首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Strom surges are not only determined by the atmospheric forcing,but also influenced by the coastal geometry and bathymetry.The Bohai Sea,as one of China’s marginal seas,is seriously harmed by storm surges,especially those caused by cold-air outbreaks.As the coastline of the Bohai Sea has changed evidently these years,storm surges may have new characteristics due to the changes in the local geometry.This paper aims to find out these new characteristics by primarily investigating the influence of the changes in the local geometry on storm surges with numerical methods.20 scenarios were constructed based on the track and inten-sity of the cold-air outbreaks to describe the actual situation.By analyzing the model results of the control scenarios,it is found that the main changes of the maximum surge elevation occur in the Bohai Bay and the Laizhou Bay.At the top of the Bohai Bay,the maximum surge elevation is obviously decreased,while in the Laizhou Bay,it is enhanced by the growing Yellow River Delta.This,however,does not suggest that the storm surges in the Laizhou Bay become more serious.A comparison of the risk assessment of storm surges in the Tanggu,Huanghua and Yangjiaogou regions shows that the risk of storm surges in these coastal areas is lightened by the evolvement of the coastal geometry.Particularly near Yangjiaogou,though the maximum surge elevation becomes higher to subject more areas to risk,the risk is still reduced by the evolvement of the Yellow River Delta.  相似文献   

2.
When investigating the long-term variation of wave characteristics as associated with storm surges in the Bohai Sea, the Simulating Waves Nearshore(SWAN) model and ADvanced CIRCulation(ADCIRC) model were coupled to simulate 32 storm surges between 1985 and 2014. This simulation was validated by reproducing three actual wave processes, showing that the simulated significant wave height(SWH) and mean wave period agreed well with the actual measurements. In addition, the long-term variations in SWH, patterns in SWH extremes along the Bohai Sea coast, the 100-year return period SWH extreme distribution, and waves conditional probability distribution were calculated and analyzed. We find that the trend of SWH extremes in most of the coastal stations was negative, among which the largest trend was-0.03 m/a in the western part of Liaodong Bay. From the 100-year return period of the SWH distribution calculated in the Gumbel method, we find that the SWH extremes associated with storm surges decreased gradually from the center of the Bohai Sea to the coast. In addition, the joint probability of wave and surge for the entire Bohai Sea in 100-year return period was determined by the Gumbel logistic method. We therefore, assuming a minimum surge of one meter across the entire Bohai Sea, obtained the spatial SWH distribution. The conclusions of this study are significant for offshore and coastal engineering design.  相似文献   

3.
In this study,a coupled tide-surge-wave model was developed and applied to the South Yellow Sea.The coupled model simulated the evolution of storm surges and waves caused by extreme weather events,such as tropical cyclones,cold waves,extratropical cyclones coupled with a cold wave,and tropical cyclones coupled with a cold wave.The modeled surge level and significant wave height matched the measured data well.Simulation results of the typhoon with different intensities revealed that the radius to the maximum wind speed of a typhoon with 1.5 times wind speed decreased,and its influence range was farther away from the Jiangsu coastal region;moreover,the impact on surge levels was weakened.Thereafter,eight hypothetical typhoons based on Typhoon Chan-hom were designed to investigate the effects of varying typhoon tracks on the extreme value and spatial distribution of storm surges in the offshore area of Jiangsu Province.The typhoon along path 2 mainly affected the Rudong coast,and the topography of the Rudong coast was conducive to the increase in surge level.Therefore,the typhoon along path 2 induced the largest surge level,which reached up to 2.91 m in the radial sand ridge area.The maximum surge levels in the Haizhou Bay area and the middle straight coastline area reached up to 2.37 and 2.08 m,respectively.In terms of typhoons active in offshore areas,the radial sand ridge area was most likely to be threatened by typhoon-induced storm surges.  相似文献   

4.
Storm surge is one of the predominant natural threats to coastal communities. Qingdao is located on the southern coast of the Shandong Peninsula in China. The storm surge disaster in Qingdao depends on various influencing factors such as the intensity, duration, and route of the passing typhoon, and thus a comprehensive understanding of natural coastal hazards is essential. In order to make up the defects of merely using the warning water level, this paper presents two statistical distribution models(Poisson Bi- variable Gumbel Logistic Distribution and Poisson Bi-variable Log-normal Distribution) to classify the intensity of storm surge. We emphasize the joint return period of typhoon-induced water levels and wave heights measured in the coastal area of Qingdao since 1949. The present study establishes a new criterion to classify the intensity grade of catastrophic storms using the typhoon surge estimated by the two models. A case study demonstrates that the new criterion is well defined in terms of probability concept, is easy to implement, and fits well the calculation of storm surge intensity. The procedures with the proposed statistical models would be useful for the disaster mitigation in other coastal areas influenced by typhoons.  相似文献   

5.
A typhoon-induced storm surge simulation system was developed for the Qingdao area, including a typhoon diagnostic model for the generation of wind and pressure fields and a 2D Advanced Circulation (ADCIRC) model for simulating the associated storm surge with a 200 m resolution along the Qingdao coastline. The system was validated by an extreme surge event Typhoon Mamie (8509) and the parameters of Typhoon Mamie were used to investigate the sensitivity of typhoon paths to Qingdao storm surges with four selected paths: the paths of Typhoons Mamie (8509), Opal, 3921 and 2413, the selection being made according to their relative position to Qingdao. Experiments based on the Typhoon Mamie (8509) storm surge were also conducted to study the possible influences of future climate changes, including the sea level rise and sea surface temperature (SST) rise, on storm surges along the Qingdao coast. Storm surge conditions under both present day and future (the end of the 21st century) climate scenarios associated with the four selected paths were simulated. The results show that with the same intensity, when typhoons follow the paths of 3921 and 2413, they would lead to the most serious disasters in different areas of Qingdao. Sea level and SST affect storm surges in different ways: sea level rise affects storm surge mainly through its influence on the tide amplitude, while the increased SST has direct impact on the intensity of the surges. The possible maximum risk of storm surges in 2100 in the Qingdao area caused by typhoons like Mamie (8509) was also estimated in this study.  相似文献   

6.
There are obvious periodic oscillations in the observations of storm surges in the East China Sea. The storm surges are not only controlled by the wind stresses and isolated long wave caused by typhoons but also affected by the interaction between astronomical tides and storm surges. In the present paper we simulate the interaction between tides and storm surges by using a two dimensional numerical model. In our numerical experiments we use the data of the storm surge induced by Typhoon 8114. The calculations tally with the measured data well. The results indicate that the periodic oscillations occurring in the elevations of the surge are mainly caused by the interaction between the tide and the storm surge. The numerical experiments also indicate that the forecasting precision may be notably improved if the nonlinear interaction between tides and storm surges is taken into account.  相似文献   

7.
The current storm wave hazard assessment tends to rely on a statistical method using wave models and fewer historical data which do not consider the effects of tidal and storm surge.In this paper,the wave-current coupled model ADCIRC+SWAN was used to hindcast storm events in the last 30 years.We simulated storm wave on the basis of a large set of historical storms in the North-West Pacific Basin between 1985 and 2015 in Houshui Bay using the wave-current coupled model ADCIRC+SWAN to obtain the storm wave level maps.The results were used for the statistical analysis of the maximum significant wave heights in Houshui Bay and the behavior of wave associated with storm track.Comparisons made between observations and simulated results during typhoon Rammasun(2014)indicate agreement.In addition,results demonstrate that significant wave height in Houshui Bay is dominated by the storm wind velocity and the storm track.Two groups of synthetic storm tracks were designed to further investigate the worst case of typhoon scenarios.The storm wave analysis method developed for the Houshui Bay is significant in assisting government's decision-making in rational planning of deep sea net-cage culture.The method can be applied to other bays in the Hainan Island as well.  相似文献   

8.
Extreme water level is an important consideration when designing coastal protection structures. However, frequency analysis recommended by standard codes only considers the annual maximum water level, whereas water levels should actually be regarded as a combination of astronomical tide and storm surge. The two impacting factors are both random variables, and this paper discusses their dependency structures and proposes a new joint probability method to determine extreme design water levels. The lognormal, Gumbel, Weibull, Pearson type 3, traditional maximum entropy, and modified maximum entropy distributions are applied to fit univariate data of astronomical tides and storm surges separately, and the bivariate normal, Gumbel-Hougaard, Frank and Clayton copulas are then utilized to construct their joint probability distributions. To ensure that the new design method is suitable for use with typhoon data, the annual occurrence frequency of typhoon processes is considered and corresponding bivariate compound probability distributions are proposed. Based on maximum water level data obtained from Hengmen hydrological station in the Pearl River Basin, China, these probability models are applied to obtain designs for extreme water levels using the largest sum of the astronomical tide and storm surge obtained under fixed joint return periods. These design values provide an improved approach for determining the necessary height of coastal and offshore structures.  相似文献   

9.
Wang  Kai  Hou  Yijun  Li  Shuiqing  Du  Mei  Li  Rui 《中国海洋大学学报(英文版)》2020,19(2):263-271
Storm surge inundation is a major concern in marine hazard risk assessment during extreme weather conditions.In this study,a high-resolution coupled model(the ADVanced CIRCulation model+the Simulating WAves Nearshore model)was used to investigate the storm surge inundation in the southwestern Hangzhou Bay region during Typhoon Chan-hom in 2015.The simulated hydrodynamic processes(sea surface wave and storm tide)were validated with measured data from wave buoys and tide gauges,indicating that the overall performance of the model was satisfactory.The storm surge inundation in the coastal area was simulated for several idealized control experiments,including different wave effects(wave-enhanced wind stress,wave-enhanced bottom stress,and wave radiation stress).Dike overflowing cases with different dike heights and dike breaking cases with different dike breach lengths were considered in the simulation.The results highlight the necessity of incorporating wave effects in the accurate simulation of storm surge inundation.Dike height significantly influences the magnitude and phase of the maximum inundation area in the dike overflowing cases,and dike breach length is an important factor impacting the magnitude of the maximum inundation area in the dike breaking cases.This study may serve as a useful reference for accurate coastal inundation simulation and risk assessment.  相似文献   

10.
The northern South China Sea(SCS) is frequently affected by typhoons. During severe storm events, wave-current interactions produce storm surges causing enormous damage in the path of the typhoon. To evaluate the influence of wave-current interactions on storm surge, we used a coupled ocean-atmospherewave-sediment transport(COAWST) modeling system with radiation-stress and vortex-force formulations to simulate two typically intense tropical storms that invaded the SCS, namely Typhoons Nuri(2008) and Hagupit(2008), and compared results with observations from the Hong Kong Observatory. Both radiationstress and vortex-force formulations significantly improved the accuracy of the simulation. Depending on which typhoon and the topography encountered, the influence of surface waves on the oceanic circulation showed different characteristics, including the differences of range and intensity of storm surge between vortex-force and radiation-stress experiments. During typhoon landing, strong sea-surface elevation in concert with wave set-up/set-down caused the adjustment of the momentum balance. In the direction perpendicular to the current, but especially in the cross-shore direction, the pressure gradient and wave effects on the current dominated the momentum balance.  相似文献   

11.
In recent years, fast economic development demands for more land use and thus many reclamation projects are initiated around the Sanmen Bay, Zhejiang, SE China in the East China Sea, for which tidal and storm surge levels are reassessed. A two-dimensional numerical model based on an advanced circulation model(ADCIRC) was applied to evaluate the impact of reclamation projects on tidal and storm surge levels in the bay. The results show that the shoreline relocation and topographic change had opposite effects on tidal heights. Shoreline relocation decreased the tidal amplitude, while siltation caused topographic change and increased the amplitude. Such variations of the amplitude were significant in the top areas of Sanmen Bay. Three types of typhoon paths were selected for a case study to investigate the impacts of shoreline relocation and topographic change on storm surge level. Results show that the maximum increase in storm surge level due to shoreline relocation was less than 0.06 m. The rise of peak surge level due to the change of topography was significant and the peak surge level rose when siltation increased. The maximum surge level rise occurred in the path of northwest landing typhoons, which exceeded 0.24 m at the top of the bay. The rise in peak surge level can potentially lead to severe damages and losses in Sanmen Bay and more attention needs to be paid to this problem of shoreline change in the future.  相似文献   

12.
通过钻孔岩性特征、沉积构造及沉积物粒度、磁化率与测井曲线对莱州湾南岸XZK2钻孔上部晚更新世以来的松散沉积物进行了沉积相划分,结合14C同位素年龄测定,划分了深海氧同位素阶段,表明该地区沉积物磁化率与砂含量曲线具有明显的正相关关系,结合已有研究,证明该地区晚更新世以来古环境经历了三次冷暖交替,而莱州湾西南海岸所发现的相当于沧州海侵、献县海侵和黄骅海侵的三次海侵事件,钻孔上仅见全新世黄骅海侵,沧州海侵、献县海侵相应层位为滨海沉积。  相似文献   

13.
Based on the ultra-shallow water storm surge theory proposed by Qin and Feng[1] (1975), an ultra-shallow water storm surge model, taking into consideration the effect of the earth's rotation and the quadratically depth-varying eddy viscosity, is developed. Using the model wind stress fields as a guide for representing the effect of wind stress forcing in our model, a numerical investigation of the Bohai Sea wind surge is made. As a better means for solving the mathematical model, the Galerkin finite element technique is employed in numerical solutions. Under the control of the main weather situation, namely, the cold wave combined with the extratropical cyclone, two storm surge processes experienced on the Bohai Sea are simulated numerically. It is found that the experimental results, in the main, are in agreement with the observations.  相似文献   

14.
1 Introduction Thestormsurgeisoneofthemostimportantphe nomenathatendangerthecoastalengineeringfacili ties .Everyyearthereareabout 1 2tropicalcyclonesmakinglandfallatthemainlandofChinafromMaytoOctober (MuandTu ,2 0 0 0 ) .Whentheastronomictideishigh ,the…  相似文献   

15.
In the context of global climate change, the impact of group-occurring ocean dynamic disasters on China's offshore areas is becoming more and more intense. The study of the effect of existing ocean dynamic disasters on offshore hazard-bearing bodies mostly focuses on the effect of single disaster-causing factors, and it is still insufficient to study storm surge and dynamic wave coupling reinforcement effects as well as the process of the dynamic response of such hazard-bearing bodies as seawalls. This study firstly realized the synchronous process of water level and wave through continuous tide generation and wave generation by the wave maker and tide generating device, so as to realize the dynamic coupling simulation of storm surge and wave in the laboratory. Then the physical model test of the typical seawall section was carried out under the dynamic coupling of storm surge and wave as well as at a conventional fixed water level respectively. In the process of test wave overtopping discharge and the damage process of the levee crown and backwall of seawalls were observed and compared, and their damage mechanism was also studied.  相似文献   

16.
In the present paper a three-dimensional model has been used to calculate the vertical structure of the current generated by typhoon surge. The aim of this work is to obtain support for the depth-averaged model, which is based upon two basic assumptions. One of them is that the current has a negligible vertical structure and the other is that the velocity veering angle is small. Our results show that, in most of the real storm surge cases, these two assumptions are quite good approximations of the real situation, especially when water is shallow, and the locations are near the shore. These features are usually encountered in the real storm surges with which we are concerned. Therefore, we can expect that the two-dimensional depth-averaged model will give satisfactory results. The experiments carried out by using a straight coastline and uniform depth give vertical structures which are compatible with the conclusions previously reached by other authors.  相似文献   

17.
Extreme water levels are related to astronomical tides and storm surges.Eleven typhoon systems,which have caused extreme water level rises,were selected based on 60-yr water level data from the Xiamen tide gauge station.In these 11 typhoon systems,the astronomical tide component accounts for 71%-95%of the total water level.The Gumbel distribution of extreme water level rise was estimated,and the impact of typhoon surges on water levels during the return period was analyzed.The ex-treme tide levels caused by typhoons Herb(1996)and Dujuan(2015)are much higher than those of other typhoons and correspond to the return period of 76 yr and 71 yr,respectively.The differences of sea levels in the presence and absence of these two typhoons in the 10-100 yr return period are 5.8-11.1 cm.For the 100-yr return period,the total risks within 10,25,50,and 100 yr increase by 94.3%,85.4%,72.9%,and 54.4%,respectively,if the Herb and Dujuan are not considered.Assuming that typhoon Herb(1996)occurred during the highest astronomical tide,it will produce a water level higher than that of the 1000-yr return period.Sea level rise has an important influence on the water level return period,and the contribution of nonlinear sea level rise in the next 100 yr is estimated to be 10.34%.  相似文献   

18.
Return periods calculated for different environmental conditions are key parameters for ocean platform design.Many codes for offshore structure design give no consideration about the correlativity among multi-loads and over-estimate design values.This frequently leads to not only higher investment but also distortion of structural reliability analysis.The definition of design return period in existing codes and industry criteria in China are summarized.Then joint return periods of different ocean environmental parameters are determined from the view of service term and danger risk.Based on a bivariate equivalent maximum entropy distribution,joint design parameters are estimated for the concomitant wave height and wind speed at a site in the Bohai Sea.The calculated results show that even if the return period of each environmental factor,such as wave height or wind speed,is small,their combinations can lead to larger joint return periods.Proper design criteria for joint return period associated with concomitant environmental conditions will reduce structural size and lead to lower investment of ocean platforms for the exploitation of marginal oil field.  相似文献   

19.
This paper describes in detail the interaction between waves, tides and storm surges and covers theeffects of wave on tides and storm surges and the influence of tides plus storm surges on waves. Some pro-blems deserving attention and improvements are put forward. And finally a combined wave-tide-surge numerical model YE-JWTSM is presented,with all relevant interaction processes considered, includ-ing wave-dependent surface wind stress and bottom-stress as well as current-induced refrac-tion and frequency shift.  相似文献   

20.
With the rapid development of the marine economy industry, human exploitation of marine resources is increasing, which is contributing to the growing trend of eutrophication and frequent occurrence of red tide. Accordingly, investigations of seawater quality have attracted a great deal of attention. This study was conducted to construct a seawater environmental quality assessment model based on the variable fuzzy recognition model. The uncertainty and ambiguity of the seawater quality assessment were then considered, combining the monitoring values of evaluation indicators with the standard values of seawater quality. Laizhou Bay was subsequently selected for a case study. In this study, the correct variable model for different parameters was obtained according to the linear and nonlinear features of evaluation objects. Application of the variable fuzzy recognition model for Laizhou Bay, water quality evaluation and comparison with performance obtained using other approaches revealed that the generated model is more reliable than traditional methods, can more reasonably determine the water quality of various samples, and is more suitable for evaluation of a multi-index, multi-level, nonlinear marine environment system; accordingly, the generated model will be an effective tool for seawater quality evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号