首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The deformed metasedimentary bedrock and overlying diamictons in western Anglesey, NW Wales, record evidence of glacier-permafrost interactions during the Late Devensian (Weichselian). The locally highly brecciated New Harbour Group bedrock is directly overlain by a bedrock-rich diamicton which preserves evidence of having undergone both periglacial (brecciation, hydrofracturing) and glacitectonic deformation (thrusting, folding), and is therefore interpreted as periglacial head deposit. The diamicton locally posses a well-developed clast macrofabric which preserves the orientation of the pre-existing tectonic structures within underlying metasedimentary rocks. Both the diamicton and New Harbour Group were variably reworked during the deposition of the later Irish Sea diamicton, resulting in the detachment of bedrock rafts and formation of a pervasively deformed glacitectonite. These structural and stratigraphic relationships are used to demonstrate that a potentially extensive layer of permafrost developed across the island before it was overridden by the Irish Sea Ice Stream. These findings have important implications for the glacial history of Anglesey, indicating that the island remained relatively ice-free prior to its inundation by ice flowing southwards down the Irish Sea Basin. Palynological data obtained from the diamictons across Anglesey clearly demonstrates that they have an Irish Sea provenance. Importantly no Lower Palaeozoic palynomorphs were identified, indicating that it is unlikely that Anglesey was overridden by ice emanating from the Snowdon ice cap developed on the adjacent Welsh mainland. Permafrost was once again re-established across Anglesey after the Irish Sea Ice Stream had retreated, resulting in the formation of involutions which deform both the lower bedrock-rich and overlying Irish Sea diamictons.  相似文献   

2.
High resolution swath bathymetry data reveal a previously glaciated submarine terrain 20 km offshore Anglesey, north Wales, UK. The detailed documentation of remarkably well-preserved subglacial and ice-marginal bedforms provides evidence for a grounded part of the Irish Sea Ice Stream in a phase of deglaciation. The observed ribbed moraines, drumlins, flutes and eskers indicate a converging ice flow to the west, which then turns south into the deeper central Irish Sea Basin. Using the relative position of the bedforms, their spatial distribution and the morphological resemblance with bedforms described in the literature, this subglacial terrain is interpreted as representing a transition zone of frozen to thawed bed conditions during deglaciation, with an eastwards migrating thawing front that partly altered the edge of the surveyed ribbed moraine field by drumlinization. The abundant De Geer moraines and iceberg scour marks superimposed on drumlins and flutes reveal that the final retreat of the grounded ice margin in the surveyed area terminated into a water-mass with extensive iceberg calving. As the glacial terrain is well preserved, no significant burial has taken place, either by glacially or terrestrially derived sediment. The strong tidal currents at present keep the submarine terrain swept clean of contemporary sediment cover.  相似文献   

3.
4.
Hydrofracture systems are being increasingly recognized within subglacial to ice‐marginal settings and represent a visible expression of the passage of pressurized meltwater through these glacial environments. Such structures provide a clear record of the fluctuating hydrostatic pressure and of the resulting brittle fracturing of the host sediment/bedrock and the pene‐contemporaneous liquefaction and introduction of sediment‐fill. A detailed macro‐ and microstructural study of a hydrofracture system cutting Devonian sandstone bedrock exposed at the Meads of St John, near Inverness (NE Scotland), has revealed that this complex multiphase system was active over a prolonged period and accommodated several phases of fluid flow. The main conduits that fed the hydrofracture system are located along bedding within the sandstone, with the site of the wider, steeply inclined to subvertical, transgressive linking sections being controlled by the contemporaneous development of high‐angle fractures and normal faults, the latter occurring in response to localized extension within the bedrock. A comparison with published engineering hydraulic fracturing data indicates that the various stages of sediment‐fill deposited during a flow event can be directly related to the fluctuation in overpressure during hydrofracturing. A model is proposed linking the evolution of this hydrofracture system to the retreat of the overlying Findhorn glacier. The results of this study also indicate that the development and repeated reactivation of subglacial hydrofracture systems can have a dramatic effect on the permeability of the bed, influencing the potential for overpressure build‐up within the subglacial hydrogeological system, and facilitating the migration of meltwater beneath glaciers and ice sheets.  相似文献   

5.
《Quaternary Science Reviews》2007,26(19-21):2375-2405
Late Devensian glacigenic sediments and landforms along the north-west coast of Wales document the advance and subsequent retreat of the eastern margin of an Irish Sea Ice Stream that met, coalesced and ultimately uncoupled from ice radiating outwards from the adjacent Welsh Ice Cap centred over Snowdonia. Across the boundary between the two former ice masses is a set of sediment–landform assemblages that reflect rapidly changing erosional and depositional conditions during ice interaction. From the inner part of the ice-stream the assemblages range outwards, from a subglacial depositional assemblage, characterised by drumlin swarms; through a subglacial erosional assemblage, marked by prominent bedrock scours and large subglacial rock channels; through an ice-marginal assemblage, identified by closely spaced, glaciotectonised push moraines and intervening marginal sandur troughs; into a freely expanding proglacial sandur and lacustrine delta assemblage. The ice-marginal assemblage provides evidence for numerous oscillatory episodes during retreat and at least 20 ice-marginal limits can be identified. At least 11 of these display multiple criteria for identifying readvance and, in the ideal case, is characterised by a moraine form built by localised tectonic stacking of diamict to the rear, fronted by a clastic wedge of ice-front alluvial fan gravel and intercalated flow till. The distribution of sediment–landform assemblages suggests a highly dynamic, convergent ice-stream flow pattern, with high ice velocity, a sharply delineated lateral shear margin, pervasive ice-marginal glaciotectonic deformation and a tightly focused ice-marginal sediment delivery system; all signature characteristics of contemporary ice streams.  相似文献   

6.
《Quaternary Science Reviews》2007,26(3-4):322-335
An exposure within the central portion of a large drumlin at Port Byron, New York State, USA, part of the large New York drumlin field, reveals a sequence of steeply dipping cemented sands and gravels of proglacial, ice-contact deltaic origin overlain by a thin till veneer. The sands and gravels appear to have been deposited within the proximal proglacial environment during a late retreat phase of the Laurentide Ice Sheet sometime prior to being overridden by subsequent ice and drumlinized. During deposition of the ice-contact delta, escaping subglacial regelation-meltwater permeated the proximal deltaic sediment pile and calcium carbonate was released, in a series of pulses, to form pore-occluding calcite cement within the sand and gravel porespaces. The calcium carbonate precipitated into the sands and gravels due to a reduction in hydrostatic pressure and CO2 outgassing of the meltwater as it exited from beneath the ice sheet. Once cemented, these deltaic sediments were considerably stronger and acted afterward as an obstacle around which the future ice advance streamed and, in turn, produced the characteristic drumlin shape. In overriding the ice-contact deltaic sediments, the ice sheet emplaced a thin layer of till which exhibits syndepositional deformation features indicative of being emplaced as a deforming bed layer beneath the advancing ice sheet. Micromorphological analysis of the overlying till shows that no interstitial or intraclastic calcite occurs within the till.  相似文献   

7.
《Quaternary Science Reviews》2007,26(9-10):1197-1203
Reconstructions of the British–Irish Ice Sheet (BIIS) during the Last Glacial Maximum (LGM) in the Celtic Sea and southern Ireland have been hampered by a paucity of well-dated stratigraphic records. As a result, the timing of the last advance of the largest outlet of the BIIS, the Irish Sea Ice Stream, to its maximum limit in the Celtic Sea has been variously proposed as being pre-last glaciation, Early Devensian and LGM. The Irish Sea Till was deposited by the Irish Sea Ice Stream during its last advance into the Celtic Sea. We present 26, stratigraphically well constrained, new AMS radiocarbon dates on glacially transported marine shells from the Irish Sea Till in southern Ireland, which constrain the maximum age of this advance. The youngest of these dates indicate that the BIIS advanced to its overall maximum limit in the Celtic Sea after 26,000–20,000 14C yr BP, thus during the last glaciation. The most extensive phase of BIIS growth therefore appears to have occurred during the LGM, at least along the Celtic Sea and Irish margins. These data further demonstrate that the uppermost inland glacial tills, from the area of supposed “older drift” in southern Ireland, a region previously regarded as having been unglaciated during the LGM also date from the last glaciation. Thus most of southern Ireland was ice covered at the LGM. Advance of the BIIS to its maximum southern limit in the Celtic Sea may have been a short-lived glaciodynamic response facilitated by subglacial bed conditions, rather than a steady-state response to climate forcing alone.  相似文献   

8.
High-resolution seismic and bathymetric data offshore southeast Ireland and LIDaR data in County Waterford are presented that partially overlap previous studies. The observed Quaternary stratigraphic succession offshore southeast Ireland (between Dungarvan and Kilmore Quay) records a sequence of depositional and erosional events that supports regional glacial models derived from nearby coastal sediment stratigraphies and landforms. A regionally widespread, acoustically massive facies interpreted as the ‘Irish Sea Till’ infills an uneven, channelized bedrock surface overlying irregular mounds and deposits in bedrock lows that are probably earlier Pleistocene diamicts. The till is truncated and overlain by a thin, stratified facies, suggesting the development of a regional palaeolake following ice recession of the Irish Sea Ice Stream. A north–south oriented seabed ridge to the north is interpreted as an esker, representing southward flowing subglacial drainage associated with a restricted ice sheet advance of the Irish Ice Sheet onto the Celtic Sea shelf. Onshore topographic data reveal streamlined bedforms that corroborate a southerly advance of ice onto the shelf across County Waterford. The combined evidence supports previous palaeoglaciological models. Significantly, for the first time, this study defines a southern limit for a Late Midlandian Irish Ice Sheet advance onto the Celtic Sea shelf. © 2020 John Wiley & Sons, Ltd.  相似文献   

9.
The Wicklow Trough is one of several Irish Sea bathymetric deeps, yet unusually isolated from the main depression, the Western Trough. Its formation has been described as proglacial or subglacial, linked to the Irish Sea Ice Stream (ISIS) during the Last Glacial Maximum. The evolution of the Wicklow Trough and neighbouring deeps, therefore, help us to understand ISIS dynamics, when it was the main ice stream draining the former British–Irish Ice Sheet. The morphology and sub-seabed stratigraphy of the 18 km long and 2 km wide Wicklow Trough is described here from new multibeam echosounder data, 60 km of sparker seismic profiles and five sediment cores. At a maximum water depth of 82 m, the deep consists of four overdeepened sections. The heterogeneous glacial sediments in the Trough overlay bedrock, with indications of flank mass-wasting and subglacial bedforms on its floor. The evidence strongly suggests that the Wicklow Trough is a tunnel valley formed by time-transgressive erosional processes, with pressurised meltwater as the dominant agent during gradual or slow ice sheet retreat. Its location may be fault-controlled, and the northern end of the Wicklow Trough could mark a transition from rapid to slow grounded ice margin retreat, which could be tested with modelling.  相似文献   

10.
A pit located near Ballyhorsey, 28 km south of Dublin (eastern Ireland), displays subglacially deposited glaciofluvial sediments passing upwards into proglacial subaqueous ice‐contact fan deposits. The coexistence of these two different depositional environments at the same location will help with differentiation between two very similar and easily confused glacial lithofacies. The lowermost sediments show aggrading subglacial deposits indicating a constrained accommodation space, mainly controlled by the position of an overlying ice roof during ice‐bed decoupling. These sediments are characterized by vertically stacked tills with large lenses of tabular to channelized sorted sediments. The sorted sediments consist of fine‐grained laminated facies, cross‐laminated sand and channelized gravels, and are interpreted as subglaciofluvial sediments deposited within a subglacial de‐coupled space. The subglaciofluvial sequence is characterized by glaciotectonic deformation structures within discrete beds, triggered by fluid overpressure and shear stress during episodes of ice/bed recoupling (clastic dykes and folds). The upper deposits correspond to the deposition of successive hyperpycnal flows in a proximal proglacial lake, forming a thick sedimentary wedge erosively overlying the subglacial deposits. Gravel facies and large‐scale trough bedding sand are observed within this proximal wedge, while normally graded sand beds with developed bedforms are observed further downflow. The building of the prograding ice‐contact subaqueous fan implies an unrestricted accommodation space and is associated with deformation structures related to gravity destabilization during fan spreading (normal faults). This study facilitates the recognition of subglacial/submarginal depositional environments formed, in part, during localized ice/bed coupling episodes in the sedimentary record. The sedimentary sequence exposed in Ballyhorsey permits characterization of the temporal framework of meltwater production during deglaciation, the impact on the subglacial drainage system and the consequences on the Irish Sea Ice Stream flow mechanisms.  相似文献   

11.
Along the south coast of Ireland, a shelly diamict facies, the Irish Sea Till, has been variously ascribed to subglacial deposition by a grounded Irish Sea glacier or to glacimarine sedimentation by suspension settling and iceberg rafting. Observations are presented here from five sites along the south coast to directly address this question. At these sites, sedimentary evidence is preserved for the onshore advance of a grounded Irish Sea glacier, which glacitectonically disturbed and eroded pre‐existing sediments and redeposited them as deformation till. Recession of this Irish Sea glacier resulted in the damming of ice‐marginal lakes in embayments along the south coast, into which glacilacustrine sedimentation then took place. These lake sediments were subsequently glacitectonised and reworked by overriding glacier ice of inland origin, which deposited deformation till on top of the succession. There is no evidence for deposition of the Irish Sea diamicts by glacimarine sedimentation at these sites. The widespread development of subglacial deforming bed conditions reflected the abundance of fine‐grained marine and lacustrine sediments available for subglacial erosion and reworking. Stratigraphical and chronological data suggest that the advance of a grounded Irish Sea glacier along the south coast occurred during the last glaciation, and this is regionally consistent with marine geological data from the Celtic Sea. These observations demonstrate extension of glacier ice far beyond its traditional limits in the Celtic Sea and on‐land in southern Ireland during the last glaciation, and remove the stratigraphical basis for chronological differentiation of surficial glacial drifts, and thus the Munsterian Glaciation, in southern Ireland. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Ice streams are major dynamic elements of modern ice sheets, and are believed to have significantly influenced the behaviour of past ice sheets. Funen Island exhibits a number of geomorphological and geological features indicative of a Late Weichselian ice stream, a land-based, terminal branch of the major Baltic Ice Stream that drained the Scandinavian Ice Sheet along the Baltic Sea depression. The ice stream in the study area operated during the Young Baltic Advance. Its track on Funen is characterized by a prominent drumlin field with long, attenuated drumlins consisting of till. The field has an arcuate shape indicating ice-flow deflection around the island's interior. Beneath the drumlin-forming till is a major erosional surface with a boulder pavement, the stones of which have heavily faceted and striated upper surfaces. Ploughing marks are found around the boulders. Exact correspondence of striations, till fabric and drumlin orientation indicates a remarkably consistent flow direction during ice streaming. We infer that fast ice flow was facilitated by basal water pressure elevated to the vicinity of the flotation point. The ice movement was by basal sliding and bed deformation under water pressure at the flotation level or slightly below it, respectively. Subglacial channels and eskers post-dating the drumlins mark a drainage phase that terminated the ice-stream activity close to the deglaciation. Identification of other ice streams in the Peribaltic area is essential for better understanding the dynamics of the land-based part of the Scandinavian Ice Sheet during the last glaciation.  相似文献   

13.
Graphical and numerical reconstructions of the Rainy and Superior lobes of the Laurentide Ice Sheet suggest that drumlin formation was time transgressive. Suites of glacial landforms including drumlins, tunnel valleys, eskers, and ice-collapse features can be correlated with specific recessional ice margins and are used as boundary conditions in the modeling. A contour map of the ice surface is then drawn using a specified basal shear stress. The shear stress can be constant or allowed to vary with position on the bed and is chosen to be consistent with the subglacial regime indicated by field evidence. Assuming that ice flow is parallel to drumlin orientations and perpendicular to the ice surface contours and moraines, the trend of drumlin axes is best accommodated by time transgressive drumlin formation during minor stillstands in the overall ice recession. The alternative, that drumlins were formed while the ice was at the Late Wisconsin maximum limit, requires large spatial variations in the basal shear stress distribution and therefore implies large mass-balance gradients or large variations in basal sliding velocities over small distances, for which there is little evidence.  相似文献   

14.
The Late Devensian (<20 ka BP) glacial geology of the Irish Sea Basin (4000 km2) is an event stratigraphy recording the entry of marine waters into a glacio-isostatically-depressed basin, and the rapid retreat of the Irish Sea Glacier as a tidewater ice margin. Marine limits occur up to 140 m O.D. Across much of the central basin, the ice margin was uncoupled from its bed exposing a subglacially-scoured topography to glaciomarine processes. The Irish Sea Glacier was a major drainage conduit of the last British Ice Sheet; calving of the marine ice margin resulted in fast flow (surging) of ice streams recorded by drumlin fields around the northern basin margin and tunnel valleys. Rapid evacuation of the basin may have stranded large areas of dead ice in peripheral zones (e.g. Cheshire/Shropshire Lowlands) and initiated the collapse of the ice sheet.Thick wedges of ice-contact glaciomarine sediments were deposited during ice retreat as morainal bank complexes by successive tidewater ice margins stabilized at pinning points around the Irish Sea coast. Where morainal banks occur on the seaward side of drumlin swarms there is a clear sequential relationship between rapid ice loss from calving ice margins, the development of fast flowing ice streams, drumlinization and the pumping of subglacial sediment to tidewater. Raised delta complexes are locally associated with marine limits along the high relief coastal margins of Wales, east central Ireland, and the Lake District. Associated valley infill complexes record downslope resedimentation of heterogenous sediments into the marine environment during ice retreat. Co-eval offshore deposits are represented by well-stratified glaciomarine complexes that infill a subglacially-scoured topography that shows networks of tunnel valleys. Glaciomarine mud drapes occur well to the south of the maximum limit of grounded ice in the basin (e.g. North Devon, Scilly Islands, Southern Ireland). The age of these distal sediments, previously mapped as pre-Devensian tills, is constrained by amino acid ratios.Basin rebound following deglaciation was rapid, with over 100 m recovery in 3 ka, and was followed by a low marine still stand. Peat, accumulating in offshore areas now as much as 55 m below sea level has been drowned by the postglacial eustatic rise in sea level.The glacio-sedimentary model identified in this paper, involving rapid ice retreat and related sedimentation triggered by rising relative sea level, suggests that isotatic downwarping is an important mechanism for deglaciating continental shelves.  相似文献   

15.
This paper describes the results of a spatially dense anisotropy of magnetic susceptibility (AMS) till fabric study of a single drumlin in the Weedsport Drumlin Field, New York State, USA. AMS till fabrics provide a robust, quantitative and unbiased approach to assess subglacial till kinematics and infer ice‐flow dynamics. The drumlin selected for this detailed investigation was systematically sampled at 18 locations to evaluate the patterns of ice flow and associated till kinematics within a drumlin and to test erosional vs. depositional models for its formation. AMS till fabric analysis yielded strong fabrics that increase in strength towards the drumlin crest, indicating that bed deformation occurred during till deposition and that deformation within the drumlin was greater than that in the interdrumlin low. Fabric orientations reveal drumlin convergent, divergent and parallel ice‐flow paths that illustrate a complex interaction between ice flow and the drumlin form; fabric strength and shape reveal systematic differences in bed deformation between the interdrumlin and drumlin regions. These observations are inconsistent with purely erosional models of drumlin genesis; instead, these observations are more consistent with syndepositional streamlining of till transported, probably locally as a deforming bed, from the interdrumlin low towards the drumlin locality.  相似文献   

16.
This paper examines marine geophysical and geological data, and new multibeam bathymetry data to describe the Pleistocene sediment and landform record of a large ice‐stream system that drained ~3% of the entire British?Irish Ice Sheet at its maximum extent. Starting on the outer continental shelf NW of Scotland we describe: the ice‐stream terminus environment and depocentre on the outer shelf and continental slope; sediment architecture and subglacial landforms on the mid‐shelf and in a large marine embayment (the Minch); moraines and grounding line features on the inner shelf and in the fjordic zone. We identify new soft‐bed (sediment) and hard‐bed (bedrock) subglacial landform assemblages in the central and inner parts of the Minch that confirm the spatial distribution, coherence and trajectory of a grounded fast‐flowing ice‐sheet corridor. These include strongly streamlined bedrock forms and megagrooves indicating a high degree of ice‐bed coupling in a zone of flow convergence associated with ice‐stream onset; and a downstream bedform evolution (short drumlins to km‐scale glacial lineations) suggesting an ice‐flow velocity transition associated with a bed substrate and roughness change in the ice‐stream trunk. Chronology is still lacking for the timing of ice‐stream demise; however, the seismic stratigraphy, absence of moraines or grounding‐line features, and presence of well‐preserved subglacial bedforms and iceberg scours, combined with the landward deepening bathymetry, all suggest that frontal retreat in the Minch was probably rapid, via widespread calving, before stabilization in the nearshore zone. Large moraine complexes recording a coherent, apparently long‐lived, ice‐sheet margin position only 5–15 km offshore strongly support this model. Reconstructed ice‐discharge values for the Minch ice stream (12–20 Gt a?1) are comparable to high mass‐flux ice streams today, underlining it as an excellent palaeo‐analogue for recent rapid change at the margins of the Greenland and West Antarctic Ice Sheets.  相似文献   

17.
Late Devensian/Midlandian glacial deposits on the southeast Irish coast contain a record of sedimentation at the margins of the Irish Sea ice stream (ISIS). Exposures through the Screen Hills reveal a stratigraphy that documents the initial onshore flow of the ISIS ('Irish Sea Till') followed by ice stream recession and readvances that constructed glacitectonic ridges. Ice-contact fans (Screen Member) were deposited in association with subglacial deformation tills and supraglacial/subaqueous mass flow diamicts. In SE Ireland, the ISIS moved onshore over proglacial lake sediments which were intensely folded, thrust and cannibalized producing a glacitectonite over which laminated and massive diamictons were deposited as glacitectonic slices. Ice marginal recession and oscillations are documented by: (a) ice-proximal, subaqueous diamict-rich facies; (b) isolated ice-contact glacilacustrine deltas; (c) syn-depositional glacitectonic disturbance of glacilacustrine sediments and overthrusting of ice-contact outwash; (d) offshore moraine ridges; and (e) changing ice flow directions and facies transitions. Diagnostic criteria for the identification of dynamic, possibly surging, ice-stream margins onshore include thrust-block moraines, tectonized pitted outwash and stacked sequences of glacitectonites, deformation tills and intervening stratified deposits. In addition, the widespread occurrence of hydrofracture fills in sediments overridden and locally reworked by the ISIS indicate that groundwater pressures were considerably elevated during glacier advance. The glacigenic sediments and landforms located around the terrestrial margins of the ISIS are explained as the products of onshore glacier flow that cannibalized and tectonically stacked pre-existing marine and glacilacustrine sediments. Localized tectonic thickening of subglacially deformed materials at the former margins of glaciers results in zones of net erosion immediately up-ice of submarginal zones of net accretion of subglacial till. The more stable the ice-stream margin the thicker and more complex the submarginal sedimentary stack.  相似文献   

18.
The Tyne Gap is a wide pass, situated between the Scottish Southern Uplands and the English Pennines that connects western and eastern England. It was a major ice flow drainage pathway of the last British–Irish Ice Sheet. This study presents new glacial geomorphological and sedimentological data from the Tyne Gap region that has allowed detailed reconstructions of palaeo‐ice flow dynamics during the Late Devensian (Marine Isotope Stage 2). Mapped lineations reveal a complex palimpsest pattern which shows that ice flow was subject to multiple switches in direction. These are summarised into three major ice flow phases. Stage I was characterised by convergent Lake District and Scottish ice that flowed east through the Tyne Gap, as a topographically controlled ice stream. This ice stream was identified from glacial geomorphological evidence in the form of convergent bedforms, streamlined subglacial bedforms and evidence for deformable bed conditions; stage II involved northerly migration of the Solway Firth ice divide back into the Southern Uplands, causing the easterly flow of ice to be weakened, and resulting in southeasterly flow of ice down the North Tyne Valley; and stage III was characterised by strong drawdown of ice into the Irish Sea Ice Basin, thus starving the Tyne Gap of ice and causing progressive ice sheet retreat westwards back across the watershed, prior to ice stagnation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Knight, J. 2010: Subglacial processes and drumlin formation in a confined bedrock valley, northwest Ireland. Boreas, 10.1111/j.1502‐3885.2010.00182.x. ISSN 0300‐9483. Subglacial processes beneath the Late Weichselian ice sheet in northwest Ireland are deduced from sediments and structures within drumlins in a bedrock valley at Loughros Beg, County Donegal. Here, a glacially smoothed bedrock surface underlies the drumlins, which are composed on their up‐ice side of stacked, angular rafts of local bedrock. Overlying and down‐ice from these rafts are down‐ice‐dipping beds of massive to bedded diamicton that contain sand and gravel interbeds. In a down‐ice direction the diamicton matrix coarsens and the beds become laterally transitional to water‐sorted gravels. The down‐ice end of one drumlin shows a concentrically bedded stratified gravel core aligned parallel to ice flow and resembling the internal structure of an esker. With distance away from this core, the gravels become more poorly sorted with an increase in matrix content, and are transitional to massive to stratified diamicton. A four‐stage model describes the formation of drumlins in this sediment‐poor setting. The sediments that are located directly above the bedrock represent deposition in a semi‐enclosed subglacial cavity. A trigger for this process was the formation of subglacial relief by the thrusting up of bedrock rafts, which created the leeside cavity. Subsequent sediment deposition into this cavity represents a form of feedback (self‐regulation), which may be a typical characteristic of subglacial processes in sediment‐poor settings.  相似文献   

20.
《Quaternary Science Reviews》2007,26(5-6):585-597
This paper examines ice-sheet wide variations in subglacial thermal regime and ice dynamics using the landform record exposed on the beds of former mid-latitude ice sheets (the Laurentide, Cordilleran, Fennoscandian and British-Irish Ice Sheets). We compare the landform patterns beneath these former ice sheets to the flow organisation beneath parts of the contemporary Antarctic Ice Sheet inferred from RADARSAT-1 Antarctic Mapping Project (RAMP) data. The evidence preserved in the landform record and observed on contemporary ice masses can be grouped into four major ice-dynamical components that collectively define the subglacial thermal organisation (STO) of ice sheets. These ice-dynamical components are frozen-bed patches, ice streams, ice-stream tributaries and lateral shear zones. Frozen-bed patches appear at a wide range of spatial scales, spanning four orders of magnitude. In some areas, frozen-bed zones comprise large proportions of the bed (e.g. near the ice divide in continental areas), whilst in other areas they constitute isolated “islands” in areas dominated by thawed-bed conditions. Ice streams, narrow zones of fast flow in ice sheets that are otherwise dominated by slow sheet flow, are also common features of Quaternary ice sheets. Tributaries to ice streams flow at velocities intermediate between full ice-stream and sheet flow, and may divert ice drainage from one primary ice-stream corridor to an adjacent one. Sharp lateral boundaries between landforms indicate sliding and non-sliding conditions, respectively. These lateral boundaries represent important discontinuities in the glacial landscape and mark the location of shear zones between thawed-bed ice streams and intervening frozen-bed areas. We use the landform evidence in the area around Great Bear Lake, Canada to trace the evolution of an ice-stream web through time, demonstrating that frozen-bed patches are integral components of this complex system. We conclude that frozen-bed patches are important for the stability of ice sheets because they laterally constrain and isolate peripheral drainage basins and their ice streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号