首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface and borehole core samples from the Lac du Bonnet granite, Manitoba, Canada, have been analysed for major element concentrations,Fe3+/Fe (total) ratios, rare earth element (REE) content and actinide isotopic abundances. This work forms part of the geological investigations of the Canadian Nuclear Fuel Waste Management Program, performed by Atomic Energy of Canada Limited (AECL). The study attempts to understand the history of, and processes governing, mobilisation of elements and naturally occurring radionuclides during high- and low-temperature alteration events in fluid-bearing fractures in the granite.One surface sample and two core samples (from ∼ 150 m and 730 m) are each in contact with fractures in the granite and show evidence of alteration events that penetrated the rock matrix over distances of at least 3 cm. Loss of Ca and Na is seen in cores from a depth of ∼ 150 m from the highly altered, hematite-rich rock adjacent to sub-horizontal fracture zones at the Underground Research Laboratory (URL) of AECL, near Lac du Bonnet. In contrast, K, Fe,Fe3+/Fe and U concentrations increase towards the fracture surface due to formation of illite and association of U with hematite and the illite. At the fracture surface, U continues to increase, but Fe and theFe3+/Fe ratio decrease indicating Fe removal by reduction. The REE also show some enrichment in more altered rock at intermediate depths, but the total REE concentration is lower than in the surface and deep core samples. No clear trends are visible for parent and fracture-surface REE in surface and deep core samples, however.Disequilibrium values of234U/238U and 230Th/234U ratios in surface and intermediate depth core samples indicate that U has been mobilised in recent geological time (the last Ma), but Th has remained relatively immobile. High Th/U and230Th/234U ratios in surface samples are indicative of rapid leaching of U but little isotopic fractionation, probably within the last 105 a. Apparently unaltered rock, several centimetres distant from the fracture in surface and intermediate- depth samples, has lost appreciable U, but evidence from U-series disequilibrium studies suggests that this process occurred more than one million years ago, perhaps during deuteric or hydrothermal alteration. Core from a fracture at depth in the granite shows little hematite or clay formation and lacks evidence of REE and recent or ancient actinide mobilisation.The U-series results are correlated with the observed concentrations and isotope activity ratios of U in groundwaters sampled from the same or adjacent fractures. Analyses of samples of highly altered rubble recovered from centre portions of fracture zones at the URL show both excesses and deficiencies of234U and230Th in neighbouring locations, possibly due to the presence of a redox front whose position is controlled by modern groundwater composition.The implications of these results are discussed for the concept of disposal of nuclear fuel waste at depth in plutonic rock on the Canadian Shield.  相似文献   

2.
《Applied Geochemistry》2002,17(6):781-792
Samples of tuff from boreholes drilled into fault zones in the Exploratory Studies Facility (ESF) and relatively unfractured rock of the Cross Drift tunnels, at Yucca Mountain, Nevada, have been analysed by U-series methods. This work is part of a project to verify the finding of fast flow-paths through the tuff to ESF level, indicated by the presence of ‘bomb’ 36Cl in pore fluids. Secular radioactive equilibrium in the U decay series, (i.e. when the radioactivity ratios 234U/238U, 230Th /234U and 226Ra/230Th all equal 1.00) might be expected if the tuff samples have not experienced radionuclide loss due to rock-water interaction occurring within the last million years. However, most fractured and unfractured samples were found to have a small deficiency of 234U (weighted mean 234U/238U=0.95±0.01) and a small excess of 230Th (weighted mean 230Th/234U 1.10±0.02). The 226Ra/230Th ratios are close to secular equilibrium (weighted mean=0.94±0.07). These data indicate that 234U has been removed from the rock samples in the last ∼350 ka, probably by pore fluids. Within the precision of the measurement, it would appear that 226Ra has not been mobilized and removed from the tuff, although there may be some localised 226Ra redistribution as suggested by a few ratio values that are significantly different from 1.0. Because both fractured and unfractured tuffs show approximately the same deficiency of 234U, this indicates that pore fluids are moving equally through fractured and unfractured rock. More importantly, fractured rock appears not to be a dominant pathway for groundwater flow (otherwise the ratio would be more strongly affected and the Th and Ra isotopic ratios would likely also show disequilibrium). Application of a simple mass-balance model suggests that surface infiltration rate is over an order of magnitude greater than the rate indicated by other infiltration models and that residence time of pore fluids at ESF level is about 400 a. Processes of U sorption, precipitation and re-solution are believed to be occurring and would account for these anomalous results but have not been included in the model. Despite the difficulties, the U-series data suggest that fractured rock, specifically the Sundance and Drill Hole Wash faults, are not preferred flow paths for groundwater flowing through the Topopah Spring tuff and, by implication, rapid-flow, within 50 a, from the surface to the level of the ESF is improbable.  相似文献   

3.
The solution of radioelements and radiogenic 4He by groundwaters in fractured rocks is dependent upon the radioelement distribution in the rock matrix and the extent of the rock-water interface. The 234U238U activity ratio and the dissolved U, Rn and He contents of such groundwaters respond to changes in the flow regime with time. Although 234U238U activity ratios change with groundwater residence time as a consequence of 234Th-recoil induced solution of 234U, the activity ratio is strongly influenced by the U distribution within fractures, by the extent of the rock-water interface and by the amount of 238U in solution. A model for the quantitative evaluation of these effects is presented.Groundwaters from depths up to 880 m in the Stripa granite have variable dissolved uranium contents and 234U238U activity ratios. The uranium geochemistry is primarily determined by variations in flow path rather than by groundwater age.Dissolved radiogenic 4He in the groundwaters increases with their depth of origin, and is dependent upon the U content of the granite and upon its fracture porosity. It increases with groundwater residence time but movement of 4He by diffusion and transport processes make the actual groundwater age indeterminate.  相似文献   

4.
The concentrations of 238U, 234Th, 226Ra, 222Rn and 210Pb and 234U238U activity ratios have been measured in several groundwater samples from Gujarat, India. In the aqueous phase the abundances of 234Th and 210Pb are grossly deficient relative to their parents, 238U and 222Rn respectively. The deficiency is ascribable to the impact adsorption of 234Th and 210Pb atoms onto particle surfaces which are very abundant in the groundwater regimes. The scavenging residence times for both these nuclides is about a day, suggesting that irreversible removal of ‘reactive’ metals and pollutants in groundwaters can occur on very short time scales. The fast removal of 234Th onto particles necessitates that in these groundwaters 234U ‘excess’ has to originate through leaching of soil grains rather than through in situ decay of dissolved 234Th in the water.  相似文献   

5.
Abundances of 238U, 234U, 232Th, 226Ra, 228Ra, 224Ra, and 222Rn were measured in groundwaters of the Ojo Alamo aquifer in northwest New Mexico. This is an arid area with annual precipitation of ∼22 cm. The purpose was to investigate the transport of U-Th series nuclides and their daughter products in an old, slow-moving groundwater mass as a means of understanding water-rock interactions and to compare the results with a temperate zone aquifer. It was found that 232Th is approximately at saturation and supports the view of Tricca et al. (2001) that Th is precipitated irreversibly upon weathering, leaving surface coatings of 232Th and 230Th on aquifer grains. Uranium in the aquifer waters has very high [234U/238U] ∼ 9 and low 238U concentrations. These levels can be explained by low weathering rates in the aquifer (w238U ∼ 2 × 10−18 to 2 × 10−17s−1) using a continuous flow, water-rock interaction model. The Ra isotopes are roughly in secular equilibrium despite their very different mean lifetimes. The 222Rn and 228Ra isotopes in the aquifer correspond to ∼10% of the net production rate of the bulk rock. This is interpreted to reflect an earlier formed irreversible surface coating of Th that provides Ra and Rn to the aquifer waters. The surface waters that appear to be feeding the aquifer have low [234U/238U] and high 238U concentrations. The flow model shows that it is not possible to obtain the high [234U/238U] and low [238U] values in the aquifer from a source like the present vadose zone input. It follows that the old aquifer waters studied cannot be fed by the present vadose zone input unless they are greatly diluted with waters with very low U concentrations. If the present sampling of vadose zone sources is representative of the present input, then this requires that there was a major change in water input with much larger rainfall some several thousand years ago. This may represent a climatic change in the Southwest.  相似文献   

6.
《Applied Geochemistry》2004,19(4):519-560
The hydrogeochemistry of the Lac du Bonnet granitic batholith has been determined for the region of the Whiteshell Research Area (WRA) in southeastern Manitoba, Canada. This work forms part of the geosciences studies performed for the Canadian Nuclear Fuel Waste Management Program over the period 1980–1995 by Atomic Energy of Canada Limited (AECL). Knowledge of the variation of groundwater chemistry and its causes is useful in assessing the performance and safety of a nuclear fuel waste vault located at depths of up to 1000 m in a crystalline rock formation of the Canadian Shield. Groundwaters and matrix pore fluids have been obtained by standard sampling methods from shallow piezometers in clay-rich overburden, from packer-isolated borehole zones intersecting fractures or fault zones in the bedrock, and from boreholes in unfractured rock in AECL's Underground Research Laboratory (URL). Eighty-six individual fracture groundwaters have been sampled and analysed from permeable zones in 53 boreholes drilled to depths of up to 1000 m in the Lac du Bonnet batholith. In addition, 28 groundwaters from piezometers in a large wetland area near the URL have been sampled and analysed to determine the influence of clay-rich overburden on the bedrock hydrogeochemistry. Analyses have been made for major and minor ions, pH, Eh, trace metals, and stable and radioactive isotopes, to characterise these groundwaters and relate them to their hydrogeologic regimes. Shallow groundwaters in the fractured bedrock are generally dilute (TDS <0.3 g/l), Ca–Na–HCO3 waters and show little indication of mixing with Ca–Mg–HCO3–SO4 groundwater from overburden sediments. The near-modern levels of 3H and 14C, and a warm-climate 2H/18O signature in these groundwaters, indicates that the upper ∼200 m of fractured bedrock contains an active groundwater circulation system with a residence time of tens to hundreds of years. Deeper fracture groundwaters (200–400 m depth) in recharge areas, are more alkaline, Na–Ca–HCO3 waters and evolve to Na–Ca–HCO3–Cl–SO4 waters with increasing distance along the flow path. Isotopic data indicate the presence of a glacial melt-water component suggesting that the residence times of these waters are 103–105 a. These waters form a transition zone between the upper, advective flow regime and a deeper regime in sparsely fractured rock where groundwater in fractures and fracture zones is largely stagnant. At these depths (> 500 m), Na–Ca–Cl–SO4 waters of increasing salinity (up to 50 g/l) with depth are found and in some fractures the waters have evolved to a Ca–Na–Cl composition. Isotopic data indicate that these waters are warm-climate and pre-glacial in origin, with residence times of over 1 Ma. Pore fluids observed to drain from the unfractured rock matrix in the URL facility are almost pure Ca–Cl in composition, ∼90 g/l salinity, and have a 2H/18O composition displaced well to the left of the global meteoric water line, about which all other WRA groundwaters lie. This information indicates that these pore fluids have undergone prolonged water-rock interaction and have residence times of 101–103 Ma. Most of the deeper fracture groundwaters and pore fluids have low Br/Cl ratios and moderate to high δ34S values of dissolved SO4 which indicates that their salinity could be derived from a marine source such as the basinal sedimentary brines and evaporites to the west of the batholith. These fluids may have entered the batholith during early Paleozoic times when sedimentary rocks were deposited over the granite and were driven by a hydraulic gradient resulting from higher ground in western Canada. The hydrogeochemical data and interpretations show that below ∼500 m in the WRA, fracture-hosted groundwaters are very saline, reducing and old, and are, therefore, indicative of stagnant conditions over the period of concern for nuclear waste disposal (1 Ma). The intact rock matrix at these depths is extremely impermeable as indicated by the presence of pore fluids with unusual geochemical and isotopic characteristics. The pore fluids may represent basinal brines that have evolved geochemically and isotopically to their current composition over periods as long as 103 Ma.  相似文献   

7.
Factors controlling the groundwater transport of U, Th, Ra, and Rn   总被引:1,自引:0,他引:1  
A model for the groundwater transport of naturally occurring U, Th, Ra, and Rn nuclides in the238U and232Th decay series is discussed. The model developed here takes into account transport by advection and the physico-chemical processes of weathering, decay, α-recoil, and sorption at the water-rock interface. It describes the evolution along a flowline of the activities of the238U and232Th decay series nuclides in groundwater. Simple sets of relationships governing the activities of the various species in solution are derived, and these can be used both to calculate effective retardation factors and to interpret groundwater data. For the activities of each nuclide, a general solution to the transport equation has been obtained, which shows that the activities reach a constant value after a distance ϰi, characteristic of each nuclide. Where ϰi is much longer than the aquifer length, (for238U,234U, and232Th), the activities grow linearly with distance. Where gKi is short compared to the aquifer length, (for234Th,230Th,228Th,228Ra, and224Ra), the activities rapidly reach a constant or quasi-constant activity value. For226Ra and222Rn, the limiting activity is reached after 1 km. High δ234U values (proportional to the ratioɛ234Th/W238U) can be obtained through high recoil fraction and/or low weathering rates. The activity ratios230Th/232Th,228Ra/226Ra and224Ra/226Ra have been considered in the cases where either weathering or recoil is the predominant process of input from the mineral grain. Typical values for weathering rates and recoil fractions for a sandy aquifer indicate that recoil is the dominant process for Th isotopic ratios in the water. Measured data for Ra isotope activity ratios indicate that recoil is the process generally controlling the Ra isotopic composition in water. Higher isotopic ratios can be explained by different desorption kinetics of Ra. However, the model does not provide an explanation for228Ra/226Ra and224Ra/226Ra activity ratios less than unity. From the model, the highest222Rn emanation equals 2ɛ. This is in agreement with the hypothesis that222Rn activity can be used as a first approximation for input by recoil (Krishnaswamiet al 1982). However, high222Rn emanation cannot be explained by production from the surface layer as formulated in the model. Other possibilities involve models including surface precipitation, where the surface layer is not in steady-state.  相似文献   

8.
The increasing interest in radioactivity has brought about the need for an assessment of human exposure to radiation. It is, therefore, necessary to examine naturally occurring radioactivity in the environment, especially its occurrence in groundwater. The aim of this work was then to study the levels and behavior of the most significant natural radionuclides, also in order to improve the knowledge of the hydrochemical processes involved in the selected groundwater systems. Natural radioactivity in fifteen Calabrian groundwaters for human use was investigated through high-resolution gamma spectrometry (with a negative-biased Ortec HPGe detector) and liquid scintillation measurements. Particular attention was given on those radionuclides (3H, 238U, 226Ra, and 228Ra), which contribute in a significant way to the overall effective dose received by members of the public due to the intake of drinking water originating from groundwater systems. The activity concentration of 238U varied from 1 to 51 mBq/L, as a result of the geology of the investigated area and of the oxidizing conditions that favored U dissolution. 226Ra presented a broad range of activity concentrations (0.011–0.14 mBq/L), lower than uranium ones because radium occurs in groundwater under reducing conditions. Some heavy metals (Cd, Pb, Be, Hg, Ag, As, Tl, Sb, Se, and Ni) were also investigated through ICP-MS measurements and compared with the limits set by the Italian Legislation. Metals are released into the environment by both natural and anthropogenic sources; they leach into underground waters, moving along water pathways and eventually depositing in the aquifer.  相似文献   

9.
The activities of the most common, naturally occurring radionuclides 238U, 226Ra, 210Pb, 228Ra, 228Th, and 40K were measured by gamma-ray spectrometry in samples from reservoir rocks, geothermal fluids, and mineral precipitates at the geothermal research site Groß Schönebeck (North German Basin). Results demonstrated that the specific activity of the reservoir rock is within the range of the mean concentration in the upper earth crust of <800 Bq/kg for 40K and <60 Bq/kg for radionuclides of the 238U and 232Th series, respectively. The geothermal fluid showed elevated activity concentrations (up to 100 Bq/l) for 226Ra, 210Pb, and 228Ra, as compared to concentrations found in natural groundwater. Their concentration in filter residues even increased up to 100 Bq/g. These residues contain predominantly two different mineral phases: a Sr-rich barite (Sr, BaSO4) and laurionite (PbOHCl), which both precipitate upon cooling from the geothermal fluid. Thereby they presumably enrich the radionuclides of Ra (by substitution of Ba) and Pb. Analysis of these precipitates further showed an increased 226Ra/228Ra ratio from around 1–1.7 during the initial months of fluid production indicating a change in fluid composition over time which can be explained by different contributions of stimulated reservoir rock areas to the overall produced fluid.  相似文献   

10.
《Applied Geochemistry》1987,2(4):385-398
The source of Ra has been determined in water samples from four areas in Australia where anomalously high surface concentrations of226Ra have accumulated from groundwaters. All four anomalies were located adjacent to sandstone formations, and the groundwaters, which were generally all acidic and low in dissolved salts, appeared to be meteoric water with short ground-residence times. Uranium,226Ra and228Ra concentrations of waters feeding the anomalous areas were comparable to those found in standing waters within the sandstones. The226Ra/228Ra isotopic ratios were distributed about a median of 1.1 which suggests that the waters are in contact with rocks with near-normal U/Th ratios and, hence, that the Ra in the anomalies was derived from within the sandstones.The presence of the short-lived Ra isotopes,223Ra and224Ra, in high concentrations in most spring waters feeding these anomalies suggests that Ra enters groundwaters by recoil following alpha decay of a precursor parent radionuclide within mineral grains. Thus, although three of the areas were considered prospective for U, the radioactive anomalies studied appear to be due to natural transfer of Ra from the sandstones to the surface environment. In no case were the anomalies related to nearby known or undiscovered U deposits. Accordingly, a geochemical procedure, which includes Ra isotopic measurements, is recommended for evaluating radioactive anomalies for U exploration. This procedure should enable selection of only those anomalies with the highest potential for further exploration by more expensive techniques.  相似文献   

11.
In order to determine the geochemical evolution of a freshwater limestone cave system located in central Switzerland (Hell Grottoes at Baar/Zug,) young postglacial tufaceous limestone and travertine precipitates were investigated using the 230Th/234U ingrowth system. Additional analyses of further radionuclides within the 238U decay chain, i.e. 226Ra and 210Pb, showed that the Th/U chronometer started with insignificant inherited 230Th over the entire formation period of the travertine setting (i.e. 230Th(0)=0). A contribution from detrital impurities with 230Th/234U in secular equilibrium could be precisely subtracted by applying isochron dating of cogenetic phases and recently formed travertine. The resulting precise 230Th/234U formation ages were found to be consistent with the geological stratigraphy and were furthermore used to demonstrate the applicability of the next geologically important chronometer in the 238U-decay series, based on decay of excess 226Ra normalized to the initial, i.e.226Raex/226Ra(0). This system is suitable for dating phases younger than 7000 yr when the correction of a detritus component increasingly limits the precision of the 230Th/234U chronometer. Analytical solutions of the coupled 234U/230Th/226Ra radionuclide system predicted that the 226Raex/226Ra(0) chronometer is independent of the actual 230Th activity build up from decay of 234U, if the systems starts with zero inherited 230Th(0). The data set confirmed this hypothesis and showed furthermore that the initially incorporated 226Ra excess must have remained almost uniform in all limestone over a period of at least 7000 yr, i.e. 4–5 half-lives of 226Ra. This is concluded because (i) the 226Raex/226Ra(0) ages agreed well with those derived from 230Th/234U, (ii) all data plot within uncertainty on the 226Raex/226Ra(0) decay curve and (iii) the atomic Ba/Ca ratio was found to be constant in the travertine material independent of the sample ages. Provided that such boundary conditions hold, 226Raex/226Ra(0) should be applicable to materials which are suitable for 230Th/234U dating in sedimentology and oceanography, i.e. travertine, corals, phosphorites, etc., and should strongly support 230Th/234U for samples that have been formed a few thousand years ago.  相似文献   

12.
Naturally-occurring radionuclides (uranium, radium, and radon), major dissolved constituents, and trace elements were investigated in fresh groundwater in 117 wells in fractured crystalline rocks from the Piedmont region (North Carolina, USA). Chemical variations show a general transition between two water types: (1) slightly acidic (pH 5.0–6.0), oxic, low-total dissolved solids (TDS) waters, and (2) near neutral, oxic to anoxic, higher-TDS waters. The uranium, radium, and radon levels in groundwater associated with granite (Rolesville Granite) are systematically higher than other rock types (gneiss, metasedimentary, and metavolcanic rocks). Water chemistry plays a secondary role on radium and radon distributions as the 222Rn/226Ra activity ratio is correlated with redox-sensitive solutes such as dissolved oxygen and Mn concentrations, as well as overall dissolved solids content including major divalent cations and Ba. Since 224Ra/228Ra activity ratios in groundwater are close to 1, we suggest that mobilization of Ra and Rn is controlled by alpha recoil processes from parent nuclides on fracture surfaces, ruling out Ra sources from mineral dissolution or significant long-distance Ra transport. Alpha recoil is balanced by Ra adsorption that is influenced by redox conditions and/or ion concentrations, resulting in an approximately one order of magnitude decrease (~ 20,000 to ~ 2000) in the apparent Ra distribution coefficient between oxygen-saturated and anoxic conditions and also across the range of dissolved ion concentrations (up to ~ 7 mM). Thus, the U and Th content of rocks is the primary control on observed Ra and Rn activities in groundwater in fractured crystalline rocks, and in addition, linked dissolved solids concentrations and redox conditions impart a secondary control.  相似文献   

13.
U-modeled groundwater residence times were estimated by changes in 234U/238U activity ratio (AR) and U content of groundwaters from Poços de Caldas city situated at the Poços de Caldas alkaline massif, Brazil. The estimated ages are more realistic than others generated by the use of hydraulic conductivity data and available information about the weathering rate of rocks in the plateau. The 234U/238U AR and reciprocal of the dissolved U-content data also defined a ternary plot that allowed the calculation of the relative volume of three source waters for the mixed water. Such U-isotopes modeling for mixing calculations indicated that the dominant phase (68%) in the mixture is thermal.  相似文献   

14.
研究了TIMS测定铀矿石样品中234U/238U、230Th/232Th、228Ra/226Ra的方法。建立了铀矿石密闭混酸一次溶样的方法和采用阴离子、阳离子和Sr特效树脂逐级离子交换分离纯化U、Th和Ra的流程,满足了TIMS测量要求。测定结果表明:100~1000 ng的天然铀中234U/238U,其测量精密度从静态多接收的2.34%提高到动态多接收的0.47%;对230Th与232Th丰度接近、质量为1μg左右的钍,采用三带点样技术和法拉第多接收技术测定230Th/232Th,其内精度平均值为0.0048%,外精度为0.028%;采用单带加钽发射剂,ETP跳峰测定50~100 fg镭-228稀释剂中的228Ra/226Ra,其内精度小于0.10%,外精度小于0.20%。比较TIMS和HR-ICP-MS、α能谱法测定234U/238U、230Th/232Th、228Ra/226Ra结果,三者结果相吻合。TIMS测量法样品用量少、快速、准确、精密度高,是U、Th、Ra同位素比值测定方法的又一补充。  相似文献   

15.
The goal of this study is to explain the origin of 234U–238U fractionation in groundwater from sedimentary aquifers of the St. Lawrence Lowlands (Quebec, Canada), and its relationship with 3He/4He ratios, to gain insight regarding the evolution of groundwater in the region. (234U/238U) activity ratios, or (234U/238U)act, were measured in 23 groundwater samples from shallow Quaternary unconsolidated sediments and from the deeper fractured regional aquifer of the Becancour River watershed. The lowest (234U/238U)act, 1.14 ± 0.01, was measured in Ca–HCO3-type freshwater from the Quaternary Shallower Aquifer, where bulk dissolution of the carbonate allows U to migrate into water with little 234U–238U isotopic fractionation. The (234U/238U)act increases to 6.07 ± 0.14 in Na–HCO3–Cl-type groundwater. Preferential migration of 234U into water by α-recoil is the underlying process responsible for this isotopic fractionation. An inverse relationship between (234U/238U)act and 3He/4He ratios has been observed. This relationship reflects the mixing of newly recharged water, with (234U/238U)act close to the secular equilibrium and containing atmospheric/tritiogenic helium, and mildly-mineralized older water (14C ages of 6.6 kyrs), with (234U/238U)act of ≥6.07 and large amounts of radiogenic 4He, in excess of the steady-state amount produced in situ. The simultaneous fractionation of (234U/238U)act and the addition of excess 4He could be locally controlled by stress-induced rock fracturing. This process increases the surface area of the aquifer matrix exposed to pore water, from which produced 4He and 234U can be released by α-recoil and diffusion. This process would also facilitate the release of radiogenic helium at rates greater than those supported by steady-state U–Th production in the rock. Consequently, sources internal to the aquifers could cause the radiogenic 4He excesses measured in groundwater.  相似文献   

16.
《Applied Geochemistry》1996,11(4):555-565
Organic material is present at low concentrations, typically 1–2 mg/l in terms of dissolved organic carbon (DOC), in groundwaters deep in granitic rock. Hydrophobic and hydrophilic acids may complex inorganic contaminants and change their sorption behaviour on geological materials. This report describes a series of experiments performed under aerobic conditions to investigate the effects of fulvic acid over a concentration range of 0–5 mg/I DOC on the sorption of85Sr,137Cs,233U,238Pu and241'Am by crushed granite, biotite, goethite, montmorillonite and quartz. In addition, similar solutions were used to study the effects of dissolved fulvic acid on the sorption of99Tc and125I on each of the above solids except quartz. The fulvic acid was extracted from groundwater collected at a depth of 240 m in the granitic rock of the Underground Research Laboratory near Lac du Bonnet, Manitoba.In all experiments, the sorption of the fulvic acid by the geological materials was in the order goethite montmorillonite > biotite > granite > quartz. No sorption of Tc was observed from any of the solutions on any of the solids. Low sorption of I on montmorillonite occurred in the presence of the dissolved organic material. No sorption of I was observed with the other solids used. Only montmorillonite sorbed any appreciable amount of Sr in this study with the fulvic acid having no effect on this sorption. All the solids except quartz sorbed substantial amounts of Cs, but sorption was not affected by the organic material in solution. Each of the solids sorbed U with no difference in sorption observed due to the dissolved organic. In general, Pu sorption decreased as the concentration of dissolved fulvic acid increased. However, sorption of Pu on quartz remained at approximately the same levels regardless of the concentration of organic in solution. Generally high sorption of Am was found. Lowest sorption of Am on all solids occurred from the solution with the highest concentration of fulvic acid. Sorption of Am on granite decreased as the concentration of the organic in solution increased.This study indicated that, under aerobic conditions, the effect of dissolved organic material on sorption of radioisotopes depends on the radioisotope in question and the concentration of the organic in solution.  相似文献   

17.
Extensive hydrogeological investigations followed by three-dimensional groundwater flow and contaminant transport modelling were carried out around a proposed uranium tailings pond at Seripalli in Andhra Pradesh, India, to estimate its radiological impact. The hydrogeological parameters and measured groundwater level were used to model the groundwater flow and contaminant transport from the uranium tailings pond using a finite-element-based model. The simulated groundwater level compares reasonably with the observed groundwater level. Subsequently, the transport of long-lived radionuclides such as 238U, 234U, 230Th and 226Ra from the proposed tailings pond was modelled. The ingrowths of progenies were also considered in the modelling. It was observed that these radionuclides move very little from the tailings pond, even at the end of 10,000 y, due to their high distribution coefficients and low groundwater velocities. These concentrations were translated into committed effective dose rates at different distances in the vicinity of the uranium tailings pond. The results indicated that the highest effective dose rate to members of the public along the groundwater flow pathway is 2.5 times lower than the drinking water guideline of 0.1?mSv/y, even after a long time period of 10,000 y.  相似文献   

18.
Approximately one thousand drilled wells were investigated for their natural radioactivity. The determinations of 238U, 234U, 226Ra and 222Rn from 310 samples showed a high state of radioactive disequilibrium between the members of the uranium series present in water. The 238U226Ra activity ratio usually fell in the range 1–20 and the 238U222Rn activity ratio in the range 1–20 × 10?4, the highest activity ratios being from samples with an elevated uranium content. The 234U238U activity ratio varied between 0.76 and 4.67, the most frequent values showing a 60% excess of 234U in the samples. Most of the 234U238U activity ratios near unity were found in samples with a high uranium content. Several drilled wells with anomalously high uranium contents were found in southern Finland. The average 226Ra and 222Rn contents of these wells were not exceptionally high, which suggests high mobility of uranium in groundwater from the areas involved.  相似文献   

19.
The Aral Sea has been shrinking since 1963 due to extensive irrigation and the corresponding decline in the river water inflow. Understanding of the current hydrological situation demands an improved understanding of the surface water/groundwater dynamics in the region. 222Rn and 226Ra measurements can be used to trace groundwater discharge into surface waters. Data of these radiometric parameters were not previously available for the study region. We determined 222Rn activities after liquid phase extraction using Liquid Scintillation Counting (LSC) with peak-length discrimination and analyzed 226Ra concentrations in different water compartments of the Amu Darya Delta (surface waters, unconfined groundwater, artesian water, and water profiles from the closed Large Aral Sea (western basin).The water samples comprise a salinity range between 1 and 263 g/l. The seasonal dynamics of solid/water interaction under an arid climate regime force the hydrochemical evolution of the unconfined groundwater in the Amu Darya Delta to high-salinity Na(Mg)Cl(SO4) water types. The dissolved radium concentrations in the waters were mostly very low due to mineral over-saturation, extensive co-precipitation of radium and adsorption of radium on coexisting solid substrates.The analysis of very low 226Ra concentrations (<10 ppq) at remote study sites is a challenge. We used the water samples to test and improve different analytical methods. In particular, we modified a procedure developed for the α-spectrometric determination of 226Ra after solid phase extraction of radium using 3M Empore™ High Performance Extraction Disks (Purkl, 2002) for the analysis of the radionuclide using an ICP sector field mass spectrometer. The 226Ra concentration of 17 unconfined groundwater samples ranged between 0.2 and 5 ppq, and that of 28 artesian waters between <0.2 and 13 ppq. The ICP-MS results conformed satisfactorily to analytical results based on γ-measurements of the 222Rn ingrowth after purging and trapping on super-cooled charcoal. The 226Ra concentrations were positively correlated with the salinity and the dissolved NaCl concentrations. The occurrence of unusually high 226Ra activities is explained by radium release from adsorption sites with increasing salinity. The inferred spatial variability of 222Rn in the Aral Sea and of 222Rn and 226Ra in the groundwater of the Amu Darya Delta is discussed in the context of our own previous hydrochemical studies in the study sites. Relatively low 222Rn activities in the unconfined GW (1–9.5 Bq/l) indicate the alluvial sediments hosting the GW to be a low-238U(226Ra) substrate. Positive correlations between U and 226Ra, and U and 222Rn are likely related to locally deposited Fe(Mn)OOH precipitates. The 222Rn activity of the GW, however, distinctly exceeds the 222Rn concentration in the Aral Sea (10 mBq/l), in principle, making 222Rn a sensitive tracer for the inflow of GW. The high water volume of the Large Aral Sea and wind induced mixing of its water body, however, hamper the detection of local groundwater inflow.  相似文献   

20.
采用氢氟酸-硝酸-盐酸混合酸密闭消解含铀矿石样品,用阴离子交换树脂、阳离子交换树脂和锶特效树脂逐级分离富集铀、钍和镭。使用高分辨电感耦合等离子体质谱(HR-ICPMS)测定分离纯化液中234U/238U2、30Th/232Th和228Ra/226Ra同位素。比值的测量精密度取决于比值的大小和对应核素浓度的大小。对质量浓度为10 ng/mL天然铀测量液,234U/238U的测量精密度优于1.2%;对230Th质量浓度为0.6ng/mL且230Th和232Th质量浓度接近的测量液,230Th/232Th的测量精密度为1.2%;对228Ra质量浓度为0.48 pg/mL且228Ra和226Ra质量浓度接近的测量液,228Ra/226Ra的测量精密度为4.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号