首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.

In its type area around Narooma, the Narooma Terrane in the Lachlan Orogen comprises the Wagonga Group, which consists of the Narooma Chert overlain by the argillaceous Bogolo Formation. Conodonts indicate that the lower, largely massive (ribbon chert) part of the Narooma Chert ranges in age from mid-Late Cambrian to Darriwilian-Gisbornian (late Middle to early Late Ordovician). The upper Narooma Chert consists of shale, containing Eastonian (Late Ordovician) graptolites, interbedded with chert. Where not deformed by later faulting, the boundary between the Narooma Chert and Bogolo Formation is gradational. At map scale, the Narooma Terrane consists of a stack of imbricate thrust slices caught between two thrust faults that juxtaposed the terrane against the coeval Adaminaby Superterrane in Early Silurian time. These slices are best defined where Narooma Chert is thrust over Bogolo Formation. The soles of such slices contain multiply foliated chert. Late extensional shear bands indicate a strike-slip component to the faulting. The Narooma Terrane, with chert overlain by muddy ooze, is interpreted to be an oceanic terrane that accumulated remote from land for ~50 million years. The upward increase in the terrigenous component at the top of the Wagonga Group (shale, argillite, siltstone and sandstone of the upper Narooma Chert and Bogolo Formation) records approach of the terrane to the Australian sector of the Gondwana margin. Blocks of chert, argillite and sandstone reflect extensional/strike-slip disruption of the terrane as it approached the transform trench along the Gondwana-proto-Pacific plate boundary. Blocks of basalt and basalt breccia represent detritus from a seamount that was also entering the trench. There is no evidence that the Narooma Terrane or the adjacent Adaminaby Group formed in an accretionary prism/ subduction complex.  相似文献   

2.
Marine turbidites, tuffs, black mudstones and conglomerates of the Cambro-Ordovician Clew Bay Group, were deposited in the E–W elongate transtensional Clew Bay Graben that is centred on Clew Bay, NW Ireland. The group is characterized by extensive sedimentary deformation and mass movement on slides; olistostromes, autoclastic breccias and course proximal turbidites are interbedded with apparently less disturbed but often overturned sediments. The Clew Bay Group lies structurally above serpentinized dunite/harzburgite breccias, schistose carbonate peridotites, and other basic and ultrabasic igneous rocks that have ophiolitic geochemical affinities; the sediments may have been in part deposited upon oceanic crust. Ophiolites and sediments that now rest on the Clew Bay Thrust abut Silurian shallow water strata in which the main tectonothermal history, associated with sinistral transcurrent faulting along the thrust zone, is dated at about 410 Ma. The sole thrust dips northward and coalesces with a major deep structure along the Fair Head-Clew Bay Line (FCL) that is the western continuation of the Highland Border Fault of Scotland. Blueschist relics in the Dalradian immediately to the north of the FCL indicate that subduction was active early in the history of the late Cambrian–early Ordovician Grampian orogeny. The Clew Bay Thrust was a sinistral, transpressional shear zone late in its history, but it probably originated as an obduction complex. The Clew Bay Group cannot be traced into sedimentary, metamorphic or structural continuity with the adjacent Dalradian to the north or Ordovician and Silurian rocks in the South Mayo Trough to the south. It should be considered as a distinct terrane (Clew bay Terrane) or a subterrane of Highland Border-type rocks along the southern margin of the Grampian Terrane.  相似文献   

3.
Phanerozoic strata are distributed in several north-south trending zones in the central part of the Changning-Menglian Belt. Four types of Devonian to Triassic stratigraphic successions can be identified: (1) elastics with limestone lenses in the mid-section, changing up-section into alternations of fine elastics and cherts; (2) elastics with chert intercalations and limestone lenses, and topped by Permian basic volcanics; (3) elastics-basic volcanics-carbonates-clastics; and (4) limestones, dolomitic limestones-dark gray thin-bedded limestones, argillaceous limestones, mudstones and siliceous mudstones. Devonian to Triassic cherts occur in different horizons and different zones from east to west. These cherts are usually transitional to their neighboring elastics. There is no continuous Devonian to Middle Triassic chert sequence in the central zone of the Changning-Menglian Belt as Liu et al. (1991,1993) reported. Volcanics and the overlying carbonates described by some workers as "seamount" sequences  相似文献   

4.
北祁连石灰沟奥陶纪碳酸盐岩—硅质岩形成的构造环境   总被引:7,自引:4,他引:3  
闫臻  李继亮  雍拥  肖文交  王宗起  向永生 《岩石学报》2008,24(10):2384-2394
北祁连造山带石灰沟奥陶纪硅质岩与碱性玄武岩、熔结凝灰岩、火山碎屑岩、泥岩、杂砂岩、砂屑灰岩、生物碎屑灰岩及生物礁共同构成了一个相对完整的海山组合序列。其中硅质岩中含有早—中奥陶世牙行刺化石,泥岩和砂岩中含有中—晚奥陶世三叶虫和笔石化石。硅质岩地球化学特征研究表明其源区为其形成提供了丰富的碎屑物质来源,从而表现为LREE富集,Eu*CN负异常特征; 这些硅质岩形成于陆缘环境,并非深海或洋中脊环境。  相似文献   

5.
Evolution of the southeastern Lachlan Fold Belt in Victoria   总被引:2,自引:2,他引:0  
The Benambra Terrane of southeastern Australia is the eastern, allochthonous portion of the Lachlan Fold Belt with a distinctive Early Silurian to Early Devonian history. Its magmatic, metamorphic, structural, tectonic and stratigraphic histories are different from the adjacent, autochthonous Whitelaw Terrane and record prolonged orogen‐parallel dextral displacement. Unlike the Whitelaw Terrane, parts of the proto‐Benambra Terrane were affected by extensive Early Silurian plutonism associated with high T/low P metamorphism. The orogen‐parallel movement (north‐south) is in addition to a stronger component of east‐west contraction. Three main orogenic pulses deformed the Victorian portion of the terrane. The earliest, the Benambran Orogeny, was the major cratonisation event in the Lachlan Fold Belt and caused amalgamation of the components that comprise the Benambra Terrane. It produced faults, tight folding and strong cleavage with both east‐west and north‐south components of compression. The Bindian (= Bowning) Orogeny, not seen in the Whitelaw Terrane, was the main period of southward tectonic transport in the Benambra Terrane. It was characterised by the development of large strike‐slip faults that controlled the distribution of second‐generation cleavage, acted as conduits for syntectonic granites and controlled the deformation of Upper Silurian sequences. Strike‐slip and thrust faults form complex linked systems that show kinematic indicators consistent with overall southward tectonic transport. A large transform fault is inferred to have accommodated approximately 600 km of dextral strike‐slip displacement between the Whitelaw and Benambra Terranes. The Benambran and Bindian Orogenies were each followed by periods of extension during which small to large basins formed and were filled by thick sequences of volcanics and sediments, partly or wholly marine. Some of the extension appears to have occurred along pre‐existing fractures. Silurian basins were inverted during the Bindian Orogeny and Early Devonian basins by the Tabberabberan Orogeny. In the Melbourne Zone, just west of the Benambra Terrane, sedimentation patterns in this interval, in particular the complete absence of material derived from the deforming Benambra Terrane, indicate that the two terranes were not juxtaposed until just before the Tabberabberan Orogeny. This orogeny marked the end of orogen‐parallel movement and brought about the amalgamation of the Whitelaw and Benambra Terranes along the Governor Fault. Upper Devonian continental sediments and volcanics form a cover sequence to the terranes and their structural zones and show that no significant rejuvenation of older structures occurred after the Middle Devonian.  相似文献   

6.
Two graptolite faunas are described from outcrops of the Wagonga Beds near Batemans Bay on the south coast of N.S.W. They are of late Eastonian and early Bolindian age. The faunas have been found in two geographically separate localities and, in spite of structural complexities, it is now suggested that the greater part of the Wagonga Beds was deposited in the Late Ordovician. The chert and volcanicrich Wagonga Beds were accumulated prior to, or as contemporaneous lateral facies equivalents of, the thick undifferentiated Upper Ordovician ‘slates and grey‐wackes unit’ that crops out in the same general region.  相似文献   

7.
The Lower Palaeozoic sequences of the Rügen boreholes are composed of pelitic-clastic sediments which range in age from the Cambro-Ordovician boundary to the Late Ordovician. Provenance studies have been carried out on Cambro-Ordovician sandstones from the Loissin borehole and on Middle-Upper Ordovician greywackes of the Rugen 5 borehole.The Loissin sandstones were deposited as turbidites and debris flows in an unstable sedimentary basin. They form immature arkoses and subarkoses with high matrix contents. Their debris derived from a polycyclic, sedimentary cratonic provenance and from a monocyclic magmatic provenance. This is reflected in the heavy mineral spectrum, which is dominated by an anhedral, coloured zircon fraction and a euhedral, transparent zircon fraction.The Middle-Upper Ordovician Rügen greywackes derived from proximal, high energy turbidites which were transported into a deep marine basin. They form homogeneous lithic arkoses and arkosic litharenites. Their debris derived from a composite provenance with an ultramafic-mafic, ophiolitic source, an acidic magmatic source and a heterogeneous sedimentary cratonic source.Although the Loissin sandstones probably originated in an intracratonic, rift-related sedimentary basin, the debris of the Rugen greywackes is regarded as derived from a heterogeneous active continental margin. Results and interpretations of the provenance study are discussed in the light of proposed Lower Palaeozoic palaeogeographic reconstructions.  相似文献   

8.
The Qilian orogen along the NE edge of the Tibet‐Qinghai Plateau records the evolution of Proto‐Tethyan Ocean that closed through subduction along the southern margin of the North China block during the Early Paleozoic. The South Qilian belt is the southern unit of this orogen and dominated by Cambrian‐Ordovician volcano‐sedimentary rocks and Neoproteozoic Hualong complex that contains similar rock assemblages of the Central Qilian block. Our recent geological mapping and petrologic results demonstrate that volcano‐sedimentary rocks show typical rock assembles of a Cambrian‐early Ordovician arc‐trench system in Lajishan Mts. along the northern margin of the Hualong Complex. Island arc rocks including basalt, andesite, dacite, rhyolite, and breccia is in fault contact with ophiolite complex consisting of mantle peridotite, serpentinite, gabbro, dolerite, plagiogranite, and basalt. Accretionary complexes are tectonically separated from the ophiolite‐arc rocks, with various rock assemblages spatially. They consist of pillow basalt, basalt breccia, tuff, chert, and limestone blocks with a seamount origin within the scaly shale in Dingmaoshan and Donggoumeikuang areas, and basalt, chert, and sandstone blocks within muddy shale matrix and mélange at Lajishankou area. Abundant radiolarians occur in red chert, and trilobite, brachiopod, and coral fossils occur within Dingmaoshan limestone blocks. Although partial basalt or chert blocks are highly disrupted, duplex, thrust fault, rootless intrafolial fold, tight fold, and penetrative foliation are well‐developed at Donggoumeikuang area. Spatially, accretionary complexes lie structurally beneath ophiolite complex and above the turbidites of the Central Qilian block. Ophiolite and accretionary complexes are also overlapped by late Ordovician molasse deposits sourced from Cambrian arc‐trench system and the Central Qilian block. These observations demonstrate that a Cambrian‐early Ordovician trench‐arc system within the South Qilian belt formed during the early Paleozoic southward subduction of the South Qilian Ocean collided with the Central Qilian block prior to the late Ordovician.  相似文献   

9.
东秦岭二郎坪群硅质岩地球化学特征及其沉积环境意义   总被引:3,自引:0,他引:3  
东秦岭二郎坪群硅质岩成因分析对二郎坪群形成环境和构造背景研究具有重要意义。通过对二郎坪群中3类硅质岩地质特征、岩石地球化学特征(w(SiO2)=61.35%~96.01%、N(Si)/N(Al)=2.77~51.53)研究,认为二郎坪群硅质岩为非纯硅质岩;稀土元素的配分模式和特征值(∑REE、∑LREE、∑HREE、δCe、δEu)、常量元素含量(w(Al2O3)、w(TiO2))和微量元素含量(w(Nb)、w(Rb)、w(Th))的分析表明研究区硅质岩是热水成因型,但受陆源物质成分影响,陆缘物源对南阳盆地西硅质岩影响较大。地球化学综合分析揭示二郎坪群硅质岩产出于不同海相沉积环境,南阳盆地西硅质岩形成于大陆边缘海环境,而盆地以东硅质岩形成于远洋盆地环境,证实了二郎坪群形成于弧后盆地构造环境。  相似文献   

10.
The North Qilian orogenic belt is an elongate tectonic unit that lies between the North China plate to the north and the Middle Qilian microplate to the south, and is formed by a collision of the two plates in the Caledonian. The Shihuigou Section from Yongdeng County, Gansu Province, is in the eastern sector of the North Qilian Mountains, spanning the Ordovician island-arc zones. The Zhongpu Group is distributed in the Shihuigou area and composed of medium-basic volcanic rocks and volcanic clastic rocks interspersed with cherts, limestones, slates, and metamorphic sandstones. The geochemistry of chert from the Zhongpu Group reveals that all cherts coexisting with island-arc volcanic rocks formed in a continental margin basin environment. Research results of the rare earth elements reveal that these cherts formed in a relatively deep-water basin with no significant terrestrial interference. Therefore, it is inferred that the North Qilian orogenic belt was previously an archipelagic ocean in the Ordovician. Translated from Geological Review, 2006, 52(2): 184–189 [译自: 地质论评]  相似文献   

11.
The Ediacaran to early Cambrian Blovice accretionary complex, Bohemian Massif, hosts abundant chert bodies that formed on an oceanic plate and were involved in subduction beneath the northern margin of Gondwana. Field relationships of cherts to their host, their microstructure and elemental as well as isotopic compositions revealed diverse processes of chert petrogenesis reflecting depositional environment and position on the oceanic plate. The deep-water cherts formed through a hydrothermal precipitation of silica-rich gels on outer trench swell of the subducted slab with none or only minor addition of terrigenous material. On the contrary, the shallow-water cherts formed in lagoons on seamount slopes, and at least some of them represent a product of hydrothermal replacement of former carbonate and/or evaporite precursors. For both chert types, the hydrothermal fluids were of low temperature and continuous pervasive hydrothermal alteration of oceanic crust, together with an elevated Si content in Neoproterozoic seawater, served as the major source of silica. On the other hand, minor carbon enrichment in chert is mostly linked to variable incorporation of organic matter that was deposited on the seafloor. Rare earth element (REE) systematics of the cherts indicate predominantly oxygenated environment for the shallow-water cherts whereas the deep-water cherts were deposited in diverse redox conditions, depending on their distance from hydrothermal vent. Using these data, we demonstrate that the cherts once formed a part of Ocean Plate Stratigraphy (OPS) now dismembered and mixed with terrigenous siliciclastic material to form OPS mélanges. Combining our data with those from the existing literature, we show that cherts can serve as significant markers of OPS since the Archean, recording a complex interplay between seafloor-related volcanic (production of MORB- and OIB-like magmas) and sedimentary processes, hydrothermal activity at mid-ocean ridges and seamount chains as well as at outer slopes of subducting slabs. However, the cherts also exhibit a secular change in composition and petrogenesis most profoundly affected by an overturn in seawater silica cycle across the Precambrian–Phanerozoic boundary.  相似文献   

12.
二郎坪群硅质岩成因研究对二郎坪群的构造背景和铜多金属矿床成因的确定具有重要意义。通过对二郎坪群中三种硅质岩的地质特征和岩石地球化学分析,认为二郎坪群硅质岩是典型的热水沉积硅质岩。常量元素地球化学特征值(N(Al)/N(Al+Fe+Mn))指示该硅质岩的沉积环境存在东西差异,南阳盆地以东弧后盆地的规模较大(N(Al)/N(Al+Fe+Mn)=0.30~0.45),沉积环境类似远洋盆地,硅质岩的热液成分比例大,受陆缘物质影响小;而南阳盆地以西弧后盆地的规模较小(N(Al)/N(Al+Fe+Mn)=0.59),沉积环境为近大陆的边缘海,硅质岩Al含量相对较高,受到陆缘物质影响相对大。地质特征和稀土元素特征(负Eu异常、弱负Ce异常)揭示了二郎坪群硅质岩是弧后盆地型低温热液流体和海水混合形成,这为二郎坪群形成于弧后盆地构造环境的认识提供了新的重要证据。热水沉积硅质岩与铜多金属矿床的共生关系证明研究区铜金属矿床的成因是海底热液喷流沉积作用。  相似文献   

13.
湘中南地区奥陶系由"细碎屑岩-硅质岩系-粗碎屑岩"构成,三者厚度变化具有明显的规律性:厚度等值线的展布逐渐趋于北东方向,厚度最大区域向南东方向迁移。区内岭口剖面烟溪组硅质岩SiO_2含量(89.08%~94.32%)和Al/(Al+Fe+Mn)值(0.52~0.79)较高,具有轻稀土略富集、无明显铈异常和铕异常的特点;大桥剖面烟溪组硅质岩SiO_2含量高(91.74%~95.14%),Al/(Al+Fe+Mn)值为0.34~0.56,具有轻稀土富集、无明显铕异常和间歇性铈负异常、Y/Ho比值低(20.65±1.63)的特点。硅质岩地球化学特征及图解说明其主要为正常海相生物成因,形成于开阔的大陆边缘背景。对比邻近地区相应层位数据发现,湘中南及其邻区中—晚奥陶世硅质岩成因与沉积背景相似,指示其形成于统一盆地中,结合地层等厚度图分析认为,盆地经历了被动大陆边缘—前陆盆地的转换,硅质岩系可能是前陆盆地初始阶段的产物,在其展布范围内无明显热液影响,暗示造成华夏地块抬升的地球动力学来源可能还在该套硅质岩系展布范围的更南部或东南部。  相似文献   

14.
Permian–Triassic fore-arc basin terranes are exposed in New Zealand, but their original positions and tectonic configurations along the eastern Gondwanan margin are not fully understood. To better constrain late Paleozoic and Mesozoic reconstructions, we investigated the provenance of Permian–Triassic marine sandstone units from the Dun Mountain-Maitai Terrane (Maitai Group) and the Kaka Point Structural Belt (Willsher Group). The recognition of abundant volcanic lithic fragments in the sandstone samples, combined with the pattern of detrital zircon ages (unimodal to bimodal 280–240 Ma age distribution), demonstrate that the upper Permian to Middle Triassic volcaniclastic successions were derived from a proximal arc source. The detrital zircon age spectra match magmatic pulses in the adjacent Tuhua Intrusives (Median Batholith), a conclusion similar to that recently proposed for the Brook Street Terrane (Grampian Formation) and Murihiku Terrane (Murihiku Supergroup). Trace-element data from the dated zircon grains provide further evidence for a Median Batholith source and cross-terrane provenance links. The data indicate that 275–230 Ma zircon grains from the Maitai Group, Willsher Group, and Murihiku Supergroup were derived from a common magmatic source, and that the late Permian Longwood Suite (261–252 Ma) in the Median Batholith was a source region for these terranes. Based on the cross-terrane provenance links, we suggest that the Brook Street and Murihiku terranes were deposited in the proximal part of a fore-arc basin, whereas the Dun Mountain-Maitai Terrane represents the distal part of the same basin. Sedimentation in the Maitai Group ceased during the Middle Triassic (∼238 Ma), likely in response to a period of orogenesis at 235–230 Ma (Gondwanide Orogeny) that is widely recognized throughout the southwest Pacific.  相似文献   

15.
Many ophiolite complexes like those of Oman and New Caledonia represent fragments of ancient oceanic crust and upper mantle generated at supra‐subduction zone environments and have been obducted onto the adjacent rifted continental margin together with the accretionary complexes and intra‐oceanic arcs. The Lajishan ophiolite complexes in the Qilian orogenic belt along the NE edge of the Tibet‐Qinghai Plateau are one of several ophiolites situated to the south of the Central Qilian block. Our geological mapping and petrological investigations suggest that the Lajishankou ophiolite complex consists of serpentinite, wehrlite, pyroxenite, gabbro, dolerite, and pillow and massive basalts that occur in a series of elongate fault‐bounded slices. An accretionary complex composed mainly of basalt, radiolarian chert, sandstone, mudstone, and mélange lies structurally beneath the ophiolite complex. The Lajishankou ophiolite complex and accretionary complex were emplaced onto the Qingshipo Formation of the Central Qilian block which shows features typical of turbidites deposited in a deep‐water environment of passive continental margin. Our geochemical and geochronological studies indicate that the mafic rocks in the Lajishankou ophiolite complex can be categorized into three distinct groups: massive island arc tholeiites, 509 Ma back‐arc dolerite dykes, and 491 Ma pillow basaltic and dolerite slices that are of seamount origin in a back‐arc basin. The ophiolite and accretionary complex constitute a Cambrian‐early Ordovician trench‐arc system within the South Qilian belt during the early Paleozoic southward subduction of the South Qilian Ocean prior to Early Ordovician obduction of this system onto the Central Qilian block.  相似文献   

16.
保山地体寒武纪基性火山岩及其大地构造意义   总被引:1,自引:1,他引:1  
保山地体位于青藏高原东南缘。有关保山地体的岩浆作用研究大多集中在中生代及新生代,针对古生代岩浆作用的讨论较少。对云南省保山邦迈地区蒲满哨群中变质基性岩的锆石U-Pb年代学、地球化学及Sm-Nd同位素组成进行了研究。这些变质基性岩可分为2组:一组为斜长角闪岩,另一组为黑云斜长角闪岩。锆石U-Pb测年结果表明,斜长角闪岩的形成时代为536.7Ma,黑云斜长角闪岩的形成时代为532.0Ma。地球化学特征显示,斜长角闪岩的原岩为玄武安山岩,黑云斜长角闪岩的原岩为碱性玄武岩。稀土和微量元素配分曲线及多种构造环境判别图解显示,二者分别具有富集型大洋中脊玄武岩和洋岛玄武岩的地球化学特征。结合区域大地构造背景认为,保山地体邦迈变质基性岩为洋脊俯冲的产物。在新元古末期—早古生代,保山地体与拉萨地体、喜马拉雅地体等类似,皆位于冈瓦纳大陆边缘,且共同经历了增生造山过程。  相似文献   

17.
杨文强  冯庆来  沈上越  Malila  K.  Chonglakmani  C. 《地球科学》2009,34(5):743-751
在泰国北部难河构造带Pha Som变质杂岩中发现保存很好的放射虫硅质岩、玄武岩地层层序.层状硅质岩含放射虫化石Follicucullus porrectus, 地质时代为中二叠世晚期至晚二叠世早期.其硅质岩SiO2含量均在92.5%以上, Al/ (Al+Fe+Mn) 平均比值为0.51, Ce/Ce*比值为1.14, 为大陆边缘型硅质岩.玄武岩具有富集大离子亲石元素与高场强元素以及轻稀土富集等洋岛玄武岩的特点.说明难河构造带中-晚二叠世之交存在洋岛型火山岩和靠近大陆边缘的深海盆地硅质岩, 代表了小洋盆的沉积组合.该构造带闭合时间应在晚二叠世与晚三叠世之间.   相似文献   

18.
The origin and diagenesis of cherts from Cyprus   总被引:1,自引:0,他引:1  
The Troodos Massif of Cyprus is overlain by a variety of cherts in pelagic chalks, volcanogenic sediments, radiolarites and radiolarian mudstones, all of Campanian to Upper Eocene age. There are two chert types, granular chert and vitreous chert. X-ray diffraction (XRD) reveals the silica polymorphs, disordered cristobalite and quartz. Silicification of the chalks varies from incipient, to bedded, granular cherts, all with disordered cristobalite as the main silica phase. Quartzitic cherts are restricted to the base of Upper Palaeocene and Lower Eocene calciturbidite beds. Disordered cristobalite predominates in the radiolarian mudstones at the foot of the sequence. The form of disordered cristobalite in cavities ranges from microspherules of radiating bladed crystals, the ‘lepispheres’ of the Deep Sea Drilling Project (DSDP) to bladed overgrowths, and fibrous silica. In contrast, within the fine grained matrix, the disordered cristobalite takes the form of partly coalescent crude microgranules and microspherules. Most of the chalcedonic quartz in Cyprus is derived by recrystallization of previously inorganically precipitated disordered cristobalite rather than by direct precipitation. According to the concept of impurity-controlled maturation the composition of host sediment controls the incorporation of exchangeable cations and other impurities into inorganically precipitated disordered cristobalite. With time (up to 100 million years) internal solid state reorganization of the disordered cristobalite is accompanied by gradual expulsion of impurities, until the cristobalite dissolves followed by quartz precipitation. Complete conversion to quartz takes place first in porous calcareous sediments free of impurities, as in the Cyprus calciturbidites; in fine grained clay-rich sediments, like Cyprus radiolarian mudstones, disordered cristobalite persists much longer. Impurity-controlled maturation also helps explain the diagenesis of Cyprus chert nodules.  相似文献   

19.
The pre‐Devonian sedimentary and volcanic sequence exposed along the south coast of New South Wales has previously been divided into three stratigraphic groups: (1) Upper Ordovician graptolite‐bearing slate which is conformable with (2) interlayered thinly‐bedded greywacke and pelite of undifferentiated Ordovician age and (3) Cambrian successions of interlayered chert, pelite and volcanic rock at Bate‐mans Bay and Narooma. The main bases for this subdivision are a change in rock types between (1) and (2), and the unconformity between (2) and (3) formerly proposed on the basis of changes in rock type and fold style across the boundary. New structural data are presented which refute the presence of the unconformity, and conformity of (2) and (3) with the fossiliferous slates is established.  相似文献   

20.
The data of geochemical study of Late Triassic cherts from tectonic–sedimentary complexes from different structural levels of the Samarka Terrane are reported. It is shown that the concentration and character of distribution of the major petrogenic oxides and minor and rare-earth elements in cherts of the upper and lower structural levels differ significantly, which results from differences in the facies environments of chert deposition. All the geochemical characteristics of cherts show that their deposition proceeded in the pelagic area of sedimentation, but in different parts. The Katen Complex composing the lower structural level is the most distant from the continental margin. The closest is the Amba-Matay Complex composing the upper structural level. Based on the geochemical and biostratigraphic data and the age of accretion of paleooceanic fragments, the length of the subducted oceanic plate (>6000 km) is calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号