首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
东北大西洋北海渔场鱼类群落结构年际变化研究   总被引:2,自引:1,他引:1  
陈爽  陈新军 《海洋学报》2019,41(6):64-75
根据2001-2015年东北大西洋北海渔场进行的国际底拖网调查渔获数据,采用生物多样性指数和多元统计分析研究该海域群落结构的年际变化,并利用格局转变贯序t检验的方法研究鱼类种群的转变规律,结合环境因素与捕捞因素分析群落结构变化的原因。结果显示:2001-2015年北海渔场共出现280种渔业资源,其中鱼类有222种,资源丰度波动较大;物种多样性整体呈上升趋势。聚类分析和非度量多维标度排序分析表明,研究期间大致分为2001-2003年、2004-2011年和2012-2015年3个阶段。大西洋鲱分别在2004年和2014年种群结构发生格局转变,格局转变指数(RSI)分别为-0.45和0.41;黑线鳕在2003年和2012年格局发生转变,RSI值分别为-0.58和-0.66;黍鲱在2014年格局发生转变,RSI值为2。通过对环境因素与捕捞因素的分析发现,北海渔场群落格局第一次发生转变主要受捕捞因素影响,第二次发生转变主要受环境因素影响。  相似文献   

2.
This paper studies the causes and mechanisms of the formation of extreme anomalies in the tropospheric temperature associated with the North Atlantic Oscillation (NAO). Our approach is based on understanding that, in the annual cycle, continental-scale tropospheric temperature anomalies (planetary waves with longitudinal wave numbers of 1–3) can both intensify under the direct action of heat inflow as an energy source for these anomalies (radiation cooling/heating) and weaken as a result of the destructive action of heat inflow under temperature advections with the opposite (to the heat inflow) sign [4, 5]. According to the monthly mean data of the NCEP/NCAR reanalysis over the 40-year period, seasonal air temperature anomalies have been studied at the level 850 hPa (T 850) in different regions of Eurasia. It has been confirmed that the negative NAO phase in winter is favorable for preserving negative T 850 anomalies in the east of the continent at this time of year, whereas the positive NAO phase is favorable for negative T 850 anomalies in the west. However, it has been revealed that this dependence was critically violated during the winter seasons approximately two years before an extreme event. This was explained by the fact that, in those years, the NAO influence on winter T 850 anomalies was limited. This paper formally considers a certain mechanism of anomalous heat inflow as an energy source for these anomalies with functions of the formation (intensification) of negative T 850 anomalies in winter and positive T 850 anomalies in summer, as well as with a function of the limitation of the influence of the predominant dynamic mode on some regions of the continent. It is shown that, in the 1960s, T 850 anomalies with negative NAO indices in the east of the continent were governed by a hypothetic mechanism of heat inflow as an energy source for anomalies; in 1980s, at prolonged positive NAO indices, T 850 anomalies in the west of the continent could also be governed by this mechanism. This paper, within the accepted degree of detail, demonstrates the process of limitation of the NAO influence in some years (1966, 1967, 1987, and 1988), which leads to an unbalance of the anomalies and a possible extreme phenomenon. It is demonstrated that, in some seasons, the anomalies were not governed by the hypothetic mechanism of the heat inflow under the action of large NAO changes and a complete upset of the annual cycle of anomalies. Determining the first indicators of the unbalance, which can lead to extreme anomalies, is shown to be difficult if it is based only on an analysis of winter seasons (as is the case with most of the works) without invoking the annual trends of the tropospheric temperature and the NAO index.  相似文献   

3.
Keller  N. B.  Oskina  N. S.  Savilova  T. A. 《Oceanology》2019,59(4):552-555
Oceanology - Only two species of scleractinian corals were found in the high latitudes of the Arctic Ocean west of the Barents Sea: Lophelia pertusa (Linné, 1758) and Flabellum macandrewi...  相似文献   

4.
北极河流径流是北冰洋淡水的最大来源,其变化会对北冰洋中的诸多过程有重要影响。本文基于全球高分辨率海洋-海冰耦合模式的模拟结果,研究北冰洋温盐、海冰以及环流对北极河流径流的敏感性。通过对比有气候态北极河流径流输入的控制实验结果和径流完全关闭的敏感性实验结果,研究发现北极径流对北冰洋温度、盐度、海冰以及海洋环流等有显著的影响。关闭北极河流径流后,在河口附近的陆架上温度降低、盐度升高,且导致500 m深度处温度下降以及盐度升高;河口附近的陆架处,海冰密集度与海冰厚度增加。关闭北极河流径流也对北冰洋内的环流有影响:由于缺少来自欧亚大陆的北极径流的输入,穿极漂流与东格陵兰流流速减小且盐度增加;关闭北极径流导致近岸海表面高度降低,沿欧亚陆架的北冰洋边界流减弱,白令海入流增强。通过对比关闭北极径流实验与控制实验的温度和盐度剖面,发现关闭北极径流后大西洋层温度降低,各陆架海盐跃层的梯度减小,盐跃层厚度减小。  相似文献   

5.
The variability of the ice and freshwater transports through the main openings of the Nordic Seas is studied based on a 200-year simulation with a sea ice–ocean model forced by stochastic surface wind stress anomalies representative of Northern annular mode (NAM). The spectrum of the ice export through Fram Strait (FS), which constitutes the main contribution to the total freshwater export anomaly from the Arctic, shows no significant peak though half of the variance is concentrated at periods longer than a year. The standard deviation of the freshwater export to the subpolar gyre through Denmark Strait only amounts to 40% of the standard deviation of the total (ice+liquid) freshwater export through FS, with a comparatively larger variance in the low-frequency range, suggesting that the Greenland Sea could act as a low-pass filter. In the upper layer of the Iceland–Scotland Passage, positive phases of the NAM lead to a fast increase of the northward volume and salt transports. Within 2 years, the salt transport anomaly, however, changes sign due to advection of negative salinity anomalies which originate in the subpolar gyre and can be traced up to the Barents Sea.  相似文献   

6.
Numerical experiments with the circulation model of the North Atlantic based on the splitting algorithms in the σ-coordinate system with a spatial resolution allowing for reproducing synoptic eddies were performed in two versions: with the Arctic Ocean and without it (boundary along 78°N). They showed that the account for the water exchange with the Arctic is fundamentally important for reproducing jet dynamics at the western boundary of the Atlantic down to the subtropical zone. The influence of the conditions at the liquid boundary that separates the Atlantic and the Arctic extends not only over the subarctic area [29] but is also “transferred” by the Labrador Current and the Slope Water Current (SWC) to the area of the Gulf Stream proper. One cannot properly describe the detachment of the Gulf Stream from the coast without adequate reproducing of the Labrador Current and SWC. An hypothesis is posed that the location of the detachment region at 35°N is caused by strong vertical motions at the interface between the SWC and the Gulf Stream jet with horizontal velocities that are almost equal to those at the exit from the Florida Strait. A comparison of the model circulation with that retrieved from the hydrological data and the drift of neutral buoyancy floats [14, 22] showed both qualitative and quantitative coincidences of the features of the northward warm water transfer such as the streamline around the so-called northwestern “corner” (motion “along the topography”) and the jet-wise transport of these waters from Labrador to the northeast inside a kind of “pipeline,” which is limited in the upper baroclinic layer 1 km thick by mean velocity contour lines of about 10 cm/s. A comparison between the experimental [19] and model fields of the ocean level showed that, at the absence of direct representation of the water (mass) exchange between the Atlantic and the Arctic Ocean, the decrease of the gradient velocities in the Gulf Stream may reach 30%.  相似文献   

7.
The distributional patterns were analyzed for 43 species and 33 genera of echinoderms in the Laptev and East Siberian seas and for 59 species and 35 genera of the asteroid species in the Arctic Ocean. The probable colonization route through the Arctic was suggested for each species based on (1) the distributional patterns of the Arctic species, (2) the distributional patterns of the closely related species, and (3) the location of the center of the diversity of the species belonging to a certain genus. The species of the Pacific origin prevailed in the asteroid fauna of the Arctic seas. The asteroid species diversity and the ratio of the species of Pacific origin decreased from the Barents towards the Laptev Sea and increased, respectively, in the East Siberian and the Chukchee seas. The species range limits were found for 19 species in the East Siberian Sea compared to only 3 species in the Laptev Sea. The East Siberian Sea was a limiting area for the dispersal of four species groups: (1) invaders from the North Pacific dispersing along the Asian coast of the Arctic (shallow-water stenobathic species), (2) invaders from the North Pacific dispersing along the American coast of the Arctic and further on back into the Arctic along the Eurasian coast (secondarily Atlantic species); (3) originally invaders from the Northern Atlantic; (4) representatives of the Arctic autochthonous fauna. A great width of the biotic boundaries (i.e., the zones of the species range boundaries crowding) was typical for the Arctic Basin, which was a sign of their young geological age.  相似文献   

8.
《Ocean Modelling》2004,6(3-4):265-284
Within the framework of the Arctic Ocean Model Intercomparison Project results from several coupled sea ice–ocean models are compared in order to investigate vertically integrated properties of the Arctic Ocean. Annual means and seasonal ranges of streamfunction, freshwater and heat content are shown. For streamfunction the entire water column is integrated. For heat and freshwater content integration is over the upper 1000 m. The study represents a step toward identifying differences among model approaches and will serve as a base for upcoming studies where all models will be executed with common forcing. In this first stage only readily available outputs are compared, while forcing as well as numerical parameterizations differ.The intercomparison shows streamfunctions differing in pattern and by several Sverdrups in magnitude. Differences occur as well for the seasonal range, where streamfunction is subject to large variability.Annual mean heat content, referenced to 0 °C, in the Canada Basin varies from −3.5 to +1.8 GJ m−2 among the models, representing both colder and warmer solutions compared to the climatology. Seasonal range is highest in regions with seasonal or no ice cover.Corresponding freshwater content, referenced to 34.8 ppt, shows differences most obviously in the Beaufort Sea and Canada Basin where maximum values vary between 6 and 24 m for the individual models. Maxima in the seasonal range are related to river inflow.In the current stage of the project, applied windstress contributes significantly to the differences. However differences due to model resolutions and model parameterizations can already be detected.  相似文献   

9.
Poselov  V. A.  Verba  V. V.  Zholondz  S. M.  Butsenko  V. V. 《Oceanology》2019,59(5):732-746
Oceanology - Abstract—The main positive morphostructures of the Amerasia Basin — the Lomonosov Ridge, Alpha Ridge, Mendeleev Rise, Chukchi Plateau, and Northwind Ridge — are...  相似文献   

10.
In the Eastern North Atlantic Ocean iron (Fe) speciation was investigated in three size fractions: the dissolvable from unfiltered samples, the dissolved fraction (<0.2 μm) and the fraction smaller than 1000 kDa (<1000 kDa). Fe concentrations were measured by flow injection analysis and the organic Fe complexation by voltammetry. In the research area the water column consisted of North Atlantic Central Water (NACW), below which Mediterranean Overflow Water (MOW) was found with the core between 800 and 1000 m depth. Below 2000 m depth the North Atlantic Deep Water (NADW) proper was recognised. Dissolved Fe and Fe in the <1000 kDa fraction showed a nutrient like profile, depleted at the surface, increasing until 500–1000 m depth below which the concentration remained constant. Fe in unfiltered samples clearly showed the MOW with high concentrations (4 nM) compared to the overlying NACW and the underlying NADW, with 0.9 nM and 2 nM Fe, respectively. By using excess ligand (Excess L) concentrations as parameter we show a potential to bind Fe. The surface mixed layer had the highest excess ligand concentrations in all size fractions due to phytoplankton uptake and possible ligand production. The ratio of Excess L over Fe proved to be a complementary tool in revealing the relative saturation state of the ligands with Fe. In the whole water column, the organic ligands in the larger colloidal fraction (between 0.2 μm and 1000 kDa) were saturated with Fe, whereas those in the smallest fraction (<1000 kDa) were not saturated with Fe, confirming that this fraction was the most reactive one and regulates dissolution and colloid aggregation and scavenging processes. This regulation was remarkably stable with depth since the alpha factor (product of Excess L and K′), expressing the reactivity of the ligands, did not vary and was 1013. Whereas, in the NACW and the MOW, the ligands in the particulate (>0.2 μm) fraction were unsaturated with Fe with respect to the dissolved fraction, thus these waters had a scavenging potential.  相似文献   

11.
Within the Russian–German research project on “Siberian River Run-off (SIRRO)” dealing with freshwater discharge and its influence on biological, geochemical, and geological processes in the Kara Sea, sedimentological and organic-geochemical investigations were carried out on two well-dated sediment cores from the Yenisei Estuary area. The main goal of this study was to quantify terrigenous organic carbon accumulation based on biomarker and bulk accumulation rate data, and its relationship to Yenisei river discharge and climate change through Holocene times. The biomarker data in both cores clearly indicate the predominance of terrigenous organic matter, reaching 70–100 and 50–80% of total organic carbon within and directly north of the estuary, respectively. During the last ca. 9 cal ka b.p. represented in the studied sediment section, siliciclastic sediment and (terrigenous) organic carbon input was strongly influenced by postglacial sea-level rise and climate-related changes in river discharge. The mid-Holocene Climatic Optimum is documented by maximum river discharge between 8.2 and 7.3 cal ka b.p. During the last 2,000 years, river discharge probably decreased, and accumulation of both terrigenous and marine organic carbon increased due to enhanced coagulation of fine-grained material.  相似文献   

12.
In the framework of the German contribution to the Joint Global Ocean Flux Study (JGOFS), deep-water fluxes of particle-associated trace elements were measured in the northeast Atlantic Ocean. The sinking particles were collected almost continuously from 1992 to 1996 at three time-series stations, L1 (33°N/22°W), L2 (47°N/20°W), and L3 (54°N/21°W), using sediment traps. The focus of the present study is the temporal variability of the particle-associated elemental fluxes of Al, Ca, Cd, Co, Cu, Fe, Mn, Ni, P, Pb, Ti, V, and Zn at a depth of 2000 m.A clear seasonality of the fluxes that persisted for several years was documented for the southernmost station (L1) at stable oligotrophic conditions in the area of the North Atlantic Subtropical Gyre East (NASTE). At L2 and L3, an episodic nature of the elemental fluxes was determined. Mesoscale eddies are known to frequently cause temporal and spatial variability in the flux of biogenic components in that area. These events modified the simple seasonal pattern controlled by the annual cycle at L2, in the North Atlantic Drift Region (NADR), and at L3, which was influenced by the Atlantic Arctic province (ARCT). All stations were characterized by an additional episodic lithogenic atmospheric supply reaching the deep sea.The integrated annual fluxes during the multi-year study revealed similar flux magnitudes for lithogenic elements (Al, Co, Fe, Ti, and V) at L2 and L3 and roughly twofold fluxes at L1. Biogenic elements (Cd, P, and Zn) showed the opposite trend, i.e., two to fourfold higher values at L2 and L3 than at L1. For Mn, Ni, and Cu, the spatial differences were smaller, perhaps because of the intermediate behavior, between lithogenic and biogenic, of these elements. Similarly, among the three study sites, there were no noticeable differences in the total annual flux of Pb.The respective lithogenic fractions of the deep-sea fluxes of Cd, Co, Cu, Mn, Ni, V, and Zn were subtracted based on the amount of Al, with the average composition of the continental crust as reference. This procedure allowed estimation of the labile trace element fraction (TEexc) of the particles, i.e., TE taken up or scavenged during particle production and sedimentation. The ratios of TEexc/P clearly demonstrated an enrichment of TE over labile P from biogenic surface material to the deep sea for Zn (factor 4–6), Mn (12–27), Ni (3–5), and Cu (9–25); an intermediate status for Co (0.5–2.2); and depletion for Cd vs. P (0.2–0.4). Surprisingly, the recycling behavior of excess Co was found to be similar to that of P. Hence, Coexc behaved like a biogenic element; this is in contrast to total Co, which is dominated by the refractory lithogenic fraction.Moreover, it is argued that these excess elemental fluxes caused a loss of the dissolved elements in upper waters, since their transport reaches the deep-sea waters at 2000 m, a depth far below of deep-winter mixing and upwelling. The annual amount of excess TE exported from surface waters was estimated to be 1.3×109 mol Zn y?1, 4.4×109 mol Mn y?1, 4.9×108 mol Ni y?1, 2.2×107 mol Cd y?1, 7.4×108 mol Cu y?1, and 2.7×107 mol Co y?1 for the whole North Atlantic Ocean. Important primary sources that could replenish these losses are the aeolian and fluvial supply processes.  相似文献   

13.
14.
Extremely low summer sea-ice coverage in the Arctic Ocean in 2007 allowed extensive sampling and a wide quasi-synoptic hydrographic and δ18O dataset could be collected in the Eurasian Basin and the Makarov Basin up to the Alpha Ridge and the East Siberian continental margin. With the aim of determining the origin of freshwater in the halocline, fractions of river water and sea-ice meltwater in the upper 150 m were quantified by a combination of salinity and δ18O in the Eurasian Basin. Two methods, applying the preformed phosphate concentration (PO*) and the nitrate-to-phosphate ratio (N/P), were compared to further differentiate the marine fraction into Atlantic and Pacific-derived contributions. While PO*-based assessments systematically underestimate the contribution of Pacific-derived waters, N/P-based calculations overestimate Pacific-derived waters within the Transpolar Drift due to denitrification in bottom sediments at the Laptev Sea continental margin.Within the Eurasian Basin a west to east oriented front between net melting and production of sea-ice is observed. Outside the Atlantic regime dominated by net sea-ice melting, a pronounced layer influenced by brines released during sea-ice formation is present at about 30–50 m water depth with a maximum over the Lomonosov Ridge. The geographically distinct definition of this maximum demonstrates the rapid release and transport of signals from the shelf regions in discrete pulses within the Transpolar Drift.The ratio of sea-ice derived brine influence and river water is roughly constant within each layer of the Arctic Ocean halocline. The correlation between brine influence and river water reveals two clusters that can be assigned to the two main mechanisms of sea-ice formation within the Arctic Ocean. Over the open ocean or in polynyas at the continental slope where relatively small amounts of river water are found, sea-ice formation results in a linear correlation between brine influence and river water at salinities of about 32–34. In coastal polynyas in the shallow regions of the Laptev Sea and southern Kara Sea, sea-ice formation transports river water into the shelf’s bottom layer due to the close proximity to the river mouths. This process therefore results in waters that form a second linear correlation between brine influence and river water at salinities of about 30–32. Our study indicates which layers of the Arctic Ocean halocline are primarily influenced by sea-ice formation in coastal polynyas and which layers are primarily influenced by sea-ice formation over the open ocean. Accordingly we use the ratio of sea-ice derived brine influence and river water to link the maximum in brine influence within the Transpolar Drift with a pulse of shelf waters from the Laptev Sea that was likely released in summer 2005.  相似文献   

15.
The data were collected during Chinese Arctic and Antarctic Expeditions in the western Arctic Ocean and the marginal sea ice zone (MSIZ) of the Southern Ocean, respectively in the boreal summer from July to September of 1999 and in the austral summer from December of 1999 to January of 2000. The concentrations of CO2 in surface water of the survey regions would mostly present lower than those in the atmosphere. A significant biological driving force could also been observed in summer waters in both of the above oceans. Air to sea CO2 fluxes were also calculated to compare oceanic uptake capacity of CO2 in both oceans with the world oceans using Liss, Wanninkhof, and Jacobs‘s methods. The averaged CO2 fluxes of air to sea in the western Arctic Ocean or in the MSIZ of the Southern Ocean doubled that in the world oceans.  相似文献   

16.
《Progress in Oceanography》2007,72(2-3):259-273
Centropages typicus is a temperate neritic-coastal species of the North Atlantic Oceans, generally found between the latitudes of the Mediterranean and the Norwegian Sea. Therefore, the species experiences a large number of environments and adjusts its life cycle in response to changes in key abiotic parameters such as temperature. Using data from the Continuous Plankton Recorder (CPR) survey, we review the macroecology of C. typicus and factors that influence its spatial distribution, phenology and year-to-year to decadal variability. The ecological preferences are identified and quantified. Mechanisms that allow the species to occur in such different environments are discussed and hypotheses are proposed as to how the species adapts to its environment. We show that temperature and both quantity and quality of phytoplankton are important factors explaining the space and time variability of C. typicus. These results show that C. typicus will not respond only to temperature increase in the region but also to changes in phytoplankton abundance, structure and composition and timing of occurrence. Methods such as a decision tree can help to forecast expected changes in the distribution of this species with hydro-climatic forcing.  相似文献   

17.
Lead has been determined in 105 water samples from the north east Atlantic and from the North Sea. Rigorous precautions were applied to avoid contamination during sampling and analysis.Two different analytical methods were used: ASV and AAS. Determinations with ASV were carried out on board, directly after sampling. After two months storage, acidified samples were analysed by AAS after freon dithiocarbamate extraction and nitric acid back extraction. Particulate lead was determined by AAS after an acid digestion.The profiles of lead concentration versus depth show around 160 pM at the surface and around 20 pM at the bottom, both in the Atlantic and in the Norwegian Sea. The shapes of the profiles are different, however, depending on the hydrography of the area sampled. The profiles from the north east Atlantic coincide with a recently published profile from the north west Atlantic. Moreover, these profiles have lead concentrations about a factor of three higher than those in the Pacific.Considering the high lead input to the North Sea, the lead concentrations found there are remarkably low, probably because of scavenging effects in estuaries leading to a short residence time in the water column. The dominant lead input in offshore regions is from the atmosphere. The highest lead levels are found in the northern North Sea, around 300 pM in surface water.In the Atlantic, particulate lead is a minor part of the total lead whereas in the North Sea the particulate fraction is larger, up to 40%.  相似文献   

18.
Physical regularities of water exchange between the North Atlantic (NA) and Arctic Ocean (AO) in 1958–2009 are analyzed on the basis of numerical experiments with an eddy-permitting model of ocean circulation. Variations in the heat and salt fluxes in the Greenland Sea near the Fram Strait caused by atmospheric forcing generate baroclinic modes of ocean currents in the 0–300 m layer, which stabilize the response of the ocean to atmospheric forcing. This facilitates the conservation of water exchange between the NA and AO at a specific climatic level. A quick response of dense water outflow into the deep layers of the NA through the Denmark Strait to the variations in the North Atlantic Oscillation (NAO) index was revealed on the monthly scale. A response on a time scale of 39 months was also revealed. The quick response on the NAO index variation was interrupted in 1969–1978, which was related to the Great Salinity Anomaly. It was shown that transverse oscillations of the Norwegian Atlantic Current significantly influence the formation of intermediate dense waters in the Greenland and Norwegian seas (GNS). The dense water outflow by bottom current (BC) to the deep layers of the NA through the Faroe Channels with a time lag of 1 year correlates with the transversal oscillations of the Norwegian Current front. The mass transport of the BC outflow from the Faroe Channels to the NA can serve as an integral indicator of the formation and sink of new portions of dense waters formed as a result of mixing of warm saline Atlantic waters and cold freshened Arctic waters in the GNS.  相似文献   

19.
A reduced estimate of Agulhas Current transport provides the motivation to examine the sensitivity of Indian Ocean circulation and meridional heat transport to the strength of the western boundary current. The new transport estimate is 70 Sv, much smaller than the previous value of 85 Sv. Consideration of three case studies for a large, medium and small Agulhas Current transport demonstrate that the divergence of heat transport over the Indian Ocean north of 32°S has a sensitivity of 0.08 PW per 10 Sv of Agulhas transport, and freshwater convergence has a sensitivity of 0.03×109 kg s−1 per 10 Sv of transport. Moreover, a smaller Agulhas Current leads to a better silica balance and a smaller meridional overturning circulation for the Indian Ocean. The mean Agulhas Current transport estimated from time-series current meter measurements is used to constrain the geostrophic transport in the western boundary region in order to re-evaluate the circulation, heat and freshwater transports across 32°S. The Indonesian Throughflow is taken to be 12 Sv at an average temperature of 18°C. The constrained circulation exhibits a vertical–meridional circulation with a net northward flow below 2000 dbar of 10.1 Sv. The heat transport divergence is estimated to be 0.66 PW, the freshwater convergence to be 0.54×109 kg s−1, and the silica convergence to be 335 kmol s−1. Meridional transports are separated into barotropic, baroclinic and horizontal components, with each component conserving mass. The barotropic component is strongly dependent on the estimated size of the Indonesian Throughflow. Surprisingly, the baroclinic component depends principally on the large-scale density distribution and is nearly invariant to the size of the overturning circulation. The horizontal heat and freshwater flux components are strongly influenced by the size of the Agulhas Current because it is warmer and saltier than the mid-ocean. The horizontal fluxes of heat and salt penetrate down to 1500 m depth, suggesting that warm and salty Red Sea Water may be involved in converting the intermediate and upper deep waters which enter the Indian Ocean from the Southern Ocean into warmer and saltier waters before they exit in the Agulhas Current.  相似文献   

20.
Fluxes contributing to the particulate carbonate system in deep-sea sediments were investigated at the BENGAL site in the Porcupine Abyssal Plain (Northeast Atlantic). Deposition fluxes were estimated using sediment traps at a nominal depth of 3000 m and amounted to 0.37±0.1 mmol C m−2 d−1. Dissolution of carbonate was determined using flux of total alkalinity from in situ benthic chambers, is 0.4±0.1 mmol C m−2 d−1. Burial of carbonate was calculated from data on the carbonate content of the sediment and sedimentation rates from a model age based on 14C dating on foraminifera (0.66±0.1 mmol C m−2 d−1). Burial plus dissolution was three times larger than particle deposition flux which indicates that steady-state is not achieved in these sediments. Mass balances for other components (BSi, 210Pb), and calculations of the focusing factor using 230Th, show that lateral inputs play only a minor role in this imbalance. Decadal variations of annual particle fluxes are also within the uncertainty of our average. Long-term change in dissolution may contribute to the imbalance, but can not be the main reason because burial alone is greater than the input flux. The observed imbalance is thus the consequence of a large change of carbonate input flux which has occured in the recent past. A box model is used to check the response time of the solid carbonate system in these sediments and the time to reach a new steady-state is in the order of 3 kyr. Thus it is likely that the system has been perturbed recently and that large dissolution and burial rates reflect the previously larger particulate carbonate deposition rates. We estimate that particulate carbonate fluxes have certainly decreased by a factor of at least 3 and that this change has occurred during the last few centuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号