首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在试验块体分别为明置与埋置情形时,利用激振器对某工程场地天然地基分别进行竖向、水平回转及扭转稳态强迫振动试验。试验结果表明,埋置情形试验的动力特性参数值均大于明置情形试验相应值;同种试验情形下,地基第一振型共振频率竖向最大,水平回转向其次,扭转向最小;土的参振质量均远大于基础本身质量。  相似文献   

2.
Based on the principle of turned mass damper(TMD) systems,the conceptual design of semi-submersible platform with a moveable heave-plate(MHS) has been put forward.The heave motion response amplitude operator(RAO) and viscous damping of the MHS platform are calculated by iteration,and the coupling stiffness between the MHS hull and the heave-plate is optimized to decrease the maximum heave motion response of the MHS hull under 10-year survival conditions in the South China Sea.The nu-merical results indicate that the heave motion RAO of the MHS hull can be decreased in the range of predominant wave frequencies,which may provide some reference to the heave motion control of offshore platforms.  相似文献   

3.
This study investigates the effects of multiphase internal flows that consider hydrate phase transitions on the parametric stability of marine risers.A numerical model of the multiphase internal flow that considers a hydrate phase transition is established.The model first solves the flow parameters and subsequently obtains the natural frequencies of risers with different gas intake ratios.The stability charts of marine risers with different gas intake ratios are plotted by applying Floquet theory,and the effects of the gas intake ratio on the instability and vibration response of the risers are identified.The natural frequency increases with an increase in the gas intake ratio;thus,instability zones move to higher frequency ranges in the stability charts.As the increasing gas intake ratio reduces the damping effect of the Coriolis force,the critical amplitude of the heave in the unstable region decreases,especially when hydrodynamic damping is not considered.As a result,higher-order unstable regions are excited.When in an unstable region,the vibration response curve of a riser with a high gas intake ratio excited by parametric resonance diverges quickly due to parametric resonance.  相似文献   

4.
To reduce the requirement for lifting capacity and decrease the hoist cable force during the descending and laying process of a subsea production system (SPS), a buoyancy module auxiliary installation technology was proposed by loading buoyancy modules on the SPS to reduce the lifting weight. Two models are established, namely, the SPS lowering-down model and the buoyancy module floating-up model. The main study results are the following: 1) When the buoyancy module enters the water under wave condition, the amplitude of tension fluctuation is twice that when SPS enters water; 2) Under current condition, the displacement of SPS becomes three times larger because of the existence of the buoyancy module; 3) After being released, the velocity of the buoyancy module increases to a large speed rapidly and then reaches a balancing speed gradually. The buoyancy module floats up at a balancing speed and rushes out from the water at a pop-up distance; 4) In deep water, the floating-up velocity of the buoyancy module is related to its mass density and shape, and it is not related to water depth; 5) A drag parachute can reduce floating-up velocity and pop-up distance effectively. Good agreement was found between the simulation and experiment results.  相似文献   

5.
Many studies have been done on the heave-pitch unstable coupling response for a spar platform by a 2-DOF model. In fact, in addition to the heave and pitch which are in one plane, the nonlinear unstable motion will also occur in roll. From the results of the experiments, the unstable roll motion plays a dominant role in the motion of a spar platform which is much stronger than that of pitch. The objective of this paper is to study 3-DOF coupling response performance of spar platform under wave and vortex-induced force. The nonlinear coupled equations in heave, roll and pitch are established by considering time-varying wet surface and coupling. The first order steady-state response is solved by multi-scales method when the incident wave frequency approaches the heave natural frequency. Numerical integration of the motion equations has been performed to verify the first-order perturbation solution. The results are confirmed by model test. There is a saturation phenomenon associated with heave mode in 3-DOF systems and all extra energy is transferred to roll and pitch. It is observed that sub-harmonic response occurs in roll and pitch when the wave force exceeds a certain value. The energy distribution in roll and pitch is determined by the initial value and damping characteristics of roll and pitch. The energy transfers from heave to pitch and then transfers from pitch to roll. Due to the influence of the low-frequency vortex-excited force, the response of roll is more complicated than that of pitch.  相似文献   

6.
The"5.12"Wenchuan earthquake in 2008 triggered a large number of co-seismic landslides.The rear boundary or cracks of co-seismic landslide are generally located at the steep free surface of thin or thick mountains.Dynamic process of this kind of landslides could be divided into two parts:the seismic dynamic response of the slope and the movement process of rock mass.Taking the Laoyingyan rockslide as an example,the amplification effect was studied by single-degree-of-freedom system analysis method.Besides,the dynamic process of landslide under seismic loading was simulated by the finite difference method(FDM)and discrete element method(DEM).The amplification coefficient of the rockslide to seismic wave is 1.25.The results show that the critical sliding surface of the Laoyingyan rockslide was formed at the 23 th seconds under the action of seismic wave.At the same time,tension failure occurred at the rear edge of the sliding mass and shear failure occurred at the front edge.The maximum displacement was 0.81 m and the initial velocity was 2.78 m/s.During the initiation process of the rockslide,the rock mass firstly broke down along the joints which are along the dip of the rock stratum,and then collapsed bodily along the secondary structural planes.In the process of movement,the maximum velocity of rock mass was 38.24 m/s.After that,the rock mass underwent multiple collisions,including contact,deceleration to 0 and speed recovery after rebound.Finally,due to the constant loss of energy,the rocks stopped and accumulated loosely at the foot of the slope.The longest distance of movement was about 494 m.Besides,the smaller the damping ratio,the farther the rock mass moved.Compared with the results without considering the amplification factor,the movement distance of landslide by considering the amplification factor was more accurate.The study of the Laoyingyan rockslide is helpful to strengthen our field identification of potential co-seismic rockslides.At the same time,understanding its movement and accumulation process can help us better predict the hazard scope of the co-seismic rockslides,and provide a reference for the design of treatment projects.  相似文献   

7.
Finite water depth effect for wave-body problems are studied by continuous Rankine source method and non- desingularized technique. Free surface and seabed surface profiles are represented by continuous panels rather than a discretization by isolated points. These panels are positioned exactly on the fluid boundary surfaces and therefore no desingularization technique is required. Space increment method is applied for both free surface source and seabed source arrangements to reduce computational cost and improve numerical efficiency. Fourth order Runge-Kutta iteration scheme is adopted on the free surface updating at every time step. The finite water depth effect is studied quantitatively for a series of cylinders with different B/T ratios. The accuracy and efficiency of the proposed model are validated by comparison with published numerical results and experimental data. Numerical results show that hydrodynamic coefficients vary for cylinder bodies with different ratios of B/T. For certain set of B/T ratios the effect of finite water depth increases quickly with the increase of motion frequency and becomes stable when frequency is relatively large. It also shows that water depths have larger hydrodynamic effects on cylinder with larger breadth to draft ratios. Both the heave added mass and damping coefficients increase across the frequency range with the water depths decrease for forced heave motion. The water depths have smaller effects on sway motion response than on heave motion response.  相似文献   

8.
The key concept of spectrum response estimation with commercial software, such as the SESAM software tool, typically includes two main steps: finding a suitable loading spectrum and computing the response amplitude operators (RAOs) subjected to a frequency-specified wave component. In this paper, we propose a nontraditional spectrum response estimation method that uses a numerical representation of the retardation functions. Based on estimated added mass and damping matrices of the structure, we decompose and replace the convolution terms with a series of poles and corresponding residues in the Laplace domain. Then, we estimate the power density corresponding to each frequency component using the improved periodogram method. The advantage of this approach is that the frequency-dependent motion equations in the time domain can be transformed into the Laplace domain without requiring Laplace-domain expressions for the added mass and damping. To validate the proposed method, we use a numerical semi-submerged pontoon from the SESAM. The numerical results show that the responses of the proposed method match well with those obtained from the traditional method. Furthermore, the estimated spectrum also matches well, which indicates its potential application to deep-water floating structures.  相似文献   

9.
The key concept of spectrum response estimation with commercial software,such as the SESAM software tool,typically includes two main steps:finding a suitable loading spectrum and computing the response amplitude operators(RAOs) subjected to a frequency-specified wave component.In this paper,we propose a nontraditional spectrum response estimation method that uses a numerical representation of the retardation functions.Based on estimated added mass and damping matrices of the structure,we decompose and replace the convolution terms with a series of poles and corresponding residues in the Laplace domain.Then,we estimate the power density corresponding to each frequency component using the improved periodogram method.The advantage of this approach is that the frequency-dependent motion equations in the time domain can be transformed into the Laplace domain without requiring Laplace-domain expressions for the added mass and damping.To validate the proposed method,we use a numerical semi-submerged pontoon from the SESAM.The numerical results show that the responses of the proposed method match well with those obtained from the traditional method.Furthermore,the estimated spectrum also matches well,which indicates its potential application to deep-water floating structures.  相似文献   

10.
Marine geological disasters occurred frequently in the deep-water slope area of the northern South China Sea, especially submarine landslides, which caused serious damage to marine facilities. The cyclic elastoplastic model that can describe the cyclic stress-strain response characteristic for soft clay, is embedded into the coupled Eulerian-Lagrangian(CEL) algorithm of ABAQUS by means of subroutine interface technology. On the basis of CEL technique and undrained cyclic elastoplastic model, a method for analyzing the dynamic instability process of marine slopes under the action of earthquake load is developed. The rationality for cyclic elastoplastic constitutive model is validated by comparing its calculated results with those of von Mises model built in Abaqus. The dynamic instability process of slopes under different conditions are analyzed. The results indicate that the deformation accumulation of soft clay have a significant effect on the dynamic instability process of submarine slopes under earthquake loading. The cumulative deformation is taken into our model and this makes the calculated final deformation of the slope under earthquake load larger than the results of conventional numerical method. When different contact conditions are used for analysis, the smaller the friction coefficient is, the larger the deformation of slopes will be. A numerical analysis method that can both reflect the dynamic properties of soft clay and display the dynamic instability process of submarine landslide is proposed, which could visually predict the topographies of the previous and post failure for submarine slope.  相似文献   

11.
为探究浑厚山体不同高程由表及里地震动响应规律,以冷竹关山体为例,采用离散元软件建立地形与风化介质组合模型,并从底部边界输入汶川地震波信号,研究该山体两侧边坡的内外动力响应规律。结果表明,随着高程的增加,靠大渡河一侧边坡坡体内与坡表的加速度放大系数均表现出先增大后减小的节律性变化,在近坡顶时增大较快并达到最大值;靠近瓦斯沟一侧边坡坡表受地形起伏的影响,加速度放大系数存在凸坡放大、凹坡减小的特征;相同高程,随边坡由表及里深度的增加,加速度放大系数表现为逐步减小,当距坡表150~200 m时放大曲线趋于平缓;随高程的增加,加速度放大系数由表及里的减小速度变缓,且放大曲线收敛平缓的深度增大;随岩体风化程度的增加,岩体介质波速降低,共振效应使得加速度响应增大,与此同时,斜坡地形与介质组合效应使得坡表峰值加速度放大系数在2.0附近。  相似文献   

12.
The structure of an air-floating caisson is suitable for the major structure of caisson-type artificial islands.Thus,it has been rapidly developed and widely used in the exploration and development of oil and gas fields in shallow sea and intertidal zones.Air-floating transportation technology is one of the key technologies employed in this structure.In this paper,the factors influencing the dynamic response characteristics of air-floating caisson with multi-compartments(AFCMC)were studied using model tests.The length and the height of each air-floating structure in the model were 1.0 and 0.1 m,respectively.In addition,the 1:100 models with 6,8,and 10 compartments under regular waves were tested in the wave flume,respectively.In the experiments,the respective water depths were set at 0.2,0.3,and 0.4 m,and the corresponding drafts were 0.05,0.06,and 0.07 m.Results show that with the increase of draft,the heave natural period increased and the maximum amplitude of the heave motion decreased.Meanwhile,the pitch motion decreased at 6 and 8 compartments and increased at 10 compartments.As the water depth increased,the maximum amplitude and amplitude change of heave and pitch motions first increased and then decreased.However,several amplitudes close to the maximum amplitude appeared in the measured period at shallower water depth,thereby indicating the vertical movements of the structure enhanced under shallow water.The increase in the number of compartments reduced the vertical movements under 6.0 m draft,but it increased the vertical movements under 5.0 and 7.0 m draft.Thus,increasing the number of compartments has a limited capacity to improve the motion performance of the structure.  相似文献   

13.
为探讨齿轮系统裂纹故障的非线性动力学机理,研究含裂纹故障的四自由度齿轮系统的动力学特性,考虑时变啮合刚度及非线性间隙的影响,建立含裂纹故障的齿轮四自由度啮合耦合动力学模型,分析裂纹故障对系统啮合刚度的影响;采用谐波平衡法给出系统的解析解,分析裂纹故障及齿轮系统参数对齿轮传动系统的动力学行为的影响.结果表明,裂纹故障能够引起齿轮系统的幅值跳跃、分岔现象和系统共振,从而为齿轮箱的设计及裂纹故障的诊断提供依据.  相似文献   

14.
为研究强震作用下斜坡表面的动力放大效应, 以陕西勉县某岩质斜坡为例, 建立了三维模型。运用离散元软件3DEC, 模拟了动力条件下斜坡的变形失稳过程, 分析了斜坡表面的动力响应特征, 研究了不同地震波输入工况条件下坡体表面动力响应差异。研究结果表明: 考虑地震纵波的影响时, 竖向加速度得到显著增强, 坡面的PGA放大系数增强了约1.62倍; 坡面形态强烈影响着斜坡表面的动力响应特征, 强震作用下, 斜坡坡肩及坡形转折处的放大效应均十分强烈, 凸出部位次之, 坡表两侧的放大效应最弱; 不同输入工况下, 斜坡坡形转折处的水平向PGA放大系数均维持较高值, 特别是在仅输入水平向加速度的条件下, 该部位在地震滑坡灾害预防中应特别注意; 强震作用下滑坡的运动过程可概括为滑坡孕育启动阶段—挤压碰撞高速运动阶段—堆积阶段。研究成果可为该地区防灾减灾工作提供一定理论支持。   相似文献   

15.
建立两级隔振系统的运动模型,推导系统的闭环传递函数并对传递函数进行分析。结果表明:1)系统采用PID反馈较当前超长弹簧中采用的PD反馈具有更好的等效阻尼系数调节功能。2)系统的等效固有周期主要受反馈比例系数kp影响,kp越大,等效固有周期越长,隔振效果越好;kp选定后,积分系数ki和微分系数kd共同影响系统的阻尼,且ki占主导地位,决定系统的稳定性。通过仿真验证了闭环传递函数分析结果的准确性,且仿真结果表明,系统在1 Hz处的隔振效果可达-70 dB。  相似文献   

16.
云南文山5.3级地震跨断层形变短期前兆研究   总被引:2,自引:1,他引:1  
将云南东部的断层网络视为一个互有关联的动力学系统,利用蕴震系统信息合成方法对该系统15条跨断层短水准和14条短基线资料进行处理与分析,结果表明:2005年8月云南文山5.3级地震前,断层形变短期异常明显,且水平运动异常较垂直运动更为明显。  相似文献   

17.
This paper presents a novel semi-submersible(SEMI) platform concept, called the multiple small columns(MSC) SEMI that improves upon the hydrodynamic performance of the conventional SEMI. Unlike the conventional SEMI, the proposed MSC SEMI utilizes multiple small circular columns to support the deck and a large pontoon that increases the structural displacement. The novelty of the MSC SEMI is its reduction of the hydrodynamic load on the structure and suppression of its motion response, particularly in the heave direction. The MSC SEMI has the advantages of increasing the added mass, radiation damping, and natural period of the structure. A comprehensive investigation of the hydrodynamic performance of the novel MSC SEMI is conducted in both the time and frequency domains with a special focus on the resulting hydrodynamic load and motion response. Numerical simulation results demonstrate that the MSC SEMI concept can reduce the hydrodynamic load and motion response and improve the hydrodynamic performance of SEMIs as expected.  相似文献   

18.
【目的】研究海上沉桩贯入软土地基诱发的挤土效应。【方法】利用有限元大变形RITSS程序,通过大量的参数分析,对海洋地基桩基础贯入引起的挤土效应、土体破坏机理、周围土体的水平和隆起位移,以及挤土效应的影响范围展开系统研究。【结果】将数值模型与锥形桩(圆锥贯入仪)经典理论解进行比对,获得了较好的一致性。对大量数值仿真结果进行统计,获得在海洋地基中沉桩时土体的径向位移和垂直隆起高度的定量化描述,桩周土在1~3倍圆桩半径范围内最大水平位移为0.26R。【结论】提出关于水平位移和隆起高度的计算公式,能够预测沉桩对临近土体扰动的影响范围,能较为准确地评估多桩系统中沉桩对临近桩基础的影响。  相似文献   

19.
采用甘肃省CORS网和中国大陆构造环境监测网络中共48个台站的GPS观测数据,解算得到观测台站的垂直位移,并与GRACE时变重力场Mascon模型解CSR RL05M数据计算得到的垂直形变进行比较,分析区域地表垂直形变特征。结果表明,研究区内台站垂直形变存在局部特征,甘肃庆阳和平凉地区垂直形变与其他地区存在明显差异,相关系数、均方根减少量和周年信号减少量均高于其他地区;扣除趋势项后,观测台站GPS垂直位移与GRACE垂直形变时间序列相关系数均值为0.72,GPS和GRACE周年信号振幅均值分别为6.00 mm和3.70 mm,周年信号减少量和均方根误差减少量均值分别为0.51和0.29;研究区内GPS垂直位移和GRACE垂直形变时间序列一致性较强,GRACE垂直形变能有效解释50%以上的GPS垂直位移周年信号,GPS垂直位移时间序列包含的非构造形变中平均约29%来源于环境负载变化所引起的负荷形变。  相似文献   

20.
Cyclic load testing of pre-stressed rock anchors for slope stabilization   总被引:2,自引:1,他引:1  
The objective of this research was to assess the characteristics of seismic induced damage and the deformation patterns of pre-stressed cement-grouted cables that are used for rock slope stabilization projects subjected to quasi-static cyclic loading. The experimental configuration includes the installation of 15 pre-stressed cables in a slope model made of concrete blocks (theoretically rigid rock mass) on top of a pre-existing sliding surface. The study showed that: (i) The pre-stressed cables exhibited great seismic performance. Rapid displacement of the model blocks was observed after the complete loss of the initial pre-stress load under continued applied cyclic loads and exceedance of the state of equilibrium, which implies the higher the initial pre-stress load, the better the seismic performance of the rock anchor; (ii) The failure of the pre-stressed cables was due to fracture at the connection of the tendons and cable heads under cyclic loading. The sequence of failure had a distinct pattern. Failure was first observed at the upper row of cables, which experienced the most severe damage, including the ejection of cable heads. No evidence of de-bonding was observed during the cyclic loading; (iii) The stress distribution of the bond length for pre-stressed cables was highly non-uniform. High stress concentrations were observed at both the fixed end and the free end of the bond length both before and immediately after the state of equilibrium is exceeded. The results obtained can be used to evaluate the overall performance of pre-stressed rock anchors subject to seismic loading and their potential as rockfall prevention and stabilization measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号