs; the accuracy of measuring the parameter ΔtE γ must be no lower than 10?6 s MeV?1.  相似文献   

15.
16.
Gamma-ray burst analyses at neutrino telescopes are typically based on diffuse or stacked (i.e., aggregated) neutrino fluxes, because the number of events expected from a single burst is small. The interpretation of aggregated flux limits implies new systematics not present for a single burst, such as by the integration over parameter distributions (diffuse fluxes), or by the low statistics in small burst samples (stacked fluxes). We simulate parameter distributions with a Monte Carlo method computing the spectra burst by burst, as compared to a conventional Monte Carlo integration. With this approach, we can predict the behavior of the flux in the diffuse limit as well as in low statistics stacking samples, such as used in recent IceCube data analyses. We also include the flavor composition at the detector (ratio between muon tracks and cascades) into our considerations. We demonstrate that the spectral features, such as a characteristic multi-peak structure coming from photohadronic interactions, flavor mixing, and magnetic field effects, are typically present even in diffuse neutrino fluxes if only the redshift distribution of the sources is considered, with z ? 1 dominating the neutrino flux. On the other hand, we show that variations of the Lorentz boost can only be interpreted in a model-dependent way, and can be used as a model discriminator. For example, we illustrate that the observation of spectral features in aggregated fluxes will disfavor the commonly used assumption that bursts with small Lorentz factors dominate the neutrino flux, whereas it will be consistent with the hypothesis that the bursts have similar properties in the comoving frame.  相似文献   

17.
In its first three years of operation, the COMPTEL instrument on theCompton Gamma-Ray Observatory has measured the locations (mean accuracy 1°) and spectra (0.75-30 MeV) of 18 gamma-ray bursts and continues to observe new events at a rate of 1/month. With good angular resolution and sensitivity at MeV energies, the growing COMPTEL burst catalog is an important new piece of evidence in the on-going GRB mystery. The COMPTEL burst locations are consistent with an isotropic distribution of sources, yet the spatial coincidence of two of the bursts indicates the possibility of repetition. The COMPTEL burst spectra are in most cases consistent with a single power law model with spectral index in the range 2–3. However, two bursts show evidence of a spectral break in the MeV range. Measurement of rapid variability at MeV energies in the stronger bursts provides evidence that either the sources are nearby (within the Galaxy) or the gamma-ray emission is relativistically beamed. We present an overview of analysis results obtained from the COMPTEL burst catalog concentrating on the search for burst repetition and the implications of highly variable MeV emission.  相似文献   

18.
19.
We report the result of a search for Lyα emission from the host galaxies of the gamma-ray bursts  (GRBs) 030226 ( z = 1.986), 021004 ( z = 2.335)  and  020124 ( z = 3.198)  . We find that the host galaxy of GRB 021004 is an extended (around 8 kpc) strong Lyα emitter with a rest-frame equivalent width (EW) of 68+12−11Å, and a star formation rate of  10.6 ± 2.0 M yr−1  . We do not detect the hosts of GRB 030226 and GRB 020124, but the upper limits on their Lyα fluxes do not rule out large rest-frame EWs. In the fields of GRB 021004 and GRB 030226 we find seven and five other galaxies, respectively, with excess emission in the narrow-band filter. These galaxies are candidate Lyα-emitting galaxies in the environment of the host galaxies. We have also compiled a list of all   z ≳ 2  GRB hosts, and demonstrate that a scenario where they trace star formation in an unbiased way is compatible with current observational constraints. Fitting the   z = 3  luminosity function (LF) under this assumption results in a characteristic luminosity of   R *= 24.6  and a faint-end slope of  α=−1.55  , consistent with the LF measured for Lyman-break galaxies.  相似文献   

20.
We present an XMM observation of the moderately distant (z=0.41)galaxy cluster CL 0939+4713 (Abell 851), an exceptionally rich cluster. The formation and evolution of clusters depends sensitively on cosmological parameters like the mean matter density in the universe Οm. Therefore it is important to determine the dynamical state of clusters at different redshifts, i.e. at different evolutionary states. The X-ray morphology alone is not the best indicator of the dynamical state, but it should be complemented with all other information available, e.g. the temperature map or the galaxy distribution. The combination of all findings gives a detailed picture of the state of a cluster. This analysis, of this relatively distant cluster, can be used as a basis for comparisons at lower and higher redshifts. The capability of XMM to perform spatially resolved spectroscopy can be used also to determine the distribution of the metal abundances. Not only the overall value of metallicity but also its spatial distribution gives important indications on the metal enrichment processes. The X-ray image shows pronounced substructure. There are two main subclusters which have also some internal structure. This is an indication that the cluster is a dynamically young system. This conclusion is supported by the temperature distribution: a hot region is found between the two main subclusters indicating that the cluster is in the process of a major merger, in which the two subclusters will probably collide in a few hundreds of Myr. The intra-cluster gas of CL 0939+4713 shows variations of the metal abundances. The optically richer subcluster has a somewhat higher metallicity. This finding together with the absence of post-starburst galaxies in this region gives interesting hints on the metal enrichment processes favouring recent enrichment processes like ram-pressure stripping or tidal stripping. Throughout this paper we use H 0 =50 km s-1Mpc-1 and q 0 =0.5; all errors are 90% confidence levels. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号