首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Up to 10 m in length and >1 m in diameter tubular, calcite-cemented sandstone concretions are hosted by the faulted Dikilitash unconsolidated sands and sandstones. These structures document shallow subsurface pathways of Early Eocene methane seepage in the Balkan Mountains foreland (NE Bulgaria). Their exceptional exposure allowed a unique study of the factors governing the morphology and spatial distribution of such fossilized fluid conduits. The large dimensions and subvertical, cylindrical shape of the most common tube type primarily reflects the buoyancy-driven, vertical path of an ascending gas-bearing fluid through permeable, mainly unconsolidated sandy host sediments. Tube morphology was also influenced by local stratigraphic anisotropies and might as well document differences in former seepage conditions. Mapping of >800 tubular concretions showed the NNW–NNE elongation and alignment of tube clusters and massive cemented sandstone structures. This suggests that Paleogene fault systems played a major role in directing the movement of fluids. However, within a single tube cluster, tubes are preferentially aligned, over distances up to 50 m along directions at an angle between 10° and 36° with respect to the inferred NNW–NNE, cluster parallel fault traces. In addition, cylindrical tubes of analogue dimensions are aligned over distances >100 m along N15° to N25°-oriented directions. It is hypothesized that this spatial geometry of tubular concretions reflects the complex geometry of deformations structures in fault damage zones along which fluids were preferentially channelled.  相似文献   

2.
Sea surface salinity (SSS) data in the Atlantic Ocean is investigated between 50°N and 30°S based on data collected mostly during the period 1977–2002. Monthly mapping of SSS is done to extract the large-scale variability. This mapped variability indicates fairly long (seasonal) time scales outside the equatorial region. The spatial scales of the seasonal anomalies are regional, but not basin-wide (typically 500–1000 km). These seasonal SSS anomalies are found to respond with a 1–2 month lag to freshwater flux anomalies at the air–sea interface or to the horizontal Ekman advection. This relation presents a seasonal cycle in the northern subtropics and north-east Atlantic indicating that the late-boreal spring/summer season is less active than the boreal winter/early-spring season in forcing the seasonal SSS variability. In the north-eastern mid-latitude Atlantic, SSS is positively correlated to SST, with SSS slightly lagging SST. There are noticeable long-lasting larger-scale signals overlaid on this regional variability. Part of it is related to known climate signals, for example ENSO and NAO. A linear trend is present during the first half of the period in some parts of the basin (usually towards increasing salinities, at least between 20°N and 45°N). Based on a linear regression analysis, these signals combined can locally represent up to 20% of SSS variance (in particular near 30°N/60°W or 40°N/10–30°W), but usually represent less than 10% of the variance.  相似文献   

3.
To determine the effect of low water temperature on development, walleye pollock (Theragra chalcogramma) eggs from the Bering Sea were reared at −0.6°C, 0.4°C, 2.0°C, and 3.8°C. One group of eggs was reared at 3.9°C under a diel light cycle (14 h light, 10 h dark) to observe the effect of light on development and hatching. Development was normal for all temperatures except −0.6°C; abnormal development of the tail and lack of development of eyes occurred in some embryos. Time to 50% hatch was 820, 620, and 424 h at 0.4°C, 2.0°C, and 3.8°C. Eggs incubated in diel light at 3.9°C developed at the same rate as eggs incubated in constant dark at 3.8°C, but required an additional 72 h to reach 50% hatch. A piece-wise regression model was generated to predict egg age for incubation temperatures of −0.6°C to 3.8°C. For temperatures recorded in the southeastern Bering Sea 1995–1998, the model predicted incubation periods for walleye pollock eggs that varied by 13 days between the warmest and coldest years.Walleye pollock eggs from Shelikof Strait, Alaska, were incubated at 0.2°C, 1.8°C, and 2.8°C. Development was normal for all temperatures. A piece-wise regression model (as above) was generated for incubation temperatures 0.2–2.8°C. When the regression models were compared, Bering Sea eggs (1.4–1.7 mm in diameter), required more time for development prior to hatch than Shelikof Strait eggs (1.2–1.3 mm in diameter) at 1.8°C and 2.8°C. However, for temperatures 0.2–2.0°C, Bering Sea walleye pollock began hatching earlier and at a developmentally younger age than Shelikof Strait walleye pollock.  相似文献   

4.
We conducted full-depth hydrographic observations in the southwestern region of the Northwest Pacific Basin in September 2004 and November 2005. Deep-circulation currents crossed the observation line between the East Mariana Ridge and the Shatsky Rise, carrying Lower Circumpolar Deep Water westward in the lower deep layer (θ<1.2 °C) and Upper Circumpolar Deep Water (UCDW) and North Pacific Deep Water (NPDW) eastward in the upper deep layer (1.3–2.2 °C). In the lower deep layer at depths greater than approximately 3500 m, the eastern branch current of the deep circulation was located south of the Shatsky Rise at 30°24′–30°59′N with volume transport of 3.9 Sv (1 Sv=106 m3 s−1) in 2004 and at 30°06′–31°15′N with 1.6 Sv in 2005. The western branch current of the deep circulation was located north of the Ogasawara Plateau at 26°27′–27°03′N with almost 2.1 Sv in 2004 and at 26°27′–26°45′N with 2.7 Sv in 2005. Integrating past and present results, volume transport southwest of the Shatsky Rise is concluded to be a little less than 4 Sv for the eastern branch current and a little more than 2 Sv for the western branch current. In the upper deep layer at depths of approximately 2000–3500 m, UCDW and NPDW, characterized by high and low dissolved oxygen, respectively, were carried eastward at the observation line by the return flow of the deep circulation composing meridional overturning circulation. UCDW was confined between the East Mariana Ridge and the Ogasawara Plateau (22°03′–25°33′N) in 2004, whereas it extended to 26°45′N north of the Ogasawara Plateau in 2005. NPDW existed over the foot and slope of the Shatsky Rise from 29°48′N in 2004 and 30°06′N in 2005 to at least 32°30′N at the top of the Shatsky Rise. Volume transport of UCDW was estimated to be 4.6 Sv in 2004, whereas that of NPDW was 1.4 Sv in 2004 and 2.6 Sv in 2005, although the values for NPDW may be slightly underestimated, because they do not include the component north of the top of the Shatsky Rise. Volume transport of UCDW and NPDW southwest of the Shatsky Rise is concluded to be approximately 5 and 3 Sv, respectively. The pathways of UCDW and NPDW are new findings and suggest a correction for the past view of the deep circulation in the Pacific Ocean.  相似文献   

5.
A high-salinity Gibbs function for seawater is derived from Pitzer equations of the sea salt components, in conjunction with the 2003 Gibbs function of seawater for low salinities. Various properties, computed from both formulations by thermodynamic rules, are compared with each other, and with high-salinity measurements. The new Gibbs–Pitzer function presented in this paper is valid in the range 0–110 g kg−1 in absolute salinity, −7 to +25 °C in temperature, and 0–100 MPa in applied pressure. The formulation is expressed in the International Temperature Scale 1990 (ITS-90), and is consistent with the International Standard for Fluid Water (IAPWS-95), and with the 2005/2006 equations of state of ice Ih.  相似文献   

6.
Meiobenthos were sampled from 17 stations in the abyssal deep-sea system of the central Pacific centered around 14°N, 130°W at depths 4960–5154m, during the Nixo 47 R/V Jean Charcot cruise. Meiofaunal density range from 45–89 ind. 10cm2. Predominant taxa are nematodes (84–100%) and copepods (0–10%). Rotifera, Polychaeta, and Acarina also occur. Nematodes are uniformly distributed spatially with 45 species or so; Monhysteridae is the dominant taxon, and Syringolaimus sp. (Ironidae) co-occurs faithfully. Low biomass (0.4–70.6μg 10cm2) are attributed to supposed dwarfism of metazoan meiofauna and very high proportion (60–80%) of juveniles and pre-adult forms. The majority of protozoans and metazoans are detritus- or deposit-feeders; in addition symbiotic associations, coprophagy and gardening activities are frequent. In such an oligotrophic environment, low food supply may limit meiofaunal abundance, biomass and maturation, and to a lesser extent species richness.  相似文献   

7.
Changes in the sea surface heights (SSH) and geostrophic currents along the eastern boundaries of the Pacific (North, Central and South America) are examined during the 1997–1998 El Niño using altimeter data and proxy winds. These show that ‘symmetric’ SSH signals left the equator and propagated into both Hemispheres in two episodes, with primary periods of high equatorial SSH during May–July and October–December 1997. These are the ‘distant signals’ from the mid-latitude perspective. As the signals spread poleward in each Hemisphere, their loss of symmetry demonstrates the degree to which they were altered by topographic features, local winds, and/or local currents. The first four EOFs are calculated for 2-D SSH fields in 10° wide strips along the eastern margins (60°N–60°S) and extending out along the equator from the coast to 110°W. These account for approximately 40% of the overall variability and represent the main features of the seasonal cycles and El Niño interannual variability. Snapshots of the 2-D SSH fields depict the structure of the El Niño signal at different phases of its evolution.  相似文献   

8.
Deep-circulation flow at mid-latitude in the western North Pacific   总被引:1,自引:1,他引:1  
Direct current measurements with five moorings at 27–35°N, 165°E from 1991 to 1993 and with one mooring at 27°N, 167°E from 1989 to 1991 revealed temporal variations of deep flow at mid-latitude in the western North Pacific. The deep-circulation flow carrying the Lower Circumpolar Deep Water from the Southern Ocean passed 33°N, 165°E northwestward with a high mean velocity of 7.8 cm s−1 near the bottom and was stable enough to continue for 4–6 months between interruptions of 1- or 2-months duration. The deep-circulation flow expanded or shifted intermittently to the mooring at 31°N, 165°E but did not reach 35°N, 165°E although it shifted northward. The deep-circulation flow was not detected at the other four moorings, whereas meso-scale eddy variations were prominent at all the moorings, particularly at 35°N and 29°N, 165°E. The characteristics of current velocity and dissolved oxygen distributions led us to conclude that the deep-circulation flow takes a cyclonic pathway after passing through Wake Island Passage, passing 24°N, 169.5–173°E and 30°N, 168–169°E northward, proceeds northwestward around 33°N, 165°E, and goes westward through the south of the Shatsky Rise. We did not find that the deep-circulation flow proceeded westward along the northern side of the Mid-Pacific Seamounts and eastward between the Hess Rise and the Hawaiian Ridge toward the Northeast Pacific Basin.  相似文献   

9.
Henry's law constants were determined for α- and γ-hexachlorocyclohexane (HCH) as a function of temperature (0.5–45°C) in artificial seawater (SW; 30‰) and distilled water (DW) using the gas stripping method. Water samples (1–5 ml) were withdrawn from the stripping vessel during the stripping process (30–360 h), solvent extracted and analyzed by gas chromatography—electron-capture detection. The effect of bubbling depth was checked to ensure that bubbles leaving the system were at equilibrium with HCHs in the aqueous phase. Henry's law constants determined at 35 and 45°C in SW were significantly higher (P≤ 0.05) than in DW for both α- and γ-HCH, but not at lower temperatures. The slopes (m) and intercepts (b) of log H vs. 1 / T plots were: α-HCH (DW, 0.5–45°C); m = −2810 ± 110, B = 9.31 ± 0.38; α-HCH (SW, 0.5–23°C); M = −2969 ± 218, B = 9.88 ± 0.76; γ-HCH (DW, 0.5–45°C); M = −2382 ± 160, B = 7.54 ± 0.54; γ-HCH (SW, 0.5–23°C); M = −2703 ± 276, B = 8.68 ± 0.96. Henry's law constants determined in this study compared well with those calculated from reported vapor pressure and solubility data.  相似文献   

10.
The aim of the work is to check the hypothesis that quasiperiodic oscillations of meridional heat transport intensified by a positive feedback existing in the ocean–atmosphere system in subtropical regions is one of the principal factors governing the decadal variability of various hydrophysical fields in the North Atlantic. We use a simple three-box model of the North Atlantic with one lower and two upper boxes and meridional circulation for typical parameters of the ocean–atmosphere system. It is assumed that the decadal anomalies of sea-level pressure are proportional to the anomalies of sea-surface temperature. The deduced system of ordinary differential equations for the temperature of the upper two boxes with quadratic nonlinearity and the behavior of the solution in the vicinity of the stationary point are analyzed by using standard procedures for the investigation of linearized equations for small perturbations. It is shown that, for typical parameters of the ocean–atmosphere system, oscillating solutions for the sea-surface temperature with periods of 10–20yr can be realized even without taking salinity into account.  相似文献   

11.
The effects of zinc being added to sea water, to final concentrations of 0·1–20 ppm, have been studied on the heart rate, valve movements, mortality of Scrobicularia and on both isolated and in situ inhalant siphon preparations.The acute toxicity threshold for added zinc was determined to be about 10 ppm at 10°C. The median lethal times for 10 and 20 ppm zinc were 143·5 and 116·1 h respectively.The responses of Scrobicularia to zinc concentrations in sea water of between 0·1 and 10 ppm were tested by exposure for 6 h. Above 1 ppm, valve closure and bradycardia occur within 10–15 min. Below 5 ppm the valves subsequently opened and heart rate increased over the 6 h period, but in 10 ppm closure and pronounced bradycardia were maintained throughout.Addition of zinc, to final concentrations of 1, 5 and 10 ppm, had no effect on the isolated inhalant siphon in contrast to copper at 0·25 and 0·5 ppm which caused very marked siphonal contractions. However, when zinc (1–10 ppm) was added to an in situ inhalant siphon preparation, contractions occurred which were lost on removal of zinc from the bathing medium. Cutting the cruciform muscles medially resulted in the loss or delay of the response to zinc. This suggests the possibility of the cruciform muscle complex (muscle strands and associated sense organs) responding to zinc. This contrasts with the direct action of copper on the neuromuscular system of an isolated siphon.  相似文献   

12.
Midsummer (1 August) population estimates of about 2 million O-group plaice (Pleuronectes platessa L.) were derived for sandy bays around the Firth of Forth in 1979–1980. This is an order of magnitude less than similar estimates made for the Clyde Sea Area in 1973–1974. Autumn population estimates of 0·4–1·0 million fish were comparable to estimates by the Ministry of Agriculture, Fisheries and Food for the area between the Scottish border and Flamborough Head (2·3 million for 1970 and 1973) which represented 4·8% (1973) to 5·3% (1970) of the total number of O-group fish on the English east coast.Largo Bay was the most important nursery area holding 25% of the total population. It is particularly well situated to receive newly metamorphosed plaice carried in water currents along the north side of the Forth from the spawning ground off Fife Ness. Plaice in the Forth are mainly distributed on fine to medium sandy beaches (186–480 μm), the mean number per haul in midsummer (D) being correlated with the median diameter (m.d. in μm) of the low water sediments by the equation: D=−45·7666+0·2327 m.d. (n=11,r=0·68,P<0·02 but>0·01).The shallow inshore water in sandy bays in the outer Firth was well mixed and more marine than estuarine (27·7–35·0‰). The correlation coefficient between fish density and water temperature was low, while that with salinity (S‰) was: D=6·1618+0·2238S (n=23,r=0·62,P<0·005).Regression analysis demonstrated that the relationship between the instantaneous mortality rate (Z) and the initial population density (Dp) was: Z×100=0·7480+0·0546dp (n=12,r=0·87,P<0·001).The mean mortality rate for the O-group plaice in the Forth nursery areas was 53% month−1.  相似文献   

13.
Concentrations of Hg0 in surface waters and atmosphere of the Scheldt estuary and the North Sea are presented and their relationship with biological processes is discussed. Hg0 concentrations in the Scheldt estuary range from 0.1 to 0.38 pmol·l−1 in the winter and from 0.24 to 0.65 pmol·l−1 in the summer and show a positive relationship with phytoplankton pigments. In the North Sea Hg0 concentrations range from 0.06 to 0.8 pmol·l−1 and are higher in coastal stations. Transfer velocities across the air–sea interface were calculated using a classical shear turbulence model. Volatilization fluxes of Hg0 were calculated for the Scheldt estuary and the North Sea. For the Scheldt estuary the fluxes range from 226–284 pmol·m−2·d−1 in winter and 500–701 pmol·m−2·d−1 in summer and for the North Sea the fluxes range from 59–1110 pmol·m−2·d−1 for an average windspeed of 8.1 m·s−1. These fluxes are comparable to the wet and dry depositional fluxes to the North Sea. Hg0 formation rates necessary to balance the volatilization fluxes vary from 0.2 to 4% d−1.  相似文献   

14.
Partial molar volumes of the major salts of seawater found in diluted seawater and in pure water are experimentally determined at temperatures of 5°C, 15°C and 25°C. The range of salinity investigated, which is not purely oceanographic, is the link between pure water and seawater in the World Ocean.The partial molar volumes were determined by using the procedure of Poisson and Chanu (1976). An empirical relation is given, linking the partial molar volumes of the salts or major ions of seawater in pure water with those measured in seawater, within the salinity range 0–40 g kg−1 and the temperature range 0–25°C.  相似文献   

15.
Atmospheric and oceanic pCO2 were measured continuously along an Atlantic Meridional transect (50°N–50°S) in September–October 1995 and 1996 (U.K. to the Falklands Islands) and in April–May 1996 (Falklands Islands to the UK). The Atlantic ocean was a net sink for atmospheric CO2 for all 3 transects. The largest sinks were located at high latitudes, in regions of high wind speed, where strong CO2 undersaturations, associated with high biological activity, were observed. In these regions the partial pressure difference between the ocean and the atmosphere reached −110 μatm. A CO2 source occurred in the equatorial region between 0° and 10°S, where ΔpCO2 of up to 40 μatm was found. Another source was in the northern subtropical gyre where its extension varied according to the season. Along the whole transect the October cruises exhibited similar pCO2 distributions suggesting a dominance of the seasonal variability and small year to year changes.  相似文献   

16.
We analyze the time-longitude structure of composite cases from model-assimilated ocean data in the period 1958–1998, following on from earlier work by Huang and Kinter (J. Geophys. Res. 107(C11) (2002) 3199) that studied east–west thermocline variability in the Indian Ocean. Our analysis focuses on the Rossby wave signal along the thermocline ridge in the tropical SW Indian Ocean (10°S, 60–80°E), where wind stress curl is important. Anomalous winds in the equatorial east Indian Ocean force successive Rossby waves westward at speeds of 0.1 m s−1±30%. With a wavelength of 7000 km, the period of oscillation is in the range 1.9–5.2 years. The Indian Ocean Rossby wave is partially resonant with the global influence of the El Nino–Southern Oscillation, except during quasi-biennial rhythm. The presence of the Rossby wave offers potential predictability for east–west atmospheric circulation systems and climate that affect resources in countries surrounding the Indian Ocean.  相似文献   

17.
18.
The spawning habitat of Emmelichthys nitidus (Emmelichthyidae) in south-eastern Australia is described from vertical ichthyoplankton samples collected along the shelf region off eastern through to south-western Tasmania during peak spawning in October 2005–06. Surveys covered eastern waters in 2005 (38.8–43.5°S), and both eastern and southern waters in 2006 (40.5°S around to 43.5°S off the south-west). Eggs (n = 10,393) and larvae (n = 378) occurred along eastern Tasmania in both years but were rare along southern waters south and westwards of 43.5°S in 2006. Peak egg abundances (1950–2640 per m−2) were obtained off north-eastern Tasmania (40.5–41.5°S) between the shelf break and 2.5 nm inshore from the break. Eggs were up to 5-days old, while nearly 95% of larvae were at the early preflexion stage, i.e. close to newly emerged. Average abundances of aged eggs pooled across each survey declined steadily from day-1 to day-5 eggs both in 2005 (97-18) and 2006 (175-34). Moreover, day-1 egg abundances were significantly greater 2.5 nm at either side of the break, including at the break, than in waters ≥5 nm both inshore and offshore from the break. These results, complemented with egg and larval data obtained in shelf waters off New South Wales (NSW; 35.0–37.7°S) in October 2002–03, indicate that the main spawning area of E. nitidus in south-eastern Australia lies between 35.5°S off southern NSW and 43.5°S off south-eastern Tasmania, and that spawning activity declines abruptly south and westwards of 43.5°S around to the south-west coast. In addition, quotient analyses of day-1 egg abundances point to a preferred spawning habitat contained predominantly within a 5 nm corridor along the shelf break, where waters are 125–325 m deep and median temperatures 13.5–14.0 °C. Spawning off eastern Tasmania is timed with the productivity outburst typical of the region during the austral spring, and the temperature increase from the mixing between the southwards advancing, warm East Australian Current and cooler subantarctic water over the shelf. Overall, ichthyoplankton data, coupled with reproductive information from adults trawled off Tasmania, indicate that E. nitidus constitutes a suitable species for the application of the daily egg production method (DEPM) to estimate spawning biomass. This finding, together with evidence in support of a discrete eastern spawning stock extending from southern NSW to southern Tasmania, strengthens the need for DEPM-based biomass estimates of E. nitidus prior to further fishery expansion.  相似文献   

19.
CTD, vessel-mounted ADCP and LADCP measurements in the Caribbean passages south of Guadeloupe (three repeats) and along 16°N (five repeats) were carried out between December 2000 and July 2004. The CTD data were used to calculate the contribution of South Atlantic water (SAW) in the upper 1200 m between the isopycnals σθ=24.5 and 27.6. Northern and southern source water masses are defined and an isopycnal mixing approach is applied. The SAW fractions are then combined with the ADCP flow field to calculate the transport of SAW into the Caribbean and across 16°N. The SAW inflow into the Caribbean through the passages south of Guadeloupe ranges from 7.6 to 11.6 Sv, which is 50–75% of the total inflow. The mean (9.1±2.2 Sv) is in the range of previous estimates. Ambiguities in the northern and southern source water masses of the salinity maximum water permitted us only to calculate the contribution of SAW from the eastern source in this water mass. We estimated the additional SAW transport by the western source to be of the order of 1.9±0.7 Sv. The calculation of the SAW transport across 16°N was hampered by the presence of several anticyclonic rings from the North Brazil Current (NBC) retroflection region, some of the rings were subsurface intensified. Provided that the rings observed at 16°N are typical rings and that all rings which are annually produced in the NBC retroflection area (6.5–8.5 per year) reach 16°N, the SAW ring transport across 16°N is calculated to 5.3±0.7 Sv. From the 5 repeats at 16°N, only two showed a net northward flow, suggesting that the mean northward SAW transport is dominated by ring advection. The joint SAW transports of the Caribbean inflow (9.1 Sv) and the flow across 16°N (5.3 Sv) sum up to 14.4 Sv. The transport increases to 16.3 Sv if the additional SAW transport from the western source of SMW (1.9±0.7 Sv) is included. These transport estimates and the following implications depend strongly on the assumption that the surface water in the Caribbean inflow is of South Atlantic origin. The transport estimates are, however, in the range of the inverse model calculations for the net cross-hemispheric flow. About 30–40% of this transport is intermediate water from the South Atlantic, presumably supporting studies which found the contributions of intermediate and upper warm water to be of a comparable magnitude. For the upper warm water (σθ<27.1), the Caribbean inflow seems to be the major path (7.9±1.6 Sv), the ring induced transport across 16°N is about 30% of that value. The intermediate water transport across 16°N was calculated to be 2.3–3.6 Sv, the inflow into the Caribbean is slightly smaller (1.5–2.4 Sv).  相似文献   

20.
Using a variational inverse model, a wintertime ocean circulation is obtained in the East Sea of Korea bounded by transects of 34° N, 38° N in latitude and 132° E in longitude and coastlines. The hydrographic data observed by FRDAK (Fisheries Research and Development Agency of Korea) are used for determining the vertical structure and also used as data constraints. In the current study, the model was constrained only by the geostrophic balance and bottom topography. Preliminary model results showed that the vertical distributions of temperature in February 1983 were homogeneous in the coastal region south of 35°30′ N and that the extension of cold water mass along the eastern coast of Korea was noticed in the northern part of the study area. Meandering northward flows with the scale of 150 km are also observed to be dominant in the surface layer (10–100 m).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号