首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leucogranitic lenses are found within the Xiwan ophiolitic mélange in northeastern Jiangxi Province, South China. The leucogranites occur exclusively within the serpentinized peridotite unit of the ophiolite suite. SHRIMP U–Pb zircon dating results indicate that these granites were formed at 880 ± 19 Ma, and were overprinted by an Indosinian tectono-thermal event at ~ 230 Ma. The leucogranites are peraluminous (A/CNK = 1.0–1.24), characterized by high Al2O3 (14–18.33%) and Na2O (6.5–10%) and clearly low εNd(T) values of 0.8 to − 3.9 compared with the other rock units of the ophiolite suite. On the basis of their REE characters, the leucogranites can be divided into three groups. Group I leucogranites show the most fractionated LREE-enrichment patterns (with LaN/YbN and LaN/SmN ratios of 30.1–75.0 and 2.3–3.9, respectively). Group II leucogranites have moderately fractionated LREE-enrichment patterns (with LaN/YbN and LaN/SmN ratios of 13.1–26.5 and 0.8–1.9, respectively). Group III leucogranites are characterized by obviously low total REE contents and flat REE patterns with significant positive Eu anomalies, probably due to small degrees of partial melting. All these leucogranites were likely formed by partial melting of sedimentary rocks from a marginal basin at the Yangtze side of the orogen, beneath a major thrust fault during the obduction of the ophiolite onto the continental crust. They are broadly similar to obduction-related granites within ophiolites identified in many places worldwide. Identification of the ca. 880 Ma obduction-type granites in the NE Jiangxi ophiolite provides a petrological constraint on the timing of the ophiolite obduction onto the continental crust. In combination with the termination of the Shuangxiwu arc magmatism at ca. 890 Ma, we interpret that the close of the Neoproterozoic back-arc basin and the termination of the continental amalgamation between the Yangtze and Cathaysia Blocks occurred at ca. 880 Ma.  相似文献   

2.
The Woxi W–Sb–Au deposit in Hunan, South China, is hosted by Proterozoic metasedimentary rocks, a turbiditic sequence of slightly metamorphosed (greenschist facies), gray-green and purplish red graywacke, siltstone, sandy slate, and slate. The mineralization occurs predominantly (> 70%) as stratabound/stratiform ore layers and subordinately as stringer stockworks. The former consists of rhythmically interbedded, banded to finely laminated stibnite, scheelite, quartz, pyrite and silty clays, whereas the latter occurs immediately beneath the stratabound ore layers and is characterized by numerous quartz + pyrite + gold + scheelite stringer veins or veinlets that are typically either subparallel or subvertical to the overlying stratabound ore layers. The deposit has been the subject of continued debate in regard to its genesis. Rare earth element geochemistry is used here to support a sedimentary exhalative (sedex) origin for the Woxi deposit. The REE signatures of the metasedimentary rocks and associated ores from the Woxi W–Sb–Au deposit remained unchanged during post-depositional processes and were mainly controlled by their provenance. The original ore-forming hydrothermal fluids, as demonstrated by fluid inclusions in quartz from the banded ores, are characterized by variable total REE concentrations (3.5 to 136 ppm), marked LREE enrichment (LaN/YbN = 28–248, ∑LREE/∑HREE = 16 to 34) and no significant Eu-anomalies (Eu/Eu = 0.83 to 1.18). They were most probably derived from evolved seawater that circulated in the clastic sediment pile and subsequently erupted on the seafloor. The bulk banded ores are enriched in HREE (LaN/YbN = 4.6–11.4, ∑LREE/∑HREE = 3 to 14) and slightly depleted in Eu (Eu/Eu = 0.63 to 1.14) relative to their parent fluids. This is interpreted as indicating the influence of seawater rather than a crystallographic control on REE content of the ores. Within a single ore layer, the degree of HREE enrichment tends to increase upward while the total REE concentrations decrease, reflecting greater influence and dilution of seawater. There is a broad similarity in chondrite-normalized REE patterns and the amount of REE fractionation of the banded ores in this study and exhalites from other sedex-type polymetallic ore deposits, suggesting a similar genesis for these deposits. This conclusion is in agreement with geologic evidence supporting a syngenetic (sedex) model for the Woxi deposit.  相似文献   

3.
The major and trace element characteristics of black shales from the Lower Cretaceous Paja Formation of Colombia are broadly comparable with those of the average upper continental crust. Among the exceptions are marked enrichments in V, Cr, and Ni. These enrichments are associated with high organic carbon contents. CaO and Na2O are strongly depleted, leading to high values for both the Chemical Index of Alteration (77–96) and the Plagioclase Index of Alteration (86–99), which indicates derivation from a stable, intensely weathered felsic source terrane. The REE abundances and patterns vary considerably but can be divided into three main groups according to their characteristics and stratigraphic position. Four samples from the lower part of the Paja Formation (Group 1) are characterized by LREE-enriched chondrite-normalized patterns (average LaN/YbN = 8.41) and significant negative Eu anomalies (average Eu/Eu1 = 0.63). A second group of five samples (Group 2), also from the lower part, have relatively flat REE patterns (average LaN/YbN = 1.84) and only slightly smaller Eu anomalies (average Eu/Eu1 = 0.69). Six samples from the middle and upper parts (Group 3) have highly fractionated patterns (average LaN/YbN = 15.35), resembling those of Group 1, and an identical average Eu/Eu1 of 0.63. The fractionated REE patterns and significant negative Eu anomalies in Groups 1 and 3 are consistent with derivation from an evolved felsic source. The flatter patterns of Group 2 shale and strongly concave MREE-depleted patterns in two additional shales likely were produced during diagenesis, rather than reflecting more mafic detrital inputs. An analysis of a single sandstone suggests diagenetic modification of the REE, because its REE pattern is identical to that of the upper continental crust except for the presence of a significant positive Eu anomaly (Eu/Eu1 = 1.15). Felsic provenance for all samples is suggested by the clustering on the Th/Sc–Zr/Sc and GdN/YbN–Eu/Eu1 diagrams. Averages of unmodified Groups 1 and 3 REE patterns compare well with cratonic sediments from the Roraima Formation in the Guyana Shield, suggesting derivation from a continental source of similar composition. In comparison with modern sediments, the geochemical parameters (K2O/Na2O, LaN/YbN, LaN/SmN, Eu/Eu1, La/Sc, La/Y, Ce/Sc) suggest the Paja Formation was deposited at a passive margin. The Paja shales thus represent highly mature sediments recycled from deeply weathered, older, sedimentary/metasedimentary rocks, possibly in the Guyana Shield, though Na-rich volcanic/granitic rocks may have contributed to some extent.  相似文献   

4.
A geochemical and isotopic study was carried out for the Mesozoic Yangxin, Tieshan and Echeng granitoid batholiths in the southeastern Hubei Province, eastern China, in order to constrain their petrogenesis and tectonic setting. These granitoids dominantly consist of quartz diorite, monzonite and granite. They are characterized by SiO2 and Na2O compositions of between 54.6 and 76.6 wt.%, and 2.9 to 5.6 wt.%, respectively, enrichment in light rare earth elements (LREE) and large ion lithophile elements (LILE), and relative depletion in Y (concentrations ranging from 5.17 to 29.3 ppm) and Yb (0.34–2.83 ppm), with the majority of the granitoids being geochemically similar to high-SiO2 adakites (HSA). Their initial Nd (εNd = − 12.5 to − 6.1) and Sr ((87Sr/86Sr)i = 0.7054–0.7085) isotopic compositions, however, distinguish them from adakites produced by partial melting of subducted slab and those produced by partial melting of the lower crust of the Yangtze Craton in the Late Mesozoic. The granitoid batholiths in the southeastern Hubei Province exhibit very low MgO ranging from 0.09 to 2.19 wt.% with an average of 0.96 wt.%, and large variations in negative to positive Eu anomalies (Eu/Eu = 0.22–1.4), especially the Tieshan granites and Yangxin granite porphyry (Eu/Eu = 0.22–0.73). Geochemical and Nd–Sr isotopic data demonstrate that these granitoids originated as partial melts of an enriched mantle source that experienced significant contamination of lower crust materials and fractional crystallization during magma ascent. Late Mesozoic granitoids in the southeastern Hubei Province of the Middle–Lower Yangtze River belt were dominantly emplaced in an extensional tectonic regime, in response to basaltic underplating, which was followed by lithospheric thinning during the early Cretaceous.  相似文献   

5.
The Suguti volcanic rocks of the southern Musoma-Mara greenstone belt in northern Tanzania comprise mainly of a bimodal suite of tholeiitic basalts-basaltic andesites and calc-alkaline rhyolites with a subordinate amount of intermediate rocks. Zircon U–Pb and whole rock Sm–Nd geochronology suggests that the two suites are cogenetic and were emplaced at 2755 ± 1 Ma with a common initial Nd value of 2.1.The tholeiitic basalts are characterised by relatively flat chondrite-normalised REE patterns with La/YbCN ratios of 0.8–1.6 (mean = 1.0). The basalts also exhibit negative Ti and Nb anomalies in primitive mantle-normalised multi-element diagrams. The flat REE patterns, the presence of prominent negative Nb anomalies and the positive initial Nd value of 2.1 suggest that the basalts were formed by low pressure melting of a mantle wedge in an active continental margin setting.Compared to the tholeiitic basalts, the calc-alkaline rhyolites are characterised by low abundances of the transition elements (Cr < 20 ppm, Ni < 20 ppm) and moderately high HFSE (e.g. Zr = 111–250 ppm) abundances. The rhyolites display strongly fractionated, slightly concave upward chondrite normalised REE patterns that are characterised by a slight depletion of the MREE relative to the HREE and minor to large negative Eu anomalies (Eu/Eu* = 0.3–0.9) and their epsilon Nd values range from +2.05 to +2.33. The depletion of the MREE relative to the HREE is an indication of fractionation of clinopyroxene and hornblende during petrogenesis whereas the negative Eu anomalies indicate plagioclase fractionation. The rhyolites are interpreted to have formed from the parental magma of the basalts by fractional crystallization and/or partial melting of a relatively young basaltic crust.  相似文献   

6.
Voluminous granitic intrusions are distributed in the West Junggar, NW China, and they can be classified as the dioritic rocks, charnockite and alkali-feldspar granite groups. The dioritic rocks (SiO2 = 50.4–63.8 wt.%) are calc-alkaline and Mg enriched (average MgO = 4.54 wt.%, Mg# = 0.39–0.64), with high Sr/Y ratios (average = 21.2), weak negative Eu (average Eu/Eu = 0.80) and pronounced negative Nb–Ta anomalies. Their Sr–Nd and zircon Hf isotopic compositions ((87Sr/86Sr)i = 0.7035–0.7042, εNd(t) = 4.5–7.9, εHf(t) = 14.1–14.5) show a depleted mantle-like signature. These features are compatible with adakites derived from partial melting of subducted oceanic crust that interacted with mantle materials. The charnockites (SiO2 = 60.0–65.3 wt.%) show transitional geochemical characteristics from calc-alkaline to alkaline, with weak negative Eu (average Eu/Eu = 0.75) but pronounced negative Nb–Ta anomalies. Sr–Nd and zircon Hf isotopic compositions ((87Sr/86Sr)i = 0.7037–0.7039, εNd(t) = 5.2–8.0, εHf(t) = 13.9–14.7) also indicate a depleted source, suggesting melts from a hot, juvenile lower crust. Alkali-feldspar granites (SiO2 = 70.0–78.4 wt.%) are alkali and Fe-enriched, and have distinct negative Eu and Nb–Ta anomalies (average Eu/Eu = 0.26), low Sr/Y ratios (average = 2.11), and depleted Sr–Nd and zircon Hf isotopic compositions ((87Sr/86Sr)i = 0.7024–0.7045, εNd(t) = 5.1–8.9, εHf(t) = 13.7–14.2). These characteristics are also comparable with those of rocks derived from juvenile lower crust. Despite of the differences in petrology, geochemistry and possibly different origins, zircon ages indicate that these three groups of rocks were coevally emplaced at ~ 305 Ma.A ridge subduction model can account for the geochemical characteristics of these granitoids and coeval mafic rocks. As the “slab window” opened, upwelling asthenosphere provided enhanced heat flux and triggered voluminous magmatisms: partial melting of the subducting slab formed the dioritic rocks; partial melting of the hot juvenile lower crust produced charnockite and alkali-feldspar granite, and partial melting in the mantle wedge generated mafic rocks in the region. These results suggest that subduction was ongoing in the Late Carboniferous and, thus support that the accretion and collision in the Central Asian Orogenic Belt took place in North Xinjiang after 305 Ma, and possibly in the Permian.  相似文献   

7.
The Archean to Paleoproterozoic Central Zone of the North China Craton is situated between the Eastern and Western Archean continental blocks and contains two contrasting series of Neoarchean granitoids: the 2523–2486 Ma tonalite−trondhjemite–granodiorite (TTG) gneisses in the Fuping Complex, and the 2555–2525 Ma calc-alkaline granitoids (tonalite, granodiorite, granite and monzogranite) in the Wutai Complex. The Fuping TTG gneisses most likely formed from partial melting of 2.7 Ga basalts at >50 km, with an involvement of 3.0 Ga crustal material. The Wutai granitoids have higher K2O, LILE and Rb/Sr, but lower Sr/Y and LaN/YbN than the Fuping TTG gneisses, are characterized by Nd TDM from 2.5 to 2.8 Ga and Nd(t) from 0.49 to 3.34, and are derived from partial melting of a juvenile source at <37 km.The geochemistry of these two contrasting series of Neoarchean granitoids provides further evidence that the Wutai Complex originated and evolved separately from the Fuping Complex. The Wutai Complex most likely formed as an oceanic island arc with volcanism and synvolcanic granitoid intrusions at 2555–2525 Ma. The Wutai Complex was subsequently accreted onto the Eastern Archean Continental Block, and was probably responsible for crustal thickening and TTG magmatism at 2523–2486 Ma in the Fuping Complex (as part of the Taihangshan–Hengshan block), at the western margin of the Eastern Archean Continental Block.  相似文献   

8.
The Permian–Jurassic Mahanadi and Pranhita–Godavari Rifts are part of a drainage system that radiated from the Gamburtsev Subglacial Mountains in central Antarctica. From 12 samples we analysed detrital zircons for U–Pb ages, Hf-isotopes, and trace elements to determine the age, rock type and source of the host magma, and TDM model age. Clusters, in decreasing order of abundance, are (1) 820–1000 Ma, host magmas felsic granitoids with alkaline rock, (2) 1500–1700 Ma felsic granitoids, (3) 500 to 700 Ma mafic granitoids with alkaline rock, (4) 2400–2550 Ma granitoids, and (5) 1000–1200 Ma felsic and mafic granitoids, mafic rock, and alkaline rock. TDM ranges from 1.5 to 3.5 Ga. Joint paleoslope measurements and zircon ages indicate that the Eastern Ghats Mobile Belt (EGMB) and lateral belts and conjugate Antarctica are potential provenances. Zircons from the Gondwana Rifts differ from those in other Gondwanaland sandstones in their predominant 820–1000 Ma and 1500–1700 Ma ages (from the EGMB and conjugate Rayner–MacRobertson Belt) that dilute the 500–700 Ma (Pan-Gondwanaland) ages. The 1000–1200 Ma zircons reflect the assembly of Rodinia, the 500–700 Ma ones that of Gondwanaland; the other ages reflect collisions in the region.  相似文献   

9.
The Temaguessine high-level subcircular pluton is intrusive into the LATEA metacraton (Central Hoggar) Eburnian (2 Ga) basement and in the Pan-African (615 Ma) granitic batholiths along a major NW–SE oriented major shear zone. It is dated here (SHRIMP U–Pb on zircon) at 582 ± 5 Ma. Composed of amphibole–biotite granite and biotite syenogranite, it comprises abundant enclaves: mafic magmatic enclaves, country-rock xenoliths and remarkable Fe-cordierite (#Fe = 0.87) orbicules. The orbicules have a core rich in cordierite (40%) and a leucocratic quartz–feldspar rim. They are interpreted as resulting from the incongruent melting of the meta-wacke xenoliths collapsed into the magma: the breakdown of the biotite + quartz assemblage produced the cordierite and a quartz–feldspar minimum melt that is expelled, forming the leucocratic rim. The orbicule generation occurred at T < 850° and P < 0.3 GPa. The Fe-rich character of the cordierite resulted from the Fe-rich protolith (wacke with 4% Fe2O3 for 72% SiO2). Strongly negative εNd (−9.6 to −11.2), Nd TDM model ages between 1.64 and 1.92 Ga, inherited zircons between 1.76 and 2.04 Ga and low to moderately high ISr (0.704–0.710) indicate a Rb-depleted lower continental crust source for the Temaguessine pluton; regional considerations impose however also the participation of asthenospheric material. The Temaguessine pluton, together with other high-level subcircular pluton, is considered as marking the end of the Pan-African magma generation in the LATEA metacraton, resulting from the linear delamination along mega-shear zones, allowing asthenospheric uprise and melting of the lower continental crust. This implies that the younger Taourirt granitic province (535–520 Ma) should be considered as a Cambrian intraplate anorogenic event and not as a very late Pan-African event.  相似文献   

10.
The (late syn)- post-collisional magmatic activities of western and northwestern Anatolia are characterized by intrusion of a great number of granitoids. Amongst them, Baklan Granite, located in the southern part of the Muratdağı Region from the Menderes Massif (Banaz, Uşak), has peculiar chemical and isotopic characteristics. The Baklan rocks are made up by K-feldspar, plagioclase, quartz, biotite and hornblende, with accessory apatite, titanite and magnetite, and include mafic microgranular enclaves (MME). Chemically, the Baklan intrusion is of sub-alkaline character, belongs to the high-K, calc-alkaline series and displays features of I-type affinity. It is typically metaluminous to mildly peraluminous, and classified predominantly as granodiorite in composition. The spider and REE patterns show that the rocks are fractionated and have small negative Eu anomalies (Eu/Eu* = 0.62–0.86), with the depletion of Nb, Ti, P and, to a lesser extent, Ba and Sr. The pluton was dated by the K–Ar method on the whole-rock, yielded ages between 17.8 ± 0.7 and 19.4 ± 0.9 Ma (Early Miocene). The intrusion possesses primitive low initial 87Sr/86Sr ratios (0.70331–0.70452) and negative εNd(t) values (−5.0 to −5.6). The chemical contrast between evolved Baklan rocks (SiO2, 62–71 wt.%; Cr, 7–27 ppm; Ni, 5–11 ppm; Mg#, 45–51) and more primitive clinopyroxene-bearing monzonitic enclaves (SiO2, 54–59 wt.%; Cr, 20–310 ppm; Ni, 10–70 ppm; Mg#, 50–61) signifies that there is no co-genetic link between host granite and enclaves. The chemical and isotopic characteristics of the Baklan intrusion argue for an important role of a juvenile component, such as underplated mantle-derived basalt, in the generation of the granitoids. Crustal contamination has not contributed significantly to their origin. However, with respect to those of the Baklan intrusion, the generation of the (late syn)- post-collisional intrusions with higher Nd(t) values from the western Anatolia require a much higher amount of juvenil component in their source domains.  相似文献   

11.
In France, the Devonian–Carboniferous Variscan orogeny developed at the expense of continental crust belonging to the northern margin of Gondwana. A Visean–Serpukhovian crustal melting has been recently documented in several massifs. However, in the Montagne Noire of the Variscan French Massif Central, which is the largest area involved in this partial melting episode, the age of migmatization was not clearly settled. Eleven U–Th–Pbtot. ages on monazite and three U–Pb ages on associated zircon are reported from migmatites (La Salvetat, Ourtigas), anatectic granitoids (Laouzas, Montalet) and post-migmatitic granites (Anglès, Vialais, Soulié) from the Montagne Noire Axial Zone are presented here for the first time. Migmatization and emplacement of anatectic granitoids took place around 333–326 Ma (Visean) and late granitoids emplaced around 325–318 Ma (Serpukhovian). Inherited zircons and monazite date the orthogneiss source rock of the Late Visean melts between 560 Ma and 480 Ma. In migmatites and anatectic granites, inherited crystals dominate the zircon populations. The migmatitization is the middle crust expression of a pervasive Visean crustal melting event also represented by the “Tufs anthracifères” volcanism in the northern Massif Central. This crustal melting is widespread in the French Variscan belt, though it is restricted to the upper plate of the collision belt. A mantle input appears as a likely mechanism to release the heat necessary to trigger the melting of the Variscan middle crust at a continental scale.  相似文献   

12.
In the Gangdese magmatic belt of southern Tibet, widespread Late Mesozoic magmatism has been reported, although their petrogenesis and tectonic evolution remain ambiguous. Here we present new zircon U-Pb and geochemical data on a gabbro-diorite suite near the Namling County in the central Gangdese belt, that provide insights into the geodynamic processes in this region. Zircon U-Pb data from LA-ICP-MS and SHRIMP II analyses indicate that the granite crystallized at ca. 87 Ma, and the gabbro-diorite suite was emplaced at ca. 91–95 Ma, both suggesting an early Late Cretaceous magmatism in the central Gangdese belt. The gabbro-diorite suite displays wide ranges of SiO2 (57.21–44.25 wt%) and MgO contents (9.04–3.18 wt%), with high Al2O3 (21.47–16.14 wt%) and Na2O/K2O (1.10–5.84) values. Compared to these, the granite rocks show limited variations of SiO2 (76.97–76.40 wt%), high Na2O + K2O (8.84–8.04 wt%), K2O/Na2O (2.33–1.30) and Sr/Y (48.99–80.36), with low Mg# (30.77–20.39) values and significant Eu anomalies (Eu/Eu* = 1.20–0.24). The gabbro-diorite rocks are characterized by typical arc-type features including enrichment of light rare earth elements (LREE) (LaN/YbN = 11.52–5.06 > 1) and large ion lithophile elements (LILE) (e.g. Cs, K and Rb), but are depleted in high strength field elements (HSFE) (e.g. Nb, Ta, Ti and P). The granitic rocks are also enriched in LREE (LaN/YbN = 55.42–26.55 > 1) and LILE (e.g. Cs, Rb, K and Pb), but depleted in HSFE (e.g. Nb, Ta, Ti and P). The gabbro-diorite rocks show distinctly positive εNd(t) (+3.5 to +4.2) and εHf(t) values (+8.5 to +15.6) values with a restricted range, with relatively homogeneous and low (87Sr/86Sr)I ratios (0.704213–0.703820). The granitic rocks also show positive εNd(t) values (+4.1 to +4.4) and consistent (87Sr/86Sr)I ratios (0.703977–0.703180). Our data suggest that the gabbro-diorite rocks were mostly sourced from partial melting of the depleted mantle that was metasomatized by fluids released from the subducted Neo-Tethys oceanic slab. The granite was probably produced by partial melting of the juvenile crust with no participation of mantle material. We correlate the magmatism with tectonics associated with the roll-back of the Neo-Tethys oceanic slab during the early Late Cretaceous.  相似文献   

13.
The late Archaean volcanic rocks of the Rwamagaza area in the Sukumaland Greenstone Belt consists of basalts and basaltic andesites associated with volumetrically minor rhyodacites and rhyolites. Most basalts and basaltic andesites yield nearly flat patterns (La/SmCN = 0.89–1.34) indicating derivation by partial melting of the mantle at relatively low pressure outside the garnet stability field. On primitive mantle normalized trace element diagrams, the basalts and basaltic andesites can be subdivided into two groups. The first group is characterised by moderately negative Nb anomalies (Nb/Lapm = 0.51–0.73, mean = 0.61 ± 0.08) with slight enrichment of LREE relative to both Th and HREE. The second group is characterised by nearly flat patterns with no Nb anomalies (Nb/Lapm = 0.77 ± 0.39). The observed Nb and Th anomalies in the Rwamagaza basalts and basaltic andesites, cannot be explained by alteration, crustal contamination or melt–solid equilibria. Rather, the anomalies are interpreted, on the basis of Nb–Th–La–Ce systematics, as having formed by partial melting of a heterogeneous mantle consisting of variable mixtures of components derived from two distinct sources. These sources are depleted mantle similar to that generating modern MORB and an LREE-enriched and HFSE-depleted source similar to that feeding volcanism along modern convergent margins.The rhyolites are characterised by high Na2O/K2O ratios (>1) and Al2O3 (>15 wt.%), low HREE contents (Yb = 0.24–0.68 ppm) leading to highly fractionated REE patterns (La/YbCN = 18.4–54.7) and large negative Nb anomalies (Nb/Lapm = 0.11–0.20), characteristics that are typical of Cenozoic adakites and Archaean TTG which form by partial melting of the hydrated basaltic crust at pressures high enough to stabilize garnet ± amphibole. The Rwamagaza basalts and basaltic andesites are geochemically analogous to the Phanerozoic Mariana Trough Back Arc Basin Basalts and the overall geochemical diversity of Rwamagaza volcanic rocks is interpreted in terms of a geodynamic model involving the interaction of a depleted mantle, a melting subducting oceanic slab in a back arc setting.  相似文献   

14.
The Qingchengzi orefield in northeastern China, is a concentration of several Pb–Zn, Ag, and Au ore deposits. A combination of geochronological and Pb, Sr isotopic investigations was conducted. Zircon SHRIMP U–Pb ages of 225.3 ± 1.8 Ma and 184.5 ± 1.6 Ma were obtained for the Xinling and Yaojiagou granites, respectively. By step-dissolution Rb–Sr dating, ages of 221 ± 12 Ma and 138.7 ± 4.1 Ma were obtained for the sphalerite of the Zhenzigou Zn–Pb deposit and pyrargyrite of the Ag ore in the Gaojiabaozi Ag deposit, respectively. Pb isotopic ratios of the Ag ore at Gaojiabaozi (206Pb/204Pb = 18.38 to 18.53) are higher than those of the Pb–Zn ores (206Pb/204Pb = 17.66 to 17.96; Chen et al. [Chen, J.F., Yu, G., Xue, C.J., Qian, H., He, J.F., Xing, Z., Zhang, X., 2005. Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone, northeastern China. Science in China Series D 48, 467–476.]). Triassic granites show low Pb isotopic ratios (206Pb/204Pb = 17.12 to 17.41, 207Pb/204Pb = 15.47 to 15.54, 208Pb/204Pb = 37.51 to 37.89) and metamorphic rocks of the Liaohe Group have high ratios (206Pb/204Pb = 18.20 to 24.28 and 18.32 to 20.06, 207Pb/204Pb = 15.69 to 16.44 and 15.66 to 15.98, 208Pb/204Pb = 37.29 to 38.61 and 38.69 to 40.00 for the marble of the Dashiqiao Formation and schist of the Gaixian Formation, respectively).Magmatic activities at Qingchengzi and in adjacent regions took place in three stages, and each contained several magmatic pulses: ca. 220 to 225 Ma and 211 to 216 Ma in the Triassic; 179 to 185 Ma, 163 to 168 Ma, 155 Ma and 149 Ma in the Jurassic, as well as ca. 140 to 130 Ma in the Early Cretaceous. The Triassic magmatism was part of the Triassic magmatic belt along the northern margin of the North China Craton produced in a post-collisional extensional setting, and granites in it formed by crustal melting induced by mantle magma. The Jurassic and Early Cretaceous magmatism was related to the lithospheric delamination in eastern China. The Triassic is the most important metallogenic stage at Qingchengzi. The Pb–Zn deposits, the Pb–Zn–Ag ore at Gaojiabaozi, and the gold deposits were all formed in this stage. They are temporally and spatially associated with the Triassic magmatic activity. Mineralization is very weak in the Jurassic. Ag ore at Gaojiabaozi was formed in the Early Cretaceous, which is suggested by the young Rb–Sr isochron age, field relations, and significantly different Pb isotopic ratios between the Pb–Zn–Ag and Ag ores. Pb isotopic compositions of the Pb–Zn ores suggest binary mixing for the source of the deposits. The magmatic end-member is the Triassic granites and the other metamorphic rocks of the Liaohe Group. Slightly different proportions of the two end-members, or an involvement of materials from hidden Cretaceous granites with slightly different Pb isotopic ratios, is postulated to interpret the difference of Pb isotopic compositions between the Pb–Zn–(Ag) and Ag ores. Sr isotopic ratios support this conclusion. At the western part of the Qingchengzi orefield, hydrothermal fluid driven by the heat provided by the now exposed Triassic granites deposited ore-forming materials in the low and middle horizons of the marbles of the Dashiqiao Formation near the intrusions to form mesothermal Zn–Pb deposits. In the eastern part, hydrothermal fluids associated with deep, hidden Triassic intrusions moved upward along a regional fault over a long distance and then deposited the ore-forming materials to form epithermal Au and Pb–Zn–Ag ores. Young magmatic activities are all represented by dykes across the entire orefield, suggesting that the corresponding main intrusion bodies are situated in the deep part of the crust. Among these, only intrusions with age of ca. 140 Ma might have released sufficient amounts of fluid to be responsible for the formation of the Ag ore at Gaojiabaozi.Our age results support previous conclusions that sphalerite can provide a reliable Rb–Sr age as long as the fluid inclusion phase is effectively separated from the “sulfide” phase. Our work suggests that the separation can be achieved by a step-resolution technique. Moreover, we suggest that pyrargyrite is a promising mineral for Rb–Sr isochron dating.  相似文献   

15.
Liujiaping VMS (volcanic massive sulfide) deposit contains mainly copper and zinc, which is located at the Longmenshan orogenic belt of the northwestern margin of Yangtze block. The deposit is hosted in Neoproterozoic Datan terrane (composed of Datan granitoids and Liujiaping group) and is a typical, and the biggest, VMS deposit in this area. The Datan granitoids and Liujiaping group are contemporary and both parental magmas have the same genesis. The tectonic evolution history of Northwestern Yangtze is complicated. Chronology, isotope and geochemistry of the Liujiaping VMS ores and wall rocks (especially the Datan granitoids) are analyzed to restrict the tectonic progress. High‐precision secondary ion mass spectrometry (SIMS) analysis of the Datan granitoids resulted in two concordant ages, 815.5 ± 3.2 Ma and 835.5 ± 2.6 Ma, which are contemporary with the Liujiaping Cu–Zn ore and volcanics. The wall rocks are characterized by enrichment in LREE and with a weak negative anomaly of Eu. The Pb isotope data of sulfide and volcanics from the Liujiaping deposit indicate that the material source is lower crust. Together with variable negative anomalies of high strength field elements HFSE (Th, Nb, Ta, Zr, Hf, P and Ti), positive εNd (825 Ma) values (+1.8 to +3.1) and the Nd model age T2DM = 1.2–1.3 Ga, it shows that the Liujiaping deposit and wall rocks were formed by partial melting of Mesoproterozoic lower crust. Geological and geochemical characteristics of Liujiaping deposit indicate that this deposit was formed during subduction of the oceanic crust. This study clarified that that the Liujiaping deposit and the northwestern margin of the Yangtze block were part of an arc setting at ~820 Ma rather than intra‐continental rift.  相似文献   

16.
The Qichun granitoids exposed in the Dabie Orogen of China are composed of two types of rocks: porphyritic monzogranite (with variable schistosity) and syenogranite (without schistosity). The two types show large differences in geochemical characteristics. The porphyritic monzogranite is characterized by high Al2O3 content (15.73%), relatively high CaO (2.46%) and Na2O contents (Na2O/K2O=1.27), strong depletion in HREE and strong fractionation between LREE and HREE ((La/Yb)N=46.8), similar to some high Al2O3 Archaean TTG gneisses. Conversely, the syenogranite is characterized by relatively low Al2O3 (14.05%) and CaO (0.82%) contents, and higher K2O than Na2O (Na2O/K2O=0.81). The degree of fractionation between LREE and HREE is minor. The U–Pb SHRIMP zircon age of the porphyritic monzogranite is 841±15 and 824±27 Ma for the syenogranite. These ages are similar to the protolith emplacement ages of granitic gneisses in the Dabie Orogenic Belt. The existence of weakly to unmetamorphosed granitoids in the Dabie Orogen shows that the granitoids were situated in the back part of the subducted plate during collision and subduction between the Yangtze and the North China cratons, and may represent outcrops of the Yangtze basement.  相似文献   

17.
The appearance of voluminous K-rich granitoids within nearly all ancient cratons represents one major characteristic of late Archean Earth, which hold the key to understand the transitional geodynamic regimes globally during this period. The genetic regimes and links among different K-rich granitoids and their implications for crustal growth and evolution remain controversial. A series of late Neoarchean K-rich granitoids, including quartz dioritic, granodioritic, and monzogranitic gneisses, occur in the Jiaobei terrane of North China Craton. Zircon U-Pb isotopic data reveal that they emplaced during ~2544–2494 Ma, coeval with regional ~2530–2470 Ma high-grade metamorphism.The quartz dioritic-granodioritic gneisses are magnesian rocks, and they show low Si and Ti, but high K and Mg, similar to Archean low-Ti sanukitoids. The Sr/Y and (La/Yb)N are high (mostly 59.99–119.32 and 8.56–61.42), with moderate to high Nb (up to 11.79 ppm). Geochemical modeling, combined with depleted zircon εHf(t2) (+0.5 − +7.2) and the presence of minor xenocrystic zircons, indicate that these low silica samples were derived from a metasomatized depleted mantle source with inputs of slab-derived fluids and melts, and minor contamination by ancient crustal materials. The monzogranitic rocks are ferroan rocks showing high Si, K, and Fe, but low Mg. They are divided into two subgroups: the first displays low TREE of 44.00–127.00 ppm and positive Eu anomalies (EuN/Eu*N = 1.06–1.60), whereas the second shows high TREE of 85.76–819.02 ppm but negative Eu anomalies (EuN/Eu*N = 0.51–0.62). Geochemical modeling and depleted zircon εHf(t2) of +2.6 − +8.4 suggest their formation by partial melting of juvenile crustal sources involving tonalitic and some metasedimentary rocks at diverse crustal levels.Combined with regional geological data, these late Neoarchean K-rich granitoids were generated by coupled melting of metasomatized depleted mantle and dominantly juvenile crustal materials during crustal stabilization. Furthermore, the Jiaobei terrane experienced ~2.6–2.5 Ga crustal growth under a subduction-accretion setting.  相似文献   

18.
Shoshonitic series volcanic rocks (SSVR) and adakites are widely distributed in the Permian terrestrial volcanic strata of the Yishijilike–Awulale range of west Tianshan, north Xinjiang, China. Isotopic dating yields Permian ages of 280–250 Ma. The SSVR include absarokite, shoshonite and banakite which are characterized by enrichment of alkalis, particularly in K, combined with lower Ti, higher Al (A/NKC = 0.70–0.99, metaluminous) and Fe2O3 > FeO. The SSVR that are rich in LILE with high REE contents and Eu/Eu range from 0.59 to 1.30. They are rich in LREE ((La/Yb)N 2.15–11.97) and depleted in Nb, Ta and Ti (TNT negative anomalies). The adakites are metaluminous to weakly peraluminous (A/NKC = 0.85-1.16) and belong to the high-SiO2 type of adakite (HSA, SiO2 = 62%–71%). They are characterized by lower ΣREE with strong LREE enrichment ((La/Yb)N 13–35). Pronounced positive Eu anomalies (Eu/Eu = 1.02–1.27), very low Yb contents and distinct TNT-negative anomalies are evident. The SSVR have εNd(t) (+ 1.28 to + 4.92) and (87Sr/86Sr)i (0.7041–0.7057) that are similar to adakites in the regions which are characterized by εNd(t) = 0.95 to + 5.69 and (87Sr/86Sr)i = 0.7050–0.7053. Trace element, REE and Sr/Nd isotopic compositions suggest that both SSVR and adakites possess similar source regions associated with underplated mantle-derived basaltic materials. Lithosphere extension driven by magmatic underplating was responsible for the generation of both the SSVR and adakites. This magmatism serves as a petrological indicator of underplating during the Permian. Obviously thickened crust (62–52 km), a complex Moho discontinuity, high heat flow (~ 100 mw·m− 2), widespread contemporary alkali-rich granites, basic dike swarms (K–Ar ages of 187–271 Ma, Ar–Ar ages of 174–270 Ma and Rb–Sr ages of 255 ± 28 Ma; εNd(t) + 1.84 to + 10.1; (87Sr/86Sr)i 0.7035 and 0.7065), and basic granulites (SHRIMP U–Pb age of 268–279 ± 5.6 Ma) provide additional evidences for the underplating event in this area during Permian.  相似文献   

19.
A metamorphic petrological study, in conjunction with recent precise geochronometric data, revealed a complex PTt path for high-grade gneisses in a hitherto poorly understood sector of the Mesoproterozoic Maud Belt in East Antarctica. The Maud Belt is an extensive high-grade, polydeformed, metamorphic belt, which records two significant tectono-thermal episodes, once towards the end of the Mesoproterozoic and again towards the late Neoproterozoic/Cambrian. In contrast to previous models, most of the metamorphic mineral assemblages are related to a Pan-African tectono-thermal overprint, with only very few relics of late Mesoproterozoic granulite-facies mineral assemblages (M1) left in strain-protected domains. Petrological and mineral chemical evidence indicates a clockwise PTt path for the Pan-African orogeny. Peak metamorphic (M2b) conditions recorded by most rocks in the area (T = 709–785 °C and P = 7.0–9.5 kbar) during the Pan-African orogeny were attained subsequent to decompression from probably eclogite-facies metamorphic conditions (M2a).The new data acquired in this study, together with recent geochronological and geochemical data, permit the development of a geodynamic model for the Maud Belt that involves volcanic arc formation during the late Mesoproterozoic followed by extension at 1100 Ma and subsequent high-grade tectono-thermal reworking once during continent–continent collision at the end of the Mesoproterozoic (M1; 1090–1030 Ma) and again during the Pan-African orogeny (M2a, M2b) between 565 and 530 Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions (M2c) followed and is ascribed to post-orogenic bimodal magmatism between 500 and 480 Ma.  相似文献   

20.
The Bafoussam area in western Cameroon is part of the Central African Orogenic Belt. It is dominated by granitoids which belong to the Pan-African syn- to post-collisional post-650 Ma group. Syenogranites are predominant, but alkali-feldspar granite, monzogranite, quartz-monzonite and quartz-monzodiorite occur as well. Four granitoid suites, biotite granitoids and deformed biotite granitoids with amphibole, megafeldspar granitoids with megacrysts and two-mica granitoids with primary muscovite and igneous garnet are distinguished. The granites can be assigned to high-K calc-alkalic to shoshonitic series. The partly shoshonitic biotite granitoids are metaluminous to weakly peraluminous and can be labelled as a highly fractionated I-type suite. The megafeldspar granitoids are weakly peraluminous with I-type character whereas the two-mica granitoids are weakly to strongly peraluminous and belong to an S-type suite. Emplacement ages at 558–564 Ma for the two-mica granitoids have been dated from monazite by the EMP Th–U–Pb method.The REE in the biotite granitoids are moderately fractionated with (La/Lu)N = 23–38. Enrichment of Nb and Ta varies by one order of magnitude. The megafeldspar granitoids show homogeneous and strongly fractionated REE patterns with (La/Lu)N = 27–42. The primitive mantle-normalized element patterns are homogeneous with marked negative Ba, Nb, Ta, Sr, Eu and Ti anomalies. The two-mica granitoids are characterized by low to moderate total REE contents with strongly fractionated REE expressed by (La/Lu)N ranging from 7 to 59. The negative Nb and Ta anomalies are less significant. Nd and Sr whole-rock isotope data confirm different sources for the granitoid suites. The source of the I-type biotite granitoids was probably a juvenile mantle which has been variably metasomatized. The source of the I-type megafeldspar granitoids is characterized by juvenile mantle and lower crust components. Anatectic melts of the upper continental crust with variable contribution of lower continental crust or mantle melts can explain the heterogeneous isotopic signatures of the S-type two-mica granitoids. It is suggested that the melting of these sources was successively initiated by the rising isotherms during a syn- to post-collisional setting which followed a subduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号