首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Rapid characterisation of carbonate phases in hyperspectral reflectance spectra acquired from drill core material has important implications for mineral exploration and resource modelling. Major infrared active features of carbonates lie in the thermal region around 6500 nm, 11 300 nm and 14 000 nm, with the latter two features being most useful for differentiating mineral species. A scatter diagram of the wavelength of the 14 000 nm feature vs that of the 11 300 nm feature, powerfully differentiates carbonates. Although the wavelength of the 11 300 nm peak is easily measured, the 14 000 nm trough and peak are commonly weak and their wavelengths can confidently be used only after filtering the spectra, e.g. selecting only those with the trough and peak separated by 175–230 nm, typical of common carbonates. The method is demonstrated with drillhole 120R from the Rosebery polymetallic VHMS deposit in western Tasmania, which has been scanned with the HyLogger-3 system. A 14 000–11 300 plot shows a high degree of clustering of the drillhole 120R data close to the library spectra of calcite, dolomite, Fe-dolomite, ankerite, kutnohorite, rhodochrosite, Fe-rhodochrosite and siderite. The interpreted compositions of the carbonate spectral populations strongly correlate with the chemical populations of 144 analysed carbonates and provide a highly resolved spatial framework for interpreting carbonate alteration.  相似文献   

2.
郭艳  张琪  李婵  董晓莹  刘福江 《地球科学》2016,41(12):2100-2108
月表矿物含量反演是研究月球地质起源和演化的关键.太空风化作用普遍发生在月球表面,对矿物纯净光谱造成了不可忽视的影响,它弱化光谱吸收特征, 降低反射率,影响矿物含量遥感反演精度.基于Relab光谱库和Hapke辐射传输模型,将月表 4种矿物(单斜辉石、斜方辉石、斜长石、橄榄石)的二向性反射率转换成同向性的单次散射反照率,然后计算矿物的光学常数;再根据亚微观金属铁SMFe(submicroscopic metallic iron)的质量分数模拟6种不同程度太空风化效应,得到端元矿物的反射率光谱;最后基于上述方法,利用多端元线性分解方法和M3(moon mineralogy mapper,月球矿物绘图仪)高光谱数据反演不同风化程度下的矿物含量,得到月表虹湾地区辉石、斜长石、橄榄石3种矿物的含量分布.实验表明,利用多端元线性分解可以有效模拟太空风化效应对矿物光谱的影响,是研究太空风化效应影响下矿物识别及含量反演的一种行之有效的方法.   相似文献   

3.
马坑铁矿钻孔岩心红外光谱特征及蚀变分带特征研究   总被引:1,自引:0,他引:1  
红外反射光谱技术可无损、快速、批量地识别出硅酸盐、硫酸盐、碳酸盐等矿物,近年来在矿物学研究、地质勘探与找矿、矿山选冶等方面取得了较显著进展。尤其是热红外波段(6000~14500nm)可识别出辉石、石榴子石、橄榄石等蚀变矿物以及长石、石英等造岩矿物,对于矽卡岩型、铜镍硫化物型以及石英脉型等矿床地质找矿、矿床成因研究等具有重要意义。本文通过对国家实物地质资料馆馆藏的马坑铁矿钻孔岩心进行短波-热红外反射光谱测量与分析,总结马坑铁矿各蚀变矿物光谱特征,并快速厘定了该矿床的蚀变矿物类型及组合特征。马坑铁矿蚀变矿物主要有石榴子石、辉石、碳酸盐、绿泥石、绢(白)云母、角闪石、绿帘石、蒙脱石、石膏等。石榴子石热红外光谱特征是在9199nm、9730nm、10500nm及11100nm处具有明显的反射特征,辉石热红外光谱特征主要是在11500nm和12150nm处具有明显的吸收特征。红外光谱分析表明蚀变矿物在空间上呈现出明显的分带性,蚀变矿物组合及分布严格受围岩岩性和热液交代的双重控制。通过红外反射光谱蚀变矿物组合特征研究,“石榴子石+辉石”可作为矽卡岩型矿床的标型矿物组合,蚀变分带特征也反映了主矿体从高温到低温的变化过程;结合矿床地质特征,推断出马坑铁矿为典型的层控矽卡岩型矿床。本研究可为矽卡岩型矿床的成矿规律认识和找矿勘探等方面提供科学支撑。  相似文献   

4.
Quantifying the abundance and physicochemical properties of minerals using reflectance spectroradiometry in the visible, near infrared and shortwave infrared (400–2500 nm) regions is an important tool in mineral exploration. In this study, the reflectance spectra of drill cores from the world-class N4WS iron deposit located in the Carajás Mineral Province, Brazil, were obtained. These spectra were validated using X-ray fluorescence (XRF) geochemical analyses and thin sections. The reflectance spectra were collected using a FieldSpec 3 spectroradiometer (ASD, Boulder, Colorado, USA) in 10 drill cores. The mineralogy of the deposit is mainly hematite, with lesser amounts of magnetite, goethite, quartz, kaolinite, gibbsite, smectite, talc, carbonate and chlorite. The mineralogy of the iron deposit was extracted from the spectral data using the geometry (depth and wavelength) of absorption features across the reflectance spectrum removed from the continuum. The depth of the absorption features is proportional to the mineral abundance, and the wavelength is proportional to the mineral chemical composition. The diagnostic absorption features of each mineral were used to determine the mineral abundance and composition. The final products include the abundance of iron (hydro) oxide (11.6% root-mean-square error [RMSE] Fe2O3); abundance of aluminous clays (RMSE 6% Al2O3); abundance of talc (8% RMSE MgO); identification of clay type (kaolinite, montmorillonite or gibbsite); composition of carbonate (dolomite vs. calcite); and composition of chlorite (Mg vs. Fe). The mineral abundance and composition results provided an effective characterisation of the ore, protore and host rocks and showed variations within the ore body.  相似文献   

5.
基于ASTER数据的蛇绿岩组分识别:以德尔尼矿区为例   总被引:1,自引:3,他引:1  
本文运用高级星载热辐射和反射探测器(ASTER)反射率数据对青海德尔尼蛇绿岩的主要岩石组成和蚀变矿物进行探测。以现有的标准光谱库数据作为参照,采用光谱角制图法来提取感兴趣的岩性和矿物信息,并通过与现有地质图对比,验证结果的精度。实验结果表明,运用ASTER数据和标准的光谱库数据,可较有效地识别蛇绿岩的主要岩性和相关矿物成分,但不同岩性的识别精度不同。  相似文献   

6.
地物的光谱特征是遥感识别地物的主要依据,不同地物的反射光谱具有其特定的吸收特征谱带。利用ASD和PIMA反射光谱测试仪对新疆西准噶尔包古图斑岩铜矿Ⅱ号、Ⅴ号斑岩铜矿岩体的蚀变围岩(地表采样与钻井采样)进行测试,并对结果进行分析总结。根据反射光谱特征谱带获得蚀变矿物的种类,确定了岩体的蚀变矿物组合,得到反射光谱的吸收谷在ASTER数据中所处的波段;对反射光谱曲线进行数学积分,获得ASTER数据中的强吸收波段。将以上2种分析得到的吸收性波段组合应用于蚀变遥感异常信息提取,结果表明蚀变遥感异常与野外地质特征吻合程度较高。反射光谱分析表明确定岩石矿物的反射光谱特征谱带是进行遥感信息提取工作的前提,波段组合选取对提取蚀变遥感异常信息非常重要。  相似文献   

7.
Australian Geological Surveys are the custodians of a major national asset in the form of historically drilled and archived drill cores of the top few kilometres of the continent acquired by government agencies and companies over many decades. The AuScope National Virtual Core Library (NVCL) component of the AuScope Earth Model comprises geological/rock samples, technology, people and database/delivery infrastructure located in six nationally distributed nodes and is aimed at extracting additional value from this asset. The technology components of the NVCL comprise an integrated suite of hardware (HyLogger-3) and software (TSG-Core) systems for the imaging and hyperspectral characterisation of drill cores in their original core trays and the interpretation of their contained oxide, carbonate, hydrous and anhydrous silicate mineralogy. The HyLogger-3 includes state-of-the-art Fourier Transform Spectrometers that continuously measure calibrated spectral reflectance from nominal 10 by 18 mm fields of view. These spectra are in turn passed through a series of automatic and semi-automatic pre-processing and mineralogical unmixing algorithms. These, along with numerous other tools in TSG-Core, output a variety of mineralogical and image products for use by scientists in many branches of the earth sciences. This paper provides a functional overview of the HyLogging hardware and software tools available in each of Australia's Geological Surveys.  相似文献   

8.
Infrared spectroscopy (IR spectroscopy) is commonly applied in the laboratory for mineral analyses in addition to XRD. Because such technical efforts are time and cost consuming, we present an infrared-based mobile method for non-destructive mineral and provenance analyses of sandstones. IR spectroscopy is based on activating chemical bonds. By irradiating a mineral mixture, special bonds are activated to vibrate depending on the bond energy (resonance vibration). Accordingly, the energy of the IR spectrum will be reduced thereby generating an absorption spectrum. The positions of the absorption maxima within the spectral region indicate the type of the bonds and in many cases identify minerals containing these bonds. The non-destructive reflection spectroscopy operates in the near infrared region (NIR) and can detect all common clay minerals as well as sulfates, hydroxides and carbonates. The spectra produced have been interpreted by computer using digital mineral libraries that have been especially collected for sandstones. The comparison of all results with XRD, RFA and interpretations of thin sections demonstrates impressively the accuracy and reliability of this method. Not only are different minerals detectable, but also differently ordered kaolinites and varieties of illites can be identified by the shape and size of the absorption bands. Especially clay minerals and their varieties in combination with their relative contents form the characteristic spectra of sandstones. Other components such as limonite, hematite and amorphous silica also influence the spectra. Sandstones, similar in colour and texture, often can be identified by their characteristic reflectance spectra. Reference libraries with more than 60 spectra of important German sandstones have been created to enable entirely computerized interpretations and identifications of these dimension stones. The analysis of infrared spectroscopy results is demonstrated with examples of different sandstones used as dimension stones. All analyses have been done with the “portable infrared mineral analyser” (PIMA) of Integrated Spectronics Pty Ltd. at the Bundesanstalt für Geowissenschaften und Rohstoffe in Berlin. This spectrometer has been designed to be light, portable and easy to handle. Investigations can be performed without any sample preparation for complete buildings as well as at small samples with diameters up to about one centimeter. Analyses of pulverized samples and granules are also possible. Consequently, infrared reflectance spectroscopy provides a reliable working, non-destructive technique to identify and characterize sandstones used for buildings and monuments.  相似文献   

9.
近年来红外光谱技术作为一种绿色、快速、无损、精确探测矿物的技术手段而倍受关注,针对斑岩型矿床蚀变矿物高度叠加、蚀变分带界线不明显、细粒蚀变矿物多、黏土蚀变矿物多等特征,该技术在蚀变矿物识别和勘探信息解读等方面优势突出。本文应用红外光谱技术对云南普朗斑岩铜矿区钻孔ZK1801岩心进行矿物识别和蚀变分带划分的研究,识别出钾硅酸盐化带、绿帘石-绿泥石化带、绿泥石-伊利石化带、石英-伊利石化带和泥化带。研究表明:普朗铜矿整个钻孔的蚀变矿物主要有石英、钾长石、绢云母、绿泥石、绿帘石、高岭石、蒙脱石、伊利石等;根据矿化特征,发现铜矿体广泛赋存在钾硅酸盐化带和绿帘石-绿泥石化带中,与矿化关系密切的蚀变矿物"石英+钾长石+绢云母"和"绿帘石+绿泥石",可以作为普朗矿床勘查的标型蚀变矿物组合;研究区广泛发育的绢云母Al—OH波长随钻孔深度增加而逐渐从2210~2205nm减小到2202~2198nm, Al—OH波长2210~2205nm(长波绢云母)与矿化关系密切,可以作为普朗矿床勘查的指示信息。  相似文献   

10.
黄照强  张显峰 《岩石学报》2010,26(12):3589-3596
本文通过对西藏雅鲁藏布江缝合带泽当-罗布莎地区蛇绿岩套的主要岩石组成和蚀变矿物的标准波谱吸收特征分析,比较了标准光谱库的相应岩性光谱吸收特征和ASTER数据波段特征之间的关系,采用连续统去除、比值法和光谱角制图法对ASTER影像数据进行处理及相关岩性和矿物提取。结果表明,蛇绿岩组分岩性中亚铁离子和Fe-OH,Mg-OH的可见-短波红外吸收特征显著,而且有一个宽波长范围的Si-O热红外光谱特征,基于这些光谱特征采用ASTER数据和比值法与光谱角制图法可有效地识别蛇绿岩的主要岩性和相关矿物成分及其空间分布,结果与地质资料基本吻合。  相似文献   

11.
Visible near infrared and shortwave infrared (VNIR-SWIR, 350 to 2500 nm) reflectance spectra obtained from an analytical spectral device (ASD) have been used to define alteration zones adjacent to porphyry copper deposits (PCDs), in the central part of Kerman magmatic arc, SE Iran. The spectral analysis identified sericite, illite, halloysite, montmorillonite, dickite, kaolinite, pyrophyllite, biotite, chlorite, epidote, calcite, jarosite, and iron oxyhydroxides (e.g. hematite, goethite) of hydrothermal and supergene origin. Identified alteration zones are classified into six principal types namely phyllic, phyllic/propylitic, propylitic, potassic, argillic and advanced argillic. The iron oxide minerals in the oxidized zone were also identified using spectral analysis. Results of spectral analyses of samples are consistent with mineralogical data obtained from X-ray diffraction (XRD) and petrographic studies. Spectroscopic studies by ASD demonstrate that this tool is very useful for semi-quantitative and cost effective identification of different types of alteration mineral assemblages. Furthermore, it can provide a valuable tool for evaluating aerial distribution of alteration minerals while coupled with remote sensing data analysis.  相似文献   

12.
贺洋  徐韬  宋云 《地质力学学报》2015,21(1):21-29,72
以四川省旺苍县水磨—大河地区为研究区, 利用美国ASD FieldSpec 3便携式地物光谱仪野外实测岩矿波谱数据和ASTER遥感影像数据, 基于GIS平台, 根据野外实测的岩石光谱曲线和USGS光谱库的典型岩石光谱曲线提取端元波谱, 对区域影像像元的光谱曲线进行匹配, 采用ENVI4.4软件自动信息提取与人机交互解译相结合的方式, 进行岩性分类, 可以有效地划分区内岩性界线, 满足填图需求, 对辅助该区区域基础地质调查、矿产普查等具有重要的应用价值。   相似文献   

13.
近红外光谱仪测定岩石中蚀变矿物方法研究   总被引:14,自引:2,他引:12  
基于岩石中蚀变矿物对近红外光谱的吸收原理,确定测量蚀变矿物最佳波长范围,采用数学和谱图学习方法对岩石中蚀变矿物进行定性和定量分析。通过蚀变矿物特征光谱,提取光谱参数,建立蚀变矿物与成矿关系模型。以采自福建紫金山矿区钻孔岩芯测量结果为例,说明近红外蚀变矿物分析法的可靠性,并得出结论。  相似文献   

14.
Different methods of infrared spectroscopy applied to the analysis of mineral phases using spectra of reference samples are compared. Traditionally (discretely), the IR spectrum is processed as pairs of numbers characterizing frequencies and intensities of separate bands. The major advantage of such an approach is the opportunity to visualize fine crystallochemical features within groups of related minerals. An alternative technique is based on functional-geometric analysis, dealing with the spectral curve as a whole. This approach is based on the minimization of root-mean square deviations and opens up wide possibilities for the identification of minerals by their IR spectra. The crux of the functional-geometric method is the determination of a linear combination of standard spectra with nonnegative coefficients that ensures the best (in terms of integral functional comparison) approximation of the analyzed spectral curve. As a rule, the spectra of minerals with the closest crystallochemical relationships with the examined sample make the greatest contribution to this resolution. Numerous examples of application of the discrete and functional-geometric methods are described.  相似文献   

15.
Short-wave infrared reflectance (SWIR) spectra obtained from a Portable Infrared Mineral Analyser (PIMA) were applied to map acidic mine soils at San Miguel massive sulphide deposit, Iberian Pyrite Belt, Spain. Field spectral measurements and laboratory analysis were performed on samples from 58 stations from two very polluted grounds. These analyses identified secondary and tertiary Fe-rich sulphate–hydrate minerals associated with the alteration of sulphide-bearing mine wastes and other associated infrared active minerals. The spectral absorption features for the pure salt types found in these areas allowed the preparation of a specific reference library for automatic mineral identification.Using this approach three separate zones around the sources of contamination have been discriminated: a “proximal” zone dominated by rozenite + hexahydrite, a “transitional” zone dominated by copiapite + coquimbite and a “distal” zone of hydronium–jarosite. An additional zone of “gypsum” was also recognized locally at the areas, where, last decade the neutralization of the acid soils with limestones was attempted.In addition to discriminating distinct mineralogical zones quantitative spectral data allowed contoured mineral maps to be produced that are comparable with the estimated mineralogical data obtained from conventional methods, such as XRD and field observations. These maps demonstrate that sulphate minerals were firstly formed by oxidation of the pyrite-rich ores followed by dissolution and precipitation involving a combination of oxidation, dehydration, and neutralization reactions.The study shows the potential of SWIR spectral analysis to identify and understand the distribution of efflorescent salts and other products of pyrite decomposition and provides a methodology to assist the research and monitoring of sources of environmental contamination.  相似文献   

16.
Mineral forms of iron oxide, such as hematite, goethite and jarosite, are important because they are widely distributed at the Earth’s surface and because they are used as indicators for mineral exploration. Iron oxide abundance in rocks containing these minerals can be estimated from the absorption depth at wavelengths of around 900 nm in a reflectance spectrum, but this depth is also affected by extraneous factors such as grain size and topography. This paper investigated the effect of grain size on reflectance spectra and proposed a method for estimating iron oxide abundance in surface rocks by using remotely sensed data with suppression of the effects of grain size and topography. Reflectance spectra were measured in a laboratory from rock powder samples of different grain sizes containing iron oxide minerals. While the reflectance increased with decreasing grain size, the presence of ferric iron caused the absorption depth to be almost constant at around 900 nm, irrespective of the chemical composition of the sample. In addition, the difference between the reflectance at 550 nm and 760 nm (Slope) was a function of grain size. Iron oxide abundance can be estimated accurately by MCR-900D, which is the maximum absorption depth at the absorption center after the effect of grain size and topography was suppressed by Slope and the continuum-removal method, which takes the ratio between the original spectrum and its continuum, respectively. Correlation of MCR-900D results with datasets of actual spectral and chemical iron oxide laboratory measurements revealed that the mineral forms also need to be considered. MCR-900D results were significantly correlated with rock samples classified as containing different forms of iron oxide minerals (hematite, goethite and jarosite). Finally, MCR-900D was applied to an AVIRIS dataset for the Cuprite site in Nevada, USA. The results represented the enrichment zones of iron oxide within hydrothermally altered areas.  相似文献   

17.
蚀变矿物短波红外(SWIR)光谱特征日趋广泛地应用于矿产勘查研究中。绢云母作为热液矿床中最为发育的蚀变矿物之一,通过SWIR光谱技术提取其谱学特征,进而建立与矿床基础地质信息之间的相关性具有重要意义。然而,前人对于绢云母短波红外光谱特征的研究主要集中于单个矿床,缺少不同矿床间的对比。基于此,文章梳理了混合矿物光谱曲线中对单一矿物相对含量的提取方式,系统总结了温度、流体化学成分、流体pH值、寄主岩石、矿物结构、矿物粒度及共(伴)生矿物等因素对绢云母谱学特征空间变化规律的影响,最后,从契尔马克替换效应角度出发,分析对比了5种不同成因类型矿床中近矿端绢云母波长变化。虽然将绢云母短波红外光谱特征有效地应用于矿产勘查仍存在诸多问题,但作者相信,应用绢云母短波红外光谱特征进行矿产勘查依然具有良好的前景。  相似文献   

18.
Twenty thousand metres of diamond drill core representing a 14 km cross-section from weakly to intensely altered Roxby Downs Granite through the Olympic Dam Breccia Complex, host to the Olympic Dam iron-oxide–copper–gold–uranium deposit in South Australia, was analysed using the HyLogger-3 spectral scanner. Thermal and shortwave infrared spectroscopy results from 30 drill holes provide insight into the spatial relationships between quartz, orthoclase–microcline, albite–oligoclase and progressively changing sericite and chlorite compositions. The relative proportions of quartz, feldspars and phyllosilicates were mapped with thermal infrared spectroscopy. Variations in the chemistry of sericite and chlorite were extracted by proxy from their shortwave infrared spectral response, together with their relative spatial distribution. HyLogger scanning has revealed four deposit-scale mineralogical trends, progressing from least-altered Roxby Downs Granite into mineralisation where most of the feldspar has been replaced by sericite + hematite + quartz: (1) a progressive Al–OH wavelength shift of 2205 nm to 2210 nm for sericite, followed by a spatially rapid reversal corresponding to lower phengite/muscovite abundance ratios; (2) progressive Mg/Fe–OH wavelength shift of 2248 nm to 2252 nm reflecting an increase in the Fe:Mg ratio of chlorite; (3) increasing ratio of microcline to orthoclase followed by a rapid decrease; and (4) slightly decreasing ratio of albite to oligoclase followed by plagioclase destruction prior to albite replacement by sericite. The HyLogger feldspar results support recent petrographic evidence for hydrothermal albite and K-feldspar at the Olympic Dam deposit, not previously reported. The spectral results from continuous HyLogger scans also show that the microscopic observations and proposed feldspar replacement reactions are not locally isolated phenomena, but are applicable at the deposit and regional-scale. A modified quartz–K-feldspar–plagioclase ternary diagram utilising mineralogy interpreted from HyLogger thermal infrared spectra (QAPTIR) diagram along with supporting data on the abundance ratios of orthoclase/microcline and albite/plagioclase, and the wavelength shifts in characteristic absorption features for sericite and chlorite, can be used as empirical vectors towards mineralisation within the Olympic Dam mineral system, with potential application to other IOCG ore-forming systems. Intrusion of Gairdner Dyke Swarm dolerite dykes into sericite ± hematite altered Roxby Downs Granite results in retrograde albite–chlorite–magnetite alteration envelopes (up to tens of metres thick) overprinting the original sericite ± hematite alteration zone and needs to be carefully evaluated to ensure that such areas are not falsely downgraded during exploration.  相似文献   

19.
李嵩 《地质通报》2017,36(8):1467-1475
结合区域地质背景,从实测岩矿波谱出发;对实测波谱进行预处理,建立实测波谱库;以岩矿波谱特征理论为指导,以实测样本波谱特征为参照,分析不同矿物波谱具有的特征谱与诊断谱,通过野外岩石样品岩矿鉴定,利用多元线性拟合的方法,从实测波谱中反演氧化物含量,其结果可靠。采用克里金插值法对研究区氧化物进行插值,利用分形理论提取各氧化物异常;采用异常叠加法得到研究区异常集中区。结合化探异常及地质背景,提取了研究区31个找矿远景区。  相似文献   

20.
The southeastern part of the central Iranian Cenozoic magmatic belt contains many areas with copper mineralization. In an analysis of this region, we used the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Enhanced Thematic Mapper plus (ETM+) images to map the distribution of hydrothermally altered rocks, based on their mineral assemblages. The spectral measurements, based on the field samples and satellite‐image‐derived spectra, show dominantly Al–OH (sericite and clays) and Fe–O absorption features in the visible–near infrared to shortwave infrared regions of the spectrum. Silica–bearing rocks, as well as silicic alteration, show an intense Si–O vibrational feature in the thermal infrared wavelength region. We analyzed ASTER/ETM+ images, performed a directed principal component analysis, and used spectral angle mapper to map areas of hydrothermal alteration and iron oxide/hydroxide minerals. The individual principal component images compiled by directed principal component analysis reveal the distribution of individual alteration minerals such as sericite, kaolinite, chlorite, epidote, and quartz. The best results, in terms of mapping the distribution of alteration, were obtained using the spectral angle mapper method. The altered areas were then sampled and the samples subjected to X–ray diffraction analysis, spectral analysis, and thin sections were observed under a microscope. Field observations reveal that more than 98% of the known copper mineralization occurs within the interpreted alteration areas. The present results indicate the great potential of ASTER and ETM+ data for mapping the distribution of alteration and exploring for copper mineralization in areas with a similar climate and geological setting to those of the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号