首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of tests of plain and confined masonry walls with h/l ratio equal to 1·5, made at 1:5 scale, have been used to develop a rational method for modelling the seismic behaviour of confined masonry walls. A trilinear model of lateral resistance–displacement envelope curve has been proposed, where the resistance is calculated as a combination of the shear resistance of the plain masonry wall panel and dowel effect of the tie-columns’ reinforcement. Lateral stiffness, however, is modelled as a function of the initial effective stiffness and damage, occurring to the panel at characteristic limit states. Good correlation between the predicted and experimental envelopes has been obtained in the particular case studied. The method has been also verified for the case of prototype confined masonry walls with h/l ratio equal to 1·0. Good correlation between the predicted and experimental values of lateral resistance indicates the general validity of the proposed method. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
Seismic behaviour of masonry buildings, built of low compressive strength units, is discussed. Although such materials have already been tested and approved for use from mechanical and thermal insulation point of view, the knowledge regarding their structural behaviour is still lacking. In order to investigate the resistance and deformation capacity of this particular type of masonry construction in seismic conditions, a series of eight walls and model of a two-storey full scale confined masonry building have been tested by subjecting the specimens to cyclic shear loads. All tests were conducted under a combination of constant vertical load and quasi static, cyclically imposed horizontal load. The behaviour of tested specimens was of typical shear type. Compared with the behaviour of plain masonry walls, the presence of tie-columns resulted into higher resistance and displacement capacity, as well as smaller lateral resistance degradation. The response of the model was determined by storey mechanism with predominant shear behaviour of the walls and failure mechanism of the same type as in the case of individual confined masonry walls. Adequate seismic behaviour of this particular masonry structural type can be expected under the condition that the buildings are built as confined masonry system with limited number of stories.  相似文献   

3.
To improve the seismic performance of masonry structures, confined masonry that improves the seismic resistance of masonry structures by the confining effect of surrounding bond beams and tie columns is constructed. This study investigated the earthquake resisting behaviour of confined masonry structures that are being studied and constructed in China. The structural system consists of unreinforced block masonry walls with surrounding reinforced concrete bond beams and tie columns. The characteristics of the structure include: (1) damage to blocks is reduced and brittle failure is avoided by the comparatively lower strength of the joint mortar than that of the blocks, (2) the masonry walls and surrounding reinforced concrete bond beams and tie columns are securely jointed by the shear keys of the tie columns. In this study, wall specimens made of concrete blocks were tested under a cyclic lateral load and simulated by a rigid body spring model that models non‐linear behaviour by rigid bodies and boundary springs. The results of studies outline the resisting mechanism, indicating that a rigid body spring model is considered appropriate for analysing this type of structure. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
带构造柱和圈梁的约束砌体结构在四川灾区乡镇房屋重建中被广泛采用,其抗震性能是人们所关心的.基于绵竹市土门镇当地重建房屋常用建筑材料的实验数据以及通用有限元软件ANSYS中Solid 65单元的性质和特点,用有限元模型模拟了粘土砖砌体在不同压应力状态(σ-/fm)下沿通缝截面抗剪强度试验,给出了相关单元在模拟砖砌体开裂中闭合及开口剪力传递系数的建议值;利用这些结果,分别建立了带约束(构造柱、圈梁等)和不带约束砌体墙的有限元模型,进而分析了他们在单调荷载以及低周往复荷载作用下的抗震性能.结果表明,与不带约束的墙体相比,带约束墙体在单调水平荷载作用下的初裂性能、极值荷载和延性都有很大的提高,在低周往复荷载作用下其耗能能力得到了改善.所得结果可供相应结构抗震设计的参考.  相似文献   

5.
混凝土小砌块约束砌体结构,由于加入芯柱、构造柱、圈梁,使结构整体性提高,因此具有较好的抗震性能和发展前景。通过整理94个混凝土小砌块约束砌体墙片试验数据,考虑权重,统计了混凝土小砌块约束砌体墙片延性系数,给出了延性系数与高度、延性系数比与高宽的关系,同时给出了层间开裂位移角、层间极限位移角公式,以及接近倒塌时混凝土小砌块约束砌体结构层间位移的计算公式,并与一个八层混凝土小砌块约束砌体结构的动力时程分析结果进行了对比,结果显示,最大误差在顶层,为17.7%,因此,所提层间位移计算公式是可以满足工程精度需要的,为混凝土小砌块约束砌体结构基于性态的抗震分析提供参考。  相似文献   

6.
Eight half‐scale brick masonry walls were tested to study two important aspects of confined masonry (CM) walls related to its seismic behavior under in‐plane and out‐of‐plane loads. Four solid wall specimens tested to investigate the role of type of interface between the masonry and tie‐columns, such as toothing varying from none to every course. The other four specimens with openings were tested to study the effectiveness of various strengthening options around opening to mitigate their negative influence. In the set of four walls, one wall was infilled frame while the other three were CM walls of different configurations. The experimental results were further used to determine the accuracy of various existing models in predicting the in‐plane response quantities of CM walls. Confined masonry walls maintained structural integrity even when severely damaged and performed much better than infill frames. No significant effect of toothing details was noticed although toothing at every brick course was preferred for better post‐peak response. For perforated walls, provision of vertical elements along with continuous horizontal bands around openings was more effective in improving the overall response. Several empirical and semi‐empirical equations are available to estimate the lateral strength and stiffness of CM walls, but those including the contribution of longitudinal reinforcement in tie‐columns provided better predictions. The available equations along with reduction factors proposed for infills could not provide good estimates of strength and stiffness for perforated CM walls. However, recently proposed relations correlating strength/stiffness with the degree of confinement provided reasonable predictions for all wall specimens. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Seismic performance of a three-storey unreinforced masonry building which survived the 1992 Erzincan earthquake without damage is evaluated. Mechanical properties of the masonry walls have been determined experimentally by using identical brick and mortar used in construction. An accurate material model is developed for masonry and employed in a computer program for the non-linear dynamic analysis of masonry buildings. The analytical results based on measured material properties indicated that masonry buildings which satisfy basic seismic code requirements possess remarkable lateral strength, stiffness and energy dissipation capacity. Accordingly, a simple elastic design approach is rendered suitable for unreinforced masonry under seismic excitations, provided that realistic material properties are employed in design.  相似文献   

8.
The in-plane capacity of unreinforced masonry (URM) elements may vary considerably depending on several factors, including boundary conditions, aspect ratio, vertical overburden, and masonry texture. Since the overall system resistance mainly relies on the in-plane lateral capacity of URM components when out-of-plane modes are adequately prevented, the structural assessment of URM structures could benefit from advanced numerical approaches able to account for these factors simultaneously. This paper aims at enhancing and optimising the employment of the distinct element method, currently confined to the analysis of local mechanisms of reduced-scale dry-joint blocky assemblies, with a view to simulate the experimentally observed responses of a series of URM full-scale specimens with mortared joints subjected to quasi-static in-plane cyclic loading. To this end, a mesoscale modelling approach is proposed that employs a simplified microscale modelling approach to effectively capture macroscale behaviour. Dynamic relaxation schemes are employed, in combination with time, size, and mass-scaling procedures, to decrease computational demand. A new methodology for numerically describing both unit, mortar and hybrid failure modes, also including masonry crushing due to high-compression stresses, is proposed. Empirical and homogenisation formulae for inferring the elastic properties of interface between elements are also verified, enabling the proposed approach to be applied more broadly. Using this modelling strategy, the interaction between stiffness degradation and energy dissipation rate was accounted for numerically. Although the models marginally underestimate the energy dissipation in the case of slender piers, a good agreement was obtained in terms of lateral strength, hysteretic response, and crack pattern.  相似文献   

9.
An innovative solution for the seismic protection of existing masonry structures is proposed and investigated through shake table tests on a natural scale wall assemblage. After a former test series carried out without reinforcement, the specimen was retrofitted using Steel Reinforced Grout. The strengthening system comprises horizontal strips of ultra‐high strength steel cords, externally bonded to the masonry with hydraulic lime mortar, and connectors to transversal walls, applied within the thickness of the plaster layer. In order to assess the seismic performance of the retrofitted wall, natural accelerograms were applied with increasing intensity up to failure. Test results provide a deep understanding of the effectiveness of mortar‐based composites for improving the out‐of‐plane seismic capacity of masonry walls, in comparison with traditional reinforcements with steel tie‐bars. The structural implications of the proposed solution in terms of dynamic properties and damage development under earthquake loads are also discussed.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
This paper addresses the behavior of confined masonry walls with dominating shear failure mode in walls. For this purpose, failure modes of these walls are classified in details. For each failure mode, complete set of analytical‐based relations for deriving parameters related to backbone curves is introduced. Calibrated finite element analyses are utilized as a benchmark for verification of some of the assumptions. The results of the proposed relations are compared with those of several Iranian and non‐Iranian experimental data. Sensitivity analysis is performed in order to understand the effects of important behavioral characteristics of these walls. The results of this study indicate that the proposed relations can accurately simulate behavior of confined masonry walls with dominating shear failure mode regardless of the failure mode in the ties. Moreover, it is concluded that the detailing limitations given in the Iranian Seismic Code are rationally compatible with the behavioral characteristics of confided masonry walls. The results of this study in terms of backbone curves can be utilized as the complementary part to this code. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
12.
为研究碳纤维布加固严重破坏砌体墙的有效性,开展了4片严重破坏墙体的碳纤维布加固试验,研究了试件在低周反复荷载作用下的试验性能,考查了其破坏形态和破坏特征,对比分析了墙体的承载力、延性和耗能能力等性能。研究表明:采用粘贴碳纤维布加固严重破坏墙体的方法是可行且有效的;加固后墙体的抗剪承载力、变形性能都较原墙墙体有明显提高;碳纤维布布置方法不同,对墙体的约束效果不同;碳纤维布破坏时其应变远小于其极限抗拉应变,建议碳纤维布加固严重破坏墙体时无须使用高强度的碳纤维布。  相似文献   

13.
In regions of low to moderate seismicity in North America, reinforced masonry structures are mostly partially grouted. The behavior of such structures under lateral seismic loads is complicated because of the interaction of the grouted and ungrouted masonry. As revealed in past experimental studies, the performance of partially grouted masonry (PGM) walls under in-plane cyclic lateral loading is inferior to that of fully grouted walls. However, the dynamic behavior of a PGM wall system under severe seismic loads is not well understood. In this study, a full-scale, one-story, PGM building designed for a moderate seismic zone according to current code provisions was tested on a shake table. It was shown that the structure was able to develop an adequate base shear capacity and withstand two earthquake motions that had an effective intensity of two times the maximum considered earthquake with only moderate cracking in mortar joints. However, the structure eventually failed in a brittle manner in a subsequent motion that had a slightly lower effective intensity. A detailed finite element model of the test structure has been developed and validated. The model has been used to understand the distribution of the lateral force resistance among the wall components and to evaluate the shear-strength equation given in the design code. The code equation has been found to be adequate for this structure. Furthermore, a parametric study conducted with the finite element model has shown that the introduction of a continuous bond beam right below a window opening is highly beneficial.  相似文献   

14.
The in‐plane cyclic behaviour of three types of unreinforced clay masonry was characterized by means of laboratory tests on full‐scale specimens. The masonry walls were assembled with various bonding arrangements (head joints made with mortar pockets, dry head joints with mechanical interlocking, thin‐layer mortar bed joints), which are not yet inserted in seismic codes. Experimental behaviour was modelled with an analytical hysteretic model able to predict lateral load–displacement curves in case of shear failure of the unreinforced walls. According to the experimental results and those of the selected analytical model, parametric study to evaluate the reduction in lateral strength demand produced by non‐linear behaviour in masonry walls, i.e. the load reduction factor was carried out by non‐linear dynamic analyses. The calculated values of the load reduction factor were modest. The differences in values found for the three masonry types, although consistent with them, were not great. This may indicate that, in the ultimate limit state, the type of masonry cannot significantly affect the behaviour of an entire building. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The efficiency of improving the seismic resistance of old masonry buildings by means of seismic isolation and confining the structure with CFRP laminate strips has been investigated. Five models of a simple two-story brick masonry building with wooden floors without wall ties have been tested on the shaking table. The control model has been built directly on the foundation slab. The second model has been separated from it by a damp-proof course in the form of a PVC sheet placed in the bed-joint between the second and the third course, whereas the third model has been isolated by rubber isolators placed between the foundation slab and structural walls. Models four and five have been confined with CFRP laminate strips, simulating the wall ties placed horizontally and vertically at floor levels and corners of the building, respectively. One of the CFRP strengthened models has been placed on seismic isolators. Tests have shown that a simple PVC sheet damp-proof course cannot be considered as seismic isolator unless adequately designed. Tests have also shown that the isolators alone did not prevent the separation of the walls. However, both models confined with CFRP strips exhibited significantly improved seismic behavior. The models did not collapse even when subjected to significantly stronger shaking table motion than that resisted by the control model without wall ties.  相似文献   

16.
墙体开洞影响下房屋砖砌体结构地震易损性分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为获取可靠的墙体开洞影响下房屋砖砌体结构地震易损性分析结果,采用ABAQUS有限元分析软件构建房屋砖砌体结构墙体模型,设置合理的墙体模型参数和数值模拟参数;对比模拟数值与以往研究的测试值,证明所构建模型参数取值合理;将截取的峰值段江油地震波作为上述模型的地震动输入,根据测得的房屋砖砌体结构的力学变化数据,分析房屋砖砌体结构的地震易损性。分析结果表明:地震情况下,随着墙体开洞率的增加,墙体荷载能力下降、墙体水平承载力增长幅度降低、墙体相对刚度退化率增加;墙体开洞数量越多,房屋砖砌体结构侧向刚度下降越快。因此分析得出墙体开洞率大、墙体开洞数量多,房屋砖砌体结构的地震易损性越显著。  相似文献   

17.
This paper deals with the results of cyclic load tests on masonry walls performed for the purpose of evaluation of in-plane shear behaviour and identification of shear strength, stiffness and energy dissipation. Eight walls in two series were assembled in laboratory conditions. The first series consisted of four unreinforced masonry walls constructed from solid clay bricks and lime mortar. The walls from the second series were strengthened by application of RC jackets on both sides. These were constructed of the same material and were characterized by the same geometry properties and vertical load levels as those of the walls from the first series. The main goal of the tests was to compare the behaviour of the unreinforced and strengthened walls under cyclic horizontal load. The results from the tests showed that the application of the strengthening method contributed to a significant improvement of the shear resistance of the jacketed walls. Analytical models were used to predict the shear resistance of the walls. Good agreement with the experimental results was obtained with a model based on tensile strength of masonry.  相似文献   

18.
A computational model for evaluating the dynamical response and the damage of large masonry walls subjected to out‐of‐plane seismic actions is presented. During earthquakes, these actions are often the main cause of damage for the front wall and lateral walls of old masonry‐built churches and monuments. Since the crack patterns often tend to subdivide the plane walls into a number of blocks, the model assumes such walls as a series of quadrilateral plane rigid elements connected to each other in the middle of their adjoining sides. Only the out‐of‐plane displacements are considered, and the connections are regarded as spherical elasto‐plastic joints which allow rotations whose axis is in the plane of the undeformed wall. The hysteretic characteristics of these joints are defined so as to approximate the brittle behaviour of masonry material and the degradation due to cyclic loadings. The numerical results obtained using a limited number of elements show that the global out‐of‐plane response of the masonry walls and the mechanical degradation at each connection are in accord with the observed behaviour of real churches hit by strong earthquakes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls.Vertical building enclosures in European countries are very often constituted by non-load-bearing masonry walls, using horizontally perforated clay bricks.These walls are generally supported and confined by a reinforced concrete frame structure of columns and beams/slabs.Since these walls are commonly considered to be nonstructural elements and their influence on the structural response is ignored,their consideration in the design of structures as well as their connection to the adjacent structural elements is frequently negligent or insufficiently detailed.As a consequence,nonstructural elements,as for wall enclosures,are relatively sensitive to drift and acceleration demands when buildings are subjected to seismic actions. Many international standards and technical documents stress the need for design acceptability criteria for nonstructural elements,however they do not specifically indicate how to prevent collapse and severe cracking,and how to enhance the overall stability in the case of moderate to high seismic loading.Furthermore,a review of appropriate measures to improve enclosure wall performance and both in-plane and out-of-plane integrity under seismic actions is addressed.  相似文献   

20.
针对农村窗间墙过窄的现状,提出一种组合配筋砌体以抵抗地震剪力,并提出混凝土多孔砖组合配筋砌体的参考公式.通过对混凝土多孔砖和组合配筋砖小截面墙体进行反复荷载下的抗震性能试验研究,讨论两种不同类型砌体的破坏特征、滞回特性、骨架曲线和抗剪强度等问题.组合配筋砌体与无筋砌体相比,抗震性能明显提高,延性增强.结果表明组合配筋砌体是一种能够明显改善小截面墙体抗震性能的实用方法,可在农村地区推广.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号