首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reply     

The Archaean granite‐greenstone rocks of the Marymia Inlier outcrop within Proterozoic rocks forming the Capricorn Orogen. Five major deformation events are recognised in the rocks of the Plutonic Well and Baumgarten greenstone belts. The first two events were Late Archaean and synchronous with major epithermal gold mineralisation in the belts. Palaeoproterozoic extensional faulting was probably related to the early stages of the Capricorn Orogeny. The fourth event records a compressional phase of the Capricorn Orogeny associated with greenschist‐facies metamorphism, whereas the last major event involved wrench faulting associated with minor folding. The Archaean tectonic history, rock types and timing of mineralisation strongly suggest that the Marymia Inlier is part of the Yilgarn Craton, and that each of the provinces in the craton experienced the same geological history since 2.72 Ga. The inlier is now interpreted to include two components; one is the eastern or northern extension of either the Narryer Terrane, Murchison Province or Southern Cross Province, and the other is the northwestern extension of the Eastern Goldfields Province. The Jenkin Fault, which was active in Proterozoic times, separates these two components.  相似文献   

2.
We report SHRIMP U–Th–Pb monazite, conventional U–Pb titanite, Sm–Nd garnet and Rb–Sr muscovite and biotite ages for metamorphic rocks from the Danba Domal Metamorphic Terrane in the eastern Songpan‐Garzê Orogenic Belt (eastern Tibet Plateau). These ages are used to determine the timing of polyphase metamorphic events and the subsequent cooling history. The oldest U–Th–Pb monazite and Sm–Nd garnet ages constrain an early Barrovian metamorphism (M1) in the interval c. 204–190 Ma, coincident with extensive Indosinian granitic magmatism throughout the Songpan‐Garzê Orogenic Belt. A second, higher‐grade sillimanite‐grade metamorphic event (M2), recorded only in the northern part of the Danba terrane, was dated at c. 168–158 Ma by a combination of U–Th–Pb monazite and titanite and Sm–Nd garnet ages. It is suggested that M1 was a thermal event that affected the entire orogenic belt while M2 may represent a local thermal perturbation. Rb–Sr muscovite ages range from c. 138–100 Ma, whereas Rb–Sr biotite ages cluster at c. 34–24 Ma. These ages document regional cooling at rates of c. 2–3 °C Myr?1 following the M1 peak for most of the terrane. However, those parts of the terrane affected by the higher‐temperature M2 event (e.g. the migmatite zone) experienced initially more rapid (c. 8 °C Myr?1) cooling after peak M2 before joining the regional slow cooling path defined by the rest of the terrane at c. 138 Ma. Regional slow cooling between c. 138 and c. 30 Ma is thought to be the result of post‐tectonic isostatic uplift after extensive crustal thickening caused by collision of the South and North China Blocks. The clustering of biotite Rb–Sr ages marks the onset of rapid uplift across the entire terrane commencing at c. 30–20 Ma. This cooling history is shared with many other regions of the Tibet Plateau, suggesting that uplift of the Tibet Plateau (including the Songpan‐Garzê Orogenic Belt) occurred predominantly in the last c. 30 Myr as a response to the continuing northwards collision of India with Eurasia.  相似文献   

3.
Abstract: The Kanggur gold deposit lies in East Tianshan mountains, eastern section of Central Asia orogenic belt. The gold mineralization occurs on the northern margin of the Aqishan‐Yamansu Paleozoic island arc in the Tarim Plate. It was hosted mainly in Middle‐Lower Carboniferous calc‐alkaline volcanic rocks, and controlled by the distributions of syn‐tectonic intrusions and ductile shear zones. In order to determine ore‐forming age of the Kanggur deposit, samples were collected from ores, wall rocks, altered rocks and intrusions. The dating methods include Rb‐Sr isochron and Sm‐Nd isochron, and secondly 40Ar/39Ar age spectrum, U‐Pb and Pb‐Pb methods. Based on the mineral assemblage and crosscutting relationship of ore veins, five mineralization stages are identified. This result is confirmed by isotope geochronologic data. The first stage featuring formation of pyrite‐bearing phyllic rock, is mineralogically represented by pyrite, sericite and quartz with poor native gold. The Rb‐Sr isochron age of this stage is 2905 Ma. The second stage represents the main ore‐forming stage and is characterized by native gold–quartz–pyrite–magnetite–chlorite assemblage. Magnetite and pyrite of this stage are dated by Sm‐Nd isochron at 290.47.2 Ma and fluid inclusion in quartz is dated by Rb‐Sr isochron at 282.35 Ma. The third mineralization stage features native gold–quartz–pyrite vein. In the fourth stage, Au‐bearing polymetallic sulfide‐quartz veins formed. Fluid inclusions in quartz are dated by Rb‐Sr isochron method at 25821 Ma. The fifth stage is composed of sulfide‐free quartz–carbonate veins with Rb‐Sr age of 2547 Ma. The first and second stages are related to ductile‐brittle deformation of shear zones, and are named dynamo‐metamorphic hydrothermal period. The third to fifth stages related to intrusive processes of tonalite and brittle fracturing of the shear zones, are called magmato‐hydrothermal mineralization period. The Rb‐Sr isochron age of 2905 Ma of the altered andesite in the Kanggur mine area may reflect timing of regional ductile shear zone. The Rb‐Sr isochron age of 28216 Ma of the quartz‐syenite porphyry and the zircon U‐Pb age of 2757 Ma of tonalite in the north of Kanggur gold mine area are consistent with the age of gold mineralization (290‐254 Ma). This correspondence indicates that the tonalite and subvolcanic rocks may have been related to gold mineralization. The Rb–Sr, Sm‐Nd and U‐Pb ages and regional geology support the hypothesis that the Kanggur gold deposit was formed during collisional orogenesis process in Late Variscan.  相似文献   

4.
Rb–Sr dating of biotite in the northwestern corner of the Yilgarn Craton identified four areas with distinctive age ranges. Biotite in the northwestern area, which includes the Narryer Terrane and part of the Murchison Terrane, yields reset Rb–Sr dates of ca 1650 Ma. In the western area, along the margin of the craton, biotite has been reset to 629 Ma. Eastward of these areas, mainly in the Murchison Terrane, the modal biotite date is near 2450 Ma, though because of a skewed distribution the mean date is closer to 2300 Ma. Dates in a transition zone between the western and eastern areas range broadly between 2000 and 1000 Ma, averaging about 1775 Ma. The western area and the transition zone are continuous with analogous areas south of the limits of the present study. The 1650 Ma dates in the northwestern area are probably related to plutonic and tectonic activity of similar age in the Gascoyne Province to the north. They may represent cooling after thermal resetting during tectonic loading by southward thrust‐stacking of slices of Narryer Terrane and allochthonous Palaeoproterozoic volcanic arc and backarc rocks during the Capricorn Orogeny. This episode of crustal shortening resulted from the collision of the Yilgarn and Pilbara Cratons to form the West Australian Craton. The dates reflect cooling associated with subsequent erosion‐induced rebound. The 2450 Ma biotite dates of the eastern area are similar to biotite dates found over most of the Yilgarn Craton and represent a background upon which the later dates have been superimposed. The origin of dates in the western area is unknown but may be related to an associated dolerite dyke swarm or to possible thrusting from the west. There is some evidence of minor later intrusion of felsic hypabyssal rock between 2000 and 2200 Ma and localised shearing in the Narryer area at about 1350 to 1400 Ma. One small area near Yalgoo with biotite Rb–Sr dates near 2200 Ma may be cogenetic with the Muggamurra Swarm of dolerite dykes.  相似文献   

5.
The Marymia gold deposit, comprising two orebodies, Keillor 1 and Keillor 2, is at the northern end of the Plutonic Well greenstone belt in the Marymia Inlier, in the southern Capricorn Orogen, just north of the Yilgarn craton. The Marymia Inlier is a discrete fault-bounded Archean gneiss-granitoid-greenstone domain surrounded by sedimentary basins that were formed and variably metamorphosed and deformed during several Palaeoproterozoic orogenic cycles. The greenstone sequence at Marymia is stratigraphically and geochemically similar to greenstone sequences in the Yilgarn craton, but was subjected to further deformation and metamorphism in the Palaeoproterozoic. Late Archean deformation (D1-D2) was ductile to brittle-ductile in style, whereas Palaeoproterozoic deformation was predominantly brittle. Equilibrium mineral assemblages indicate that peak amphibolite-facies metamorphism (540-575 °C, <3 kb) was overprinted by greenschist-facies metamorphism (300-360 °C). Petrographic textures indicate that prograde metamorphism was coeval with D1-D2, with peak metamorphism early to syn D2. Gold mineralisation at Marymia is hosted in metamorphosed tholeiitic basalts and banded iron formation. On a gross scale, the distribution of gold is controlled by D2 folds and shear zones. Lithological contacts with strong rheological or chemical contrasts provide local controls. Gold-related alteration comprises subtle millimetre- to centimetre-wide zones of silicification with variable amounts of quartz, hornblende, biotite, K-feldspar, plagioclase, calcite/siderite, scheelite, titanite, epidote, sulfide and telluride minerals. Quartz veins are generally narrow and discontinuous with low total volume of quartz. Gold is sited in the wall rock, at vein salvedges or within stringers of wall rock within veins. There are two distinct opaque-mineral assemblages: pyrite-pyrrhotite-chalcopyrite-galena and hessite-petzite-altaite-Bi-telluride-galena. Ore samples are variably enriched in Ag, Te, Pb, W, Cu, S and Fe reflecting heterogeneity of the ore mineralogy. Structural timing and temperature of formation of alteration and ore minerals support deposition of gold during late peak amphibolite-facies metamorphism from neutral to alkaline (pH=5-6), moderately oxidising (log PO2,-21-22) and CO2-bearing (XCO2 Ƹ.2) fluids. The total sulfur content of the fluid is estimated at 1mDS. Lead isotope compositions support derivation of lead from within the local greenstone sequence. Gold lodes were deformed by faults and shear zones in the Palaeoproterozoic, with only limited remobilisation. Subeconomic, carbonate vein- and breccia-hosted base metal mineralisation is locally hosted within Palaeoproterozoic fault zones, which clearly cut gold lodes. Base-metal-related alteration is characterised by intense carbonatisation, chloritisation, and albitisation of the mafic host rocks. Mineral assemblages are consistent with formation at greenschist facies conditions. Lead isotope compositions support crystallisation at ca. 1.7 Ga from lead that is similar in composition to earlier gold-related galena.  相似文献   

6.
Pressure estimates for amphibolite-facies metamorphism at Plutonic Gold Mine (Plutonic), Marymia Inlier, Western Australia, were recently revised significantly upwards from ~4 ± 2 kbar/550–600°C to ≥8 kbar/~600°C, based on the calculated stability fields for mineral assemblages in garnet-free mafic rocks. These conditions are anomalous in the context of the Yilgarn Craton. Here, we present new mineral equilibria calculations for rare garnet-bearing rock types from Plutonic that confirm those higher pressure estimates, and provide confidence that the determinations of metamorphic conditions based only on results from metamorphosed mafic rocks are robust and reliable. Taken together, the new estimates (7.3–8.2 kbar/580–590°C) from the garnet-bearing rocks, and the existing results from the mafic rocks, provide evidence that, most probably during the late Archean, rocks now exposed along the northern margin of the Yilgarn Craton underwent substantial increases in pressure, which was likely followed by rapid exhumation.  相似文献   

7.
Granulite facies rocks from the northernmost Harts Range Complex (Arunta Inlier, central Australia) have previously been interpreted as recording a single clockwise cycle of presumed Palaeoproterozoic metamorphism (800–875 °C and >9–10 kbar) and subsequent decompression in a kilometre‐scale, E‐W striking zone of noncoaxial, high‐grade (c. 700–735 °C and 5.8–6.4 kbar) deformation. However, new SHRIMP U‐Pb age determinations of zircon, monazite and titanite from partially melted metabasites and metapelites indicate that granulite facies metamorphism occurred not in the Proterozoic, but in the Ordovician (c. 470 Ma). The youngest metamorphic zircon overgrowths from two metabasites (probably meta‐volcaniclastics) yield 206Pb/238U ages of 478±4 Ma and 471±7 Ma, whereas those from two metapelites yield ages of 463±5 Ma and 461±4 Ma. Monazite from the two metapelites gave ages equal within error to those from metamorphic zircon rims in the same rock (457±5 Ma and 462±5 Ma, respectively). Zircon, and possibly monazite ages are interpreted as dating precipitation of these minerals from crystallizing melt within leucosomes. In contrast, titanite from the two metabasites yield 206Pb/238U ages that are much younger (411±5 Ma & 417±7 Ma, respectively) than those of coexisting zircon, which might indicate that the terrane cooled slowly following final melt crystallization. One metabasite has a second titanite population with an age of 384±7 Ma, which reflects titanite growth and/or recrystallization during the 400–300 Ma Alice Springs Orogeny. The c. 380 Ma titanite age is indistinguishable from the age of magmatic zircon from a small, late and weakly deformed plug of biotite granite that intruded the granulites at 387±4 Ma. These data suggest that the northern Harts Range has been subject to at least two periods of reworking (475–460 Ma & 400–300 Ma) during the Palaeozoic. Detrital zircon from the metapelites and metabasites, and inherited zircon from the granite, yield similar ranges of Proterozoic ages, with distinct age clusters at c. 1300–1000 and c. 650 Ma. These data imply that the deposition ages of the protoliths to the Harts Range Complex are late Neoproterozoic or early Palaeozoic, not Palaeoproterozoic as previously assumed.  相似文献   

8.
Sm–Nd (garnet), U–Pb (monazite) and Rb–Sr (biotite) ages from a composite migmatite sample (Damara orogen, Namibia) constrain the time of high‐grade regional metamorphism and the duration of regional metamorphic events. Sm–Nd garnet whole‐rock ages for a strongly restitic melanosome and an adjacent intrusive leucosome yield ages of 534±5, 528±11 and 539±8 Ma. These results provide substantial evidence for pre‐500 Ma Pan‐African regional metamorphism and melting for this segment of the orogen. Other parts of the migmatite yield younger Sm–Nd ages of 488±9 Ma for melanosome and 496±10, 492±5 and 511±16 Ma for the corresponding leucosomes. Garnet from one xenolith from the leucosomes yields an age of 497±2 Ma. Major element compostions of garnet are different in terms of absolute abundances of pyrope and spessartine components, but the flat shape of the elemental patterns suggests late‐stage retrograde equilibration. Rare earth element compositions of the garnet from the different layers are similar except for garnet from the intrusive leucosome suggesting that they grew in different environments. Monazite from the leucosomes is reversely discordant and records 207Pb/235U ages between 536 and 529 Ma, indicating that this monazite represents incorporated residual material from the first melting event. Monazite from the mesosome MES 2 and the melanosome MEL 3 gives 207Pb/235U ages of 523 and 526 Ma, and 529 and 531 Ma, respectively, which probably indicates another thermal event. Previously published 207Pb/235U monazite data give ages between 525 and 521 Ma for composite migmatites, and 521 and 518 Ma for monazite from neosomes. Monazite from granitic to granodioritic veins indicates another thermal event at 507–505 Ma. These ages are also recorded in 207Pb/235U monazite data of 508 Ma from the metasediment MET 1 from the migmatite and also in the Sm–Nd garnet ages obtained in this study. Taken together, these ages indicate that high‐grade metamorphism started at c. 535 Ma (or earlier) and was followed by thermal events at c. 520 Ma and c. 505 Ma. The latter event is probably connected with the intrusion of a large igneous body (Donkerhoek granite) for which so far only imprecise Rb–Sr whole‐rock data of 520±15 Ma are available. Rb–Sr biotite ages from the different layers of the migmatite are 488, 469 and 473 Ma. These different ages indicate late‐stage disturbance of the Rb–Sr isotopic system on the sub‐sample scale. Nevertheless, these ages are close to the youngest Sm–Nd garnet ages, indicating rapid cooling rates between 13 and 20°C Ma?1 and fast uplift of this segment of the crust. Similar Sm–Nd garnet and U–Pb monazite ages suggest that the closure temperatures for both isotopic systems are not very different in this case and are probably similar or higher than the previously estimated peak metamorphic temperatures of 730±30°C. The preservation of restitic monazite in leucosomes indicates that dissolution of monazite in felsic water‐undersaturated peraluminous melts can be sluggish. This study shows that geochronological data from migmatites can record polymetamorphic episodes in high‐grade terranes that often contain cryptic evidence for the nature and timing of early metamorphic events.  相似文献   

9.
Magmatism,metamorphism and metasomatism in the Palaeoproterozoic‐Mesoproterozoic Mt Painter Inlier and overlying Neoproterozoic Adelaidean rocks in the northern Flinders Ranges (South Australia) have previously been interpreted as resulting from the ca 500 Ma Delamerian Orogeny. New Rb–Sr, Sm–Nd and U–Pb data, as well as structural analysis,indicate that the area also experienced a second thermal event in the Late Ordovician (ca 440 Ma). The Delamerian Orogeny resulted in large‐scale folding, prograde metamorphism and minor magmatic activity in the form of a small volume of pegmatites and leucogranites. The Late Ordovician event produced larger volumes of granite (the British Empire Granite in the core of the inlier) and these show Nd isotopic evidence for a mantle component. The high‐temperature stage of this magmatic‐hydrothermal event also gave rise to unusual diopside‐titanite veins and the primary uranium mineralisation in the basement, of which the remobilisation was younger than 3.5 Ma. It is possible that parts of the Mt Gee quartz‐hematite epithermal system developed during the waning stages of the Late Ordovician event. We suggest that the Ordovician hydrothermal system was also the cause of the commonly observed retrogression of Delamerian metamorphic minerals (cordierite, andalusite) and the widespread development of actinolite, scapolite, tremolite and magnetite in the cover sequences. Deformation during the Late Ordovician was brittle. The recognition of the Late Ordovician magmatic‐hydrothermal event in the Mt Painter Province might help to link the tectonic evolution of central Australia and the southeast Australian Lachlan Fold Belt.  相似文献   

10.
Zircons from porphyry and granitoid samples collected in and around the Marymia Gold Mine in the Marymia Inlier, Western Australia, record a complex history. The results of U-Pb studies confirm that the Plutonic Well greenstone belt, and the surrounding granitoid envelope (including a 2,721Lj Ma intrusion), represent an Archaean terrain, which was intruded by high-level, felsic to intermediate porphyries at 2,694lj Ma and potentially also at 2,660dž Ma. Zircon xenocrysts (Sca. 3.35, 2.93 and 2.74 Ga) indicate that there was older crust within, or below, the greenstone belt at the time of porphyry emplacement. Zircons from the granitoid envelope and intrusions within the greenstone belt record subsequent metamorphism and/or hydrothermal activity coeval with magmatism in the Late Archaean (ca. 2.66-2.63 Ga), and peak metamorphism, magmatism and gold mineralisation in the Yilgarn Block. A later period of metamorphism and hydrothermal activity at ca. 1.72 Ga is coeval with orogenesis in the southern Capricorn Orogen. Both the Late Archaean and Palaeoproterozoic thermal events have altered zircons, redistributed trace elements and caused zircon recrystallisation, which is distinctive in its isotope chemistry (in particular Th/U ratios >1) and morphology (e.g. homogeneous in transmitted light and back-scattered electron images, but sector-zoned in cathodoluminescence).  相似文献   

11.
The determination of the thermal (temperature–time) histories of high‐P metamorphic terranes has been commonly based on the concepts of slow cooling and closure temperatures. In this paper, we find that this approach cannot reconcile a geochronological data set obtained from the amphibolite‐facies allochthonous Leknes Group of the Lofoten islands, Norway, which reveals an extremely complex thermal history. Using detailed results from several different geochronometers such as 40Ar/39Ar, Rb–Sr and U–Pb, we show that a model invoking multiple, short‐lived thermal pulses related to hot‐fluid infiltration channelized by shear zones can reconcile this complicated data set. This model suggests that hot fluids infiltrated throughout basement shear zones and affected the overlying cold allochthon, partially resetting U/Pb rutile and titanite ages, crystallizing new zircon and produced identical 40Ar/39Ar and Rb/Sr ages in muscovite, biotite and amphibole in various rocks throughout the region. This paper shows the enormous potential of coupling laser Ar‐spot data with thermal modelling to identify and constrain the duration of short‐lived events. An optimal P–T–t history has been derived by modelling the age data from a previously dated large muscovite crystal (Hames & Andresen, 1996, Geology, 24 :1005) and using Zr‐in‐rutile thermometry which is consistent with all geochronological data and geological constraints from the basement zones and allochthon cover. This tectonothermal model history suggests that there have been three episodic hot‐fluid and 40Ar‐free infiltration events, resulting in the total resetting of Ar ages during the Scandian (425 Ma) for 1 Ma at 650°C and two reheating events at 415 Ma for 400 ka at 650°C and at 365 Ma for 50 ka at 600°C, which are modelled as thermal spikes above an ambient temperature of 300°C. Independent confirmation of these parameters was provided by Pb‐diffusion modelling in rutile and titanite. The model suggests that the amphibolite facies rocks of the Leknes Group probably remained cold before being exhumed for at least 60 Ma (425–365 Ma) and successfully explains the presence of different minerals that crystallized or were totally/partially reset in the allochthon and in the basement. The migration of hot fluids for short periods of times within conduits extending through the basement and allochthon rock units is likely associated with episodic seismic activity during the Caledonian orogeny.  相似文献   

12.
《Precambrian Research》2004,128(3-4):475-496
The Proterozoic igneous, deformation and metamorphic histories of the Palaeoproterozoic Rudall Complex in the northwestern Paterson Orogen can be linked to those of the Arunta Inlier in central Australia, and in part with the Capricorn Orogen in central Western Australia. The similarities in deformation and metamorphic histories for these widely separated regions indicate a Palaeoproterozoic continent–continent collisional event between the Palaeoproterozoic West Australian and North Australian cratons between c. 1830 and 1765 Ma. In the Paterson Orogen this Palaeoproterozoic collisional event resulted in the Yapungku Orogeny, which included thrust stacking of clastic sedimentary and volcanic rocks, deposition of the protoliths for the c. 1790 Ma siliciclastic paragneiss succession contemporaneous with granitic intrusion, and metamorphism up to granulite facies. During this 65-million-year period, the Arunta Inlier and Capricorn Orogen were deformed, metamorphosed at medium to high grades and intruded by granitoids during the Strangways Orogeny in the Arunta Inlier and the Capricorn Orogeny in the Capricorn Orogen.The Neoproterozoic Tarcunyah, Throssell and Lamil groups are clastic sedimentary sequences that were deposited after 1070 Ma in the northwestern Paterson Orogen, and deformed by the Miles Orogeny before 678 Ma. The Miles Orogeny produced a northwesterly trending fold and fault system of tight to isoclinal upright and overturned folds and thrust faults. The orogeny may have been coincident with the c. 750–720 Ma Areyonga tectonic movement affecting the Arunta Inlier and the lower Neoproterozoic part of the Amadeus Basin in central Australia. At c. 550 Ma the Paterson Orogeny, which is most likely equivalent to the Petermann Orogeny in the Musgrave Complex of central Australia, deformed the northwestern Paterson Orogen and was preceded by local intrusion of granites.The similarities of styles and timing of deformation in the northwestern Paterson Orogen, Arunta Inlier and Capricorn Orogen indicate that these three regions were probably linked during most of the Proterozoic.  相似文献   

13.
Three meta-igneous bodies from the Yaounde Group have been analyzed for their petrography, geochemistry, and 207Pb/206Pb zircon ages. According to their geochemical patterns, they represent meta-diorites. The meta-plutonites yielded identical zircon ages with a mean of 624?±?2?Ma interpreted as their intrusion age. This age is in agreement with previously published zircon ages of meta-diorites from the Yaounde Group. The meta-diorites derived mainly from crustal rocks with minor contribution from mantle material. The 87Rb/86Sr isochron ages of one meta-diorite sample and three meta-sedimentary host rocks are significantly younger than the obtained intrusion age. Therefore, they are not related to igneous processes. 87Rb/86Sr isochron ages differ from sample to sample (599?±?3, 572?±?4, 554?±?5, 540?±?5?Ma) yielding the oldest Neoproterozoic age (~600?Ma) for a paragneiss sample at a more northern location. The youngest Rb/Sr isochron age (~540?Ma) was obtained for a mica schist sample at a more southern location closer to the border of the Congo Craton. The 87Rb/86Sr whole rock-biotite ages are interpreted as cooling ages related to transpressional processes during exhumation. Therefore, several discrete metamorphic events related to the exhumation of the Yaounde Group were dated. It could be shown by Rb/Sr dating for the first time that these late tectonic processes occurred earlier at more distant northern locations of the Yaounde Group and lasted at least until early Cambrian (~540?Ma) more closely to the border of the Congo Craton.  相似文献   

14.
Polyphase metamorphic paragneisses from the drill core of the continental deep drilling project (KTB; NW Bohemian Massif) are characterized by peak pressures of about 8 kbar (medium‐P metamorphism) followed by strain accumulation at T >650 °C, initially by dislocation creep and subsequently by diffusion creep. U–Pb monazite ages and Rb–Sr whole‐rock data vary in the dm‐scale, indicating Ordovician and Mid‐Devonian metamorphic events. Such age variations are closely interconnected with dm‐scale domainal variations of microfabrics that indicate different predominant deformation mechanisms. U–Pb monazite age variations dependent on microfabric domains exceed grain‐size‐dependent age variations. In ‘mylonitic domains’ recording high magnitudes of plastic strain, dislocation creep and minor static annealing, monazite yields concordant and near concordant Lower Ordovician U–Pb ages, and the Rb–Sr whole‐rock system shows isotopic disequilibrium at an mm‐scale. In ‘mineral growth/mobilisate domains’, in which diffusive mass transfer was a major strain‐producing mechanism promoting diffusion creep of quartz and feldspar, and in which static recrystallization (annealing) reduced the internal free energy of the strained mineral aggregates, concordant U–Pb ages are Mid‐Devonian. Locally, in such domains, Rb–Sr dates among mm3‐sized whole‐rock slabs reflect post‐Ordovician resetting. In ‘transitional domains’, the U–Pb‐ages are discordant. We conclude that medium‐P metamorphism occurred at 484±2 Ma, and a second metamorphic event at 380–370 Ma (Mid‐Devonian) caused progressive strain in the rocks. Dislocation creep at high rates, even at high temperatures, does not reset the Rb–Sr whole‐rock system, while diffusion creep at low rates and stresses (i.e. low ε/Deff ratios), static annealing and the presence of intergranular fluids locally assist resetting. At temperatures above 650 °C, diffusive Pb loss did not reset Ordovician U–Pb monazite ages, and in domains of overall high imposed strain rates and stresses, resetting was not assisted by dynamic recrystallization/crystal plasticity. However, during diffusion creep at low rates, Pb loss by dissolution and precipitation (‘recrystallization’) of monazite produces discordance and Devonian‐concordant U–Pb monazite ages. Hence, resetting of these isotope systems reflects neither changes of temperature nor, directly, the presence or absence of strain.  相似文献   

15.
Abstract This paper discusses the relationships between granitic magmatism and gold mineralization and the exhumation history of the Dapinggou gold deposit in northern Altun, NW China based on the geochronological data, including zircon U‐Pb ages, Rb‐Sr isochron age and 40Ar‐39Ar dating and MDD modeling data. The main granitic magmatism age in this area is attained from the ID TIMS U‐Pb geochronology of zircons from the Kuoshibulak granite, the biggest granite in the northern Altun area, which gives a concordant age of 443±5 Ma in the Late Ordovician. Zircon ID TIMS U‐Pb geochronology of the West Dapinggou biotite granite west of the Dapinggou gold deposit gives concordant ages around 485±10 Ma, representing the early stage of Ordovician magmatism. The Rb‐Sr isochron age (487±21 Ma) of 6 quartz inclusion samples from quartz veins in this gold deposit is very close to that of the West Dapinggou granite. MDD modeling of step heating 40Ar‐39Ar data of K‐feldspar from the same West Dapinggou biotite granite gives a rapid cooling history from 300°C to 150°C during 200–185 Ma. According to the age data and the geological setting of this area, we conclude that the Dapinggou gold deposit was formed at the early stage of the Early Paleozoic granitic magmatism in northern Altun, and exhumed in the Early Jurassic due to the normal faulting of the Lapeiquan detachment. The Early Paleozoic magmatism may provide heat source and produce geological fluids, which are very important for gold mineralization. Exhumation in the Mesozoic caused the uplift of the deposit towards the ground surface.  相似文献   

16.
The metamorphosed mafic rocks of Archean greenstone belts host major orogenic gold deposits, and may record information about changing pressure–temperature (PT) conditions that could contribute to understanding of Archean geodynamic processes. Until recently, it was difficult to obtain good constraints on pressure and temperature from these rocks. Here we present results of PT pseudosection calculations in the NCFMASHTOS (Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O–SO2) system, using as an example typical amphibolite facies metabasaltic rocks from the Plutonic Gold Mine in the Neoarchean Plutonic Well Greenstone Belt (PWGB), Marymia Inlier, Western Australia. The pseudosections together with observed mineral compositions and mineral assemblages in the rocks are used to argue that a previously unrecognized steep pressure increase (from ~3–4 kbar at ~500 °C to ≥8 kbar at ~600 °C) accompanied metamorphism to peak temperatures. The P–T data presented here could be the result of either horizontal or vertical tectonics. Existing models for the early evolution of the PWGB involve nappe stacking supported by relatively cold strong crust, with little overall change in thickness. While the available evidence from the study area and the wider region is not yet sufficient to confirm whether the peak metamorphic conditions were attained by horizontal or vertical tectonic means, the PT data presented here can provide region‐specific constraints for computer modelling that may provide a more definite answer in the future.  相似文献   

17.
A SHRIMP 207Pb/206Pb zircon age of 1204 ± 10 Ma is reported for an east west trending dolerite dyke from near York in the southwestern Yilgarn Craton. This age is identical within analytical uncertainty to previously reported ages of ca 1210 Ma for dykes from the central Wheatbelt and the Western and Eastern Goldfields. The consistency of the dyke ages and the wide areal extent of the dykes suggests that emplacement occurred as a single magmatic pulse at ca 1210 Ma throughout the southwestern Yilgarn Craton. The similarities between the age of the dykes and the ages of late events in the Albany Fraser Orogeny, and the approximate parallelism of the east west trending dykes to the margin of the orogen, raises the possibility that these events are related.  相似文献   

18.
The Pb-Pb whole-rock geochronology of Archaean granitic and gneissic rocks from the Diemals area in the Central Yilgarn granite-greenstone terrain provides important constraints on crustal evolution. The regionally extensive banded gneisses, previously considered as candidates for basement to the greenstones give a Pb-Pb whole-rock age of 2700 ± 97 Ma (2σ errors). This is within error of previously published Rb-Sr and Sm-Nd gneiss ages and also within error of the Sm-Nd ages on the greenstones in the Eastern Goldfields Province. Two synkinematic plutons give Pb-Pb whole-rock ages (2737 ± 62 Ma and 2700 ± 100 Ma) and Pb isotopic compositions consistent with the hypothesis, based on field and geochemical relations, that these plutons were derived by partial melting of the precursors to the banded gneisses. Assuming this, the combined data date the melting event at 2723 ± 25 Ma with a model source μ value of 8.18 ± 0.02. This source μ value is close to the range postulated for mantle values and restricts the crustal history of the precursors to less than ~200 Ma. A post-kinematic pluton with a whole-rock Pb-Pb age of 2685 ± 26 Ma and μ value of 8.26 ± 0.02 puts a younger limit on this relatively short lived crustal accretion-differentiation event.Comparison of Pb-Pb and Rb-Sr whole-rock dates for the plutons suggests that the latter became closed systems up to 200 Ma after the Pb-Pb ages, and that the plutons gained or lost Rb or Sr at this time.  相似文献   

19.
Northwestern Anatolia is characterized by voluminous Paleozoic to Cenozoic granitoid bodies with varying compositions. Most of them are composite plutons emplaced into western Anatolia orogenic crust during the Eocene, Oligocene and Miocene along the İzmir-Ankara-Erzincan suture zone. This paper reports systematic good quality mineral and bulk-rock chemistry, Sr-Nd isotope data, honblend Ar-Ar, zircon U-Pb and first apatite (U-Th)/He (AHe) ages to reveal possible source compositions of the Evciler and Eybek granitoids and petrogenetic/geodynamic processes involved during their genesis, and thermochronology of Oligocene magmatism in the NW Anatolia. The Evciler and Eybek granitoids are mainly granodiorite and composed of K-feldspar (usually orthoclase and rarely microcline), plagioclase (albite, oligoclase), hornblende, biotite, quartz and accessory minerals (e.g., titanite, zircon, apatite, opaque), and secondary minerals such as chlorite, sericite and clay minerals. Estimated temperature-pressure conditions are 690–770 ° C at 1.6–2.7 kbar for the Evciler granitoid and 690–760 ° C at 3.2–4.01 kbar for the Eybek granitoid. These two granitoids enriched in LILEs (e.g., U, Th, Rb, and K), LREEs and Pb, and depleted in HREEs (e.g., Nb, Ti) and Sr, Ba and P relative to LILEs, and display small negative Eu anomalies. They belong to calc-alkaline, high-K calc-alkaline and minor shoshonite series, and display metaluminous and I-type character. Their REE patterns show a large fractionation between LREE and HREE ((La/Yb)N = 4.6–21.4) and a small negative Eu anomaly (Eu* = 0.2–0.3). The Evciler granitoid has homogeneous 87Sr/86Sr = 0.7060−0.7063 and 143Nd/144Nd = 0.51259−0.51262, and the Eybek granitoid has 87Sr/86Sr = 0.7060−0.7080 and 143Nd/144Nd = 0.51243−0.51263. New precise 40Ar/39Ar age data of hornblende and 206Pb–238U ages of zircons and (U-Th)/He ages of apatites from the plutons allow a more accurate temporal reconstruction of the Cenozoic magmatism of the western Anatolia. 40Ar/39Ar dating of hornblendes from the Evciler and Eybek granitoids gave plateau ages of between ca. 28 Ma and 25 Ma. Laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) 206Pb-238Pb ages of euhdral magmatic zircons from the samples of these granitoids yield between ca. 28 and 26 Ma. The new high-temperature age constraints indicate Oligocene emplacement ages for the two intrusive bodies. The closeness of the zircon U-Pb and the hornblende Ar-Ar ages show that they experienced quick post-crystallization cooling. However, the significant difference between the apatite (U-Th)/He ages of 19.8 Ma and 7.6 Ma obtained on the Evciler and Eybek granitoids warns that in the post-Oligocene times the two structural blocks had different exhumation histories.  相似文献   

20.

High thorium euhedral, twinned and elongate zircons from the felsic part of a mafic dyke located in the Archaean Yilgarn Craton approximately 30 km northeast of Perth and approximately 2 km east of the Darling Fault, have consistent 207 Pb/ 206 Pb ages of 1214 ± 5 Ma. This age is interpreted as the age of dyke emplacement and is identical, within the uncertainties, with other U–Pb dyke ages reported for the southwest Yilgarn Craton. The present result extends the known occurrence of ca 1210 Ma dykes to the western margin of the Yilgarn Craton and confirms earlier conclusions that a major mafic dyke emplacement occurred throughout the southern Yilgarn Craton during a short‐lived magmatic pulse at ca 1210 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号