首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Possible physical mechanisms relating orbital-element variations (i.e., the “Milankovitch mechanism” of insolation regime changes) to Quaternary glacial/interglacial transitions are explored quantitatively. These include the seasonal cycle of albedo and the zonal distribution of thermal inertia. These mechanisms can interact with the perturbations to zonal average and seasonal average insolation caused by orbital-element variations to cause a global annual temperature residual, even though such variations can cause only a negligible change in global annual insolation.Numerical model experiments with a zonal energy balance model show that the relative interactions between insolation regime changes and seasonally and latitudinally varying albedo and latitudinally varying thermal inertia are roughly of comparable magnitude. Encouraging agreements between model experiments and data are evident, but these (and others') simulations are still a long way away from providing a satisfying explanation of the physical processes that could fully explain the apparent connections between orbital-element variations and Quaternary glaciations.It seems likely that no single physical process can be identified as predominate, and rather, the hypothesized physical connection between insolation regime changes and glacial/interglacial transitions will have to be built on the interactions of a number of processes on both short and long time scales.  相似文献   

2.
Continuous observation data collected over the year 2008 at Astronomical Observatory, Thiruvananthapuram in south Kerala (76°59′E longitude and 8°30′N latitude) are used to study the diurnal, monthly and seasonal soil moisture variations. The effect of rainfall on diurnal and seasonal soil moisture is discussed. We have investigated relationships of soil moisture with surface albedo and soil thermal diffusivity. The diurnal variation of surface albedo appears as a U-shaped curve on sunny days. Surface albedo decreases with the increase of solar elevation angle, and it tends to be a constant when solar elevation angle is greater than 40°. So the daily average surface albedo was calculated using the data when solar elevation angle is greater than 40°. The results indicate that the mean daily surface albedo decreases with increases in soil moisture content, showing a typical exponential relation between the surface albedo and the soil moisture. Soil thermal diffusivity increases firstly and then decreases with the increase of soil moisture.  相似文献   

3.
Environmental controls on stone decay processes are rapidly changing as a result of changing climate. UKCP09 projections for the 2020s (2010–2039) indicate that over much of the UK seasonality of precipitation will increase. Summer dryness and winter wetness are both set to increase, the latter linked to projected precipitation increases in autumn and spring months. If so, this could increase the time that stone structures remain wet and possibly the depth of moisture penetration, and it appears that building stone in Northern Ireland has already responded through an increased incidence of algal ‘greening’. This paper highlights the need for understanding the effects of climate change through a series of studies of largely sandstone structures. Current and projected climatic trends are therefore considered to have aesthetic, physical and chemical implications that are not currently built into our models of sandstone decay, especially with respect to the role played by deep-seated wetness on sandstone deterioration and decay progression and the feedbacks associated with, for example surface algal growth. In particular, it is proposed that algal biofilms will aid moisture retention and further facilitate moisture and dissolved salt penetration to depth. Thus, whilst the outer surface of stone may continue to experience frequent wetting and drying associated with individual precipitation events, the latter is less likely to be complete, and the interiors of building blocks may only experience wetting/drying in response to seasonal cycling. A possible consequence of deeper salt penetration could be a delay in the onset of surface deterioration, but more rapid and effective retreat once it commences as decay mechanisms ‘tap into a reservoir of deep salt’.  相似文献   

4.
祁连山七-冰川反照率的参数化研究   总被引:6,自引:6,他引:0  
通过对2006年和2007年暖季消融期七一冰川反照率的观测资料分析,基于冰川反照率的变化规律及其影响因素,根据实测资料的统计建模和验证,初步给出了具有试验基础的冰川反照率多因子参数化公式,其时间分辨率为1 h.经检验,2006年和2007年考察期间冰川反照率的模拟值和观测值序列之间的相关系数分别达到了0.901和0.9...  相似文献   

5.
The crystallisation of soluble salts within the pores of the stone is widely recognised as a major mechanism causing the deterioration of the stone-built architectural heritage. Temperature, in turn, is one of the main controls on this process, including salt precipitation, the pressure of crystallisation and the thermal expansion of salts. Most laboratory experiments on decay generated by salts are just carried out with convective heating regimes, while in natural environments building stones can undergo radiative and convective heating regimes. The thermal response of stone to these different heating regimes is noticeably different and might influence the crystallisation patterns of a salt within a stone. The aim of this work is to raise awareness on the different patterns of crystallisation of NaCl within a porous stone tested with different heating regimes (convection and radiation) and the implications that this could have on the design of experimental modelling of natural weathering conditions in laboratory simulations. Results show that heating regime affects the sodium chloride distribution within a stone with high percentage of microporosity. In this case, radiation heating facilitates the generation of subefflorescences, while convection heating promotes efflorescences. This has a clear implication both on the stone decay in natural environments and on the methodologies for testing salt decay, as subefflorescences are more destructive than efflorescences. In this sense, the use of convective heating in laboratory experimentation might underestimate the potential damage that sodium chloride may generate. This counsels the use of radiation heating test methods in addition to convection for the laboratory study of salt crystallisation.  相似文献   

6.
Sandstone alterations triggered by fire-related temperatures   总被引:1,自引:1,他引:0  
The aim of the study was to identify and describe changes in two different sandstone types when undergoing different environmental and extreme temperature regimes to assess the possibility of finding insolation weathering and how these sandstones would behave during and after a fire. The first step was the simulation in the laboratory of temperature regimes up to 60 °C which would correspond to extreme events that could be found in insolation cycles even in Central Europe and the second one was the temperature above 200 °C simulating in laboratory conditions the thermal regime of a potential fire situation at temperatures up to 200, 400, 600 and 800 °C. Heating the samples above 400 °C led to gradual changes in mineral composition, colour, surface roughness and physical properties reaching, eventually, total rock breakdown through spalling and granular disaggregation. The different behaviour of sandstones exposed to high temperatures is mainly caused by their different mineral composition with various ratios of minerals that are more or less chemically stable at high temperatures as well as by the differences in the porosity.  相似文献   

7.
Half hourly data of soil moisture content, soil temperature, solar irradiance, and reflectance are measured during April 2010 to March 2011 at a tropical station, viz., Astronomical Observatory, Thiruvananthapuram, Kerala, India (76°59’E longitude and 8°29’N latitude). The monthly, seasonal and seasonal mean diurnal variation of soil moisture content is analyzed in detail and is correlated with the rainfall measured at the same site during the period of study. The large variability in the soil moisture content is attributed to the rainfall during all the seasons and also to the evaporation/movement of water to deeper layers. The relationship of surface albedo on soil moisture content on different time scales are studied and the influence of solar elevation angle and cloud cover are also investigated. Surface albedo is found to fall exponentially with increase in soil moisture content. Soil thermal diffusivity and soil thermal conductivity are also estimated from the subsoil temperature profile. Log normal dependence of thermal diffusivity and power law dependence of thermal conductivity on soil moisture content are confirmed.  相似文献   

8.
基于不同空间尺度、长时间序列的地表反照率产品探究黑河流域2000—2012年的反照率时空变化特征。首先基于角度格网化(AB)算法对黑河流域30 m环境卫星一号HJ-1/CCD大气层顶方向反射率进行了地表反照率估算,作为高空间分辨率的地表反照率产品;选择同种算法计算的1 km空间分辨率的Global LAnd Surface Satellite(GLASS)反照率产品作为低空间分辨率反照率产品。结果表明:1利用AB算法反演的HJ卫星反照率具有较高精度,满足流域尺度反照率时空特征分析的精度要求;2黑河流域地表反照率空间分布差异显著,流域上游植被覆盖区域反照率较低,中下游荒漠地表反照率较高;3流域地表反照率的年内变化与季节性降雪和作物物候周期性变化一致。从季节变化角度,黑河流域反照率月平均值的年变化呈"U"字型,其中,冬季反照率最高,春季和秋季次之,夏季最低。从年际变化角度,黑河下游反照率呈上升趋势,上游和整个流域呈下降趋势。  相似文献   

9.
The extant remains of the Roman monuments of Tarragona, Spain are made of different types of Miocenic rocks from the quarries surrounding the city, which vary from calcarenite to bioclastic limestones, showing different degrees of dolomitization, depending on their diagenetic evolution. The decay of these monuments is highly dependent on the mineralogy and the fabric of the stone as well as on the environmental conditions to which the monument subjected. As a consequence, different forms of decay are observed on these monuments, namely, granular disintegration, differential erosion between sparitic and micritic areas of the rock, and development of black crust and orange patinas, some of them attributed to a sulfation process. A number of processes have been established as being responsible for the decay forms observed: sulfation on sheltered areas of the building in the urban environment; differential dilatation because of the NaCl of the marine spray that crystallizes inside the porosity; hydric and thermal expansion of the stone, both related to the amount and crystallinity of the clay minerals forming the rock matrix; and biocolonization on the stone surface. An empirical model is proposed to explain the decay forms studied in relation to these factors (rock and environment).  相似文献   

10.
Surface albedo plays a crucial role in the energy balance of soils. The surface albedo and surface soil moisture of bare sand and biological soil crusts (BSCs) were concurrently observed on field plots of shifting sand dune and in revegetated desert ecosystems at Shapotou, northwestern China, to study relationships between surface albedo, solar elevation angle, and surface soil moisture. Results indicated that rainfall exerted a remarkable lowering effect on the variation of surface albedo by increasing surface soil moisture. Surface albedo was an exponential function of solar elevation angle, and the normalized surface albedo (solar elevation angle effect was removed) decreased exponentially with the increase of surface soil moisture. Sand surface had a higher albedo (0.266) than BSCs (0.226) when the surfaces were very dry. However, sand surface albedo became increasingly lower than that of BSCs when the surfaces were in wet conditions and when the soil moisture exceeded a critical value. The changes in soil surface albedo from sand dune to BSCs after revegetation in shallow soil profiles associated with the variation of the surface soil moisture can be seen as an indicator of the degree of sand dune stabilization when compared with the original shifting sand dune soil.  相似文献   

11.
We present atmospheric simulations of three different time slices of the late Quaternary using the ECHAM 3 general circulation model in T42 resolution. In this work we describe the results of model runs for the time slices 6000 years BP (last climate optimum), 21 000 BP (last glacial maximum) and 115 000 years BP (glacial inception). Although the solar insolation is known for all time slices, a complete data set of the other boundary conditions which are necessary for running the atmospheric model exists only for the last glacial maximum in the form of the CLIMAP reconstruction. For the other two time slices, which are interglacial states like the modern climate, sea surface temperatures, land albedo and ice sheet topography are kept at modern values and only the solar insolation is changed appropriately. The response of the model to solar insolation changes is quite reasonable. The modelled anomalies are small and roughly opposite in sign for 6000 BP and 115 000 BP, respectively. In the case of last glacial maximum, the glacial ice sheet topography and ice albedo produce a much larger climate anomaly in the model. However, to enable a real test of model performance under glacial boundary conditions, the CLIMAP sea surface temperatures, which are now known to be partly inaccurate, should be replaced by an updated “state-of-the-art” reconstruction.  相似文献   

12.
天山乌鲁木齐河源1号冰川消融期反照率特征   总被引:2,自引:2,他引:0  
消融期冰川反照率特征研究对于深入理解冰川消融过程及其对气候变化的响应机理具有重要意义。利用Landsat卫星影像反演反照率数据,MODIS逐日反照率产品数据以及野外观测反照率数据,分析了天山乌鲁木齐河源1号冰川2016年消融期(5—8月)反照率时空变化特征。研究表明:消融早期,冰川反照率空间变化不明显;消融中后期,总体上呈现随海拔的升高而增大的趋势,在平衡线附近增速最快。消融期冰川反照率整体呈下降趋势,而且在6—7月份变化最为剧烈。平衡线附近反照率时间变化尤其显著,积累区次之,消融区最弱。冰川反照率的时空变化主要由冰面特征决定。气温和固态降水是其驱动因素。冰川反照率随气温的升高而降低,但固态降水会打破其随气温的变化趋势,引起反照率的增加。污化物显著降低冰面反照率,尤其在可见光波段(380~760 nm)。此外,即使冰面特征相对均一,反照率还呈现随太阳入射角的增大而增大的趋势,主要由冰川局部地形(坡度与坡向)差异所致。  相似文献   

13.
Measurements taken between July 2006 to May 2007 at the Maqu station in the Upper Yellow River area were used to study the surface radiation budget and soil water and heat content in this area. These data revealed distinct seasonal variations in downward shortwave radiation, downward longwave radiation, upward longwave radiation and net radiation, with larger values in the summer than in winter because of solar altitudinal angle. The upward shortwave radiation factor is not obvious because of albedo (or snow). Surface albedo in the summer was lower than in the winter and was directly associated with soil moisture and solar altitudinal angle. The annual averaged albedo was 0.26. Soil heat flux, soil temperature and soil water content changed substantially with time and depth. The soil temperature gradient was positive from August to February and was related to the surface net radiation and the heat condition of the soil itself. There was a negative correlation between soil temperature gradient and net radiation, and the correlation coefficient achieved a significance level of 0.01. Because of frozen state of the soil, the maximum soil thermal conductivity value was 1.21 W m−1°C−1 in January 2007. In May 2007, soil thermal conductivity was 0.23 W m−1°C−1, which is the lowest value measured in the study, likely due to the fact that the soil was drier then than in other months. The soil thermal conductivity values for the four seasons were 0.27, 0.38, 0.55 and 0.83 W m−1°C−1, respectively.  相似文献   

14.
全球变化下地表反照率研究进展   总被引:12,自引:0,他引:12  
地表反照率表征地球表面对太阳辐射的反射能力,决定着地表与大气之间辐射能量的分配过程,是影响地球气候系统的关键变量。在全球变化日益突出的今天,地表反照率与全球变化的相互影响机制已经成为地球科学研究领域的热点问题之一。地表反照率的细微变化,会影响到地气系统的能量收支平衡,进而引起区域以至全球气候变化。详细介绍地表反照率影响...  相似文献   

15.
At the 41,000-period of orbital tilt, summer insolation forces a lagged response in northern ice sheets. This delayed ice signal is rapidly transferred to nearby northern oceans and landmasses by atmospheric dynamics. These ice-driven responses lead to late-phased changes in atmospheric CO2 that provide positive feedback to the ice sheets and also project ‘late’ 41-K forcing across the tropics and the Southern Hemisphere. Responses in austral regions are also influenced by a fast response to summer insolation forcing at high southern latitudes.At the 22,000-year precession period, northern summer insolation again forces a lagged ice-sheet response, but with muted transfers to proximal regions and no subsequent effect on atmospheric CO2. Most 22,000-year greenhouse-gas responses have the ‘early’ phase of July insolation. July forcing of monsoonal and boreal wetlands explains the early CH4 response. The slightly later 22-K CO2 response originates in the southern hemisphere. The early 22-K CH4 and CO2 responses add to insolation forcing of the ice sheets.The dominant 100,000-year response of ice sheets is not externally forced, nor does it result from internal resonance. Internal forcing appears to play at most a minor role. The origin of this signal lies mainly in internal feedbacks (CO2 and ice albedo) that drive the gradual build-up of large ice sheets and then their rapid destruction. Ice melting during terminations is initiated by uniquely coincident forcing from insolation and greenhouse gases at the periods of tilt and precession.  相似文献   

16.
This work consists in estimating the role of climatic conditions in the degradation of two French limestones, tuffeau and Richemont stone, used in the construction and the restoration of the Castle of Chambord, the largest castle in the Loire Valley, France. Meteorological data, air temperature, air relative humidity and rainfall were statistically analysed in combination with stone data from thermal–humidity sensors inserted into the walls. The climatic conditions of the surrounding area were described to assess their role in enhancing the degradation of the stones through three weathering processes: thermal stress, condensation and freezing–thawing. The damage risks due to the weathering processes were taken into account not only through the bulk effects on the stone surfaces, but also their effects were extended to investigate the damage that occurs within the porous structure of the stone. Field observations showed that the main patterns of degradation affecting the stones of the castle are biological colonization and stone detachment in the form of stone spalling and exfoliation. The results of the analysis show that there is no risk of damage to the stones due to thermal stress. Moreover, the two stones experience similar overall trends against freezing–thawing processes. Finally, this study clearly highlights the important role of condensation in the degradation of the stones of the castle.  相似文献   

17.
Late Pleistocene variations in rainfall in subtropical southern African are estimated from sediments preserved in the Pretoria Saltpan, a 200000 year-old closed-basin crater lake on the interior plateau of South Africa. We show that South African summer rainfall covaried with changes in southern hemisphere summer insolation resulting from orbital precession. As predicted by orbital precession geometry (Berger, 1978), this South African record is out of phase with North African palaeomonsoon indices (Street and Grove, 1979; Rossignol-Strick, 1983; McIntyre et al., 1989); the amplitude of the rainfall response to insolation forcing agrees with climate model estimates (Prell and Kutzbach, 1987). These results document the importance of direct orbital insolation forcing on both subtropical North and South African climate as well as the predicted antiphase sensitivity to precessional insolation forcing.  相似文献   

18.
The stone traditionally used to build cities contributes to their personality and attests to the geological substrate on which they stand. While stone decay in the built heritage can be attributed to a number of causes, anthropic activity has a particularly significant impact. The geomonumental routes project is one of the initiatives proposed in recent years for urban routes that convey geological fundamentals by observing the rocks present in heritage structures. Its innovative approach addresses traditional stone properties, original quarrying sites and mechanisms of decay. Madrid’s Royal Palace is a fine example of the use of traditional building stone in the centre of the Iberian Peninsula. In the geomonumental route proposed, the building doubles as an in situ laboratory that affords an overview of the main petrological properties of the two traditional stones most commonly used in the city’s built heritage, the forms of decay they are subject and the factors underlying such alterations. This route constitutes a tool for showing the main petrological features and decay forms in traditional building stones found in urban heritage façades, with a special focus on anthropic impact, primarily air pollution and the use of conservation treatments that time has proven to be unsuitable.  相似文献   

19.
The eight massive Pleistocene explosive volcanic eruptions which occurred in western North America produced rhyolitic ash layers estimated to have covered from 0.38 to 2.76 × 106 km2 of the western and central portions of the continent. The surface albedo increases in the Northern Hemisphere resulting from these light-colored ash covers varied from around 0.06 to 0.41% assuming ash albedos based on color of around 53 to 65%. These albedo increases resulted in hemispheric temperature decreases of from around 0.07° to 0.41°C with greater cooling in and adjacent to the ash-covered regions. Such albedo-induced temperature declines lasted for at least several decades and reenforced the substantial posteruption cooling caused by volcanic aerosols and by a feedback decrease in atmospheric precipitable water. The magnitude and critical location of these temperature declines may have contributed to summer snow survival in the sub-Arctic plateaus and to a consequent triggering of major Pleistocene glaciations.  相似文献   

20.
为了研究青藏高原暖季土壤水分对冻土区地表热状况的影响,选取2010-2012年5-9月在青藏高原唐古拉气象场获取的气象及其活动层数据,分析了表层土壤水分对地表反照率以及土壤热参数的影响.结果表明:唐古拉站暖季表层土壤含水量集中在0.15~0.27之间,地表反照率值集中在0.14~0.24之间,日平均土壤热导率的波动范围在0.9~2.0 W·m-1·K-1之间,土壤热容的波动范围主要集中在0.8×106~1.8×106 J·m-3·K-1之间,而土壤热扩散率则主要集中在0.6×10-6~2.2×10-6 m2·s-1之间.土壤水分对地表反照率影响较大,随着土壤水分的增长,地表反照率呈现出明显的减小趋势.土壤水分对地表反照率的影响还受到植被生长周期的影响,土壤水分和地表反照率之间的关系在植被枯萎期和生长期有明显的差异性.唐古拉地区土壤热参数也明显受到土壤水分变化的影响,随着土壤水分的增加,土壤热导率、热容和热扩散率都为增大趋势,但是土壤水分对土壤热导率的影响较为显著,而对土壤热扩散率的影响则不显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号