首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The geology of Northern Vietnam offers critical clues on the convergence history between the South China and Indochina blocks. We constrain the tectonic evolution of the South China and Indochina blocks using geochemical, mineral chemical and geochronological data collected from mafic–ultramafic rocks exposed in the Cao Bang area, Northeastern Vietnam. These rocks show significant enrichment in large ionic lithophile elements (LILEs) such as Cs, Rb, Ba, Th, U, and Pb and depletion in high field strength elements (HFSEs) such as Nb, Ta, Zr, and Ti showing [Nb/La]N between 0.28–0.41, [La/Yb]N = 3.94–10.00 and Zr/Y = 2.0–4.4. These geochemical features as well as the petrology and mineral chemistry of the Cao Bang mafic–ultramafic magmas are comparable to those of magmatic complexes formed in a back-arc environment. The basalts yield Rb–Sr whole rock ages of 263 ± 15 Ma, that are consistent with the zircon U–Pb and K–Ar ages reported in previous studies from the same area. The spatial and temporal distribution of the arc magmas within the Indochina block and along the southern margin of the South China block suggest that the Permo-Triassic mafic–ultramafic magmas formed during a tectonic event that is different from the subduction and collision event between the Indochina and South China blocks.  相似文献   

3.
Aravalli fold belt has witnessed major tectonism resulting in intense deformation and associated mafic magmatism. Recently acquired high resolution aeromagnetic data over central Aravalli fold belt brought out a conspicuous E-W trending magnetic anomaly extending for more than 35 km in length cutting across the whole succession of Aravalli Supergroup. This anomaly on ground is manifested as undeformed basic dyke intruding into metasediments of Aravalli Supergroup. The E-W trend and undeformed nature of these dykes suggest that they represent post Aravalli mafic magmatism which are emplaced sympathetic to the axial plane of F3 folding.  相似文献   

4.
Major and trace element analyses of relict cores of cumulus minerals (olivine and clinopyroxene) from primitive rocks of the Juquiá mafic–ultramafic alkaline–carbonatite complex (Early Cretaceous) in the Ponta Grossa Arch Alkaline Province, southeastern Brazil, were used to calculate the equilibrium melt compositions. Olivine relict cores are compositionally restricted to the Fo83–74 interval, and they exhibit significant concentrations of Mn (2220–3001 ppm), Ni (1188–2327 ppm), Ca (175–649 ppm), Co (169–216 ppm), Zn (115–215 ppm), Ti (55–305 ppm), Cr (4–320 ppm) and P (31–154 ppm). Clinopyroxene relict cores are essentially diopside, with minor amounts of hedenbergite and tschermakite components. The trace element contents found in clinopyroxene cores are Ni (196–339 ppm), V (99–318 ppm), Sr (110–260 ppm), Zr (12–163 ppm), Sc (50–78 ppm), P (16–118 ppm), Zn (16–48 ppm) and Co (25–43 ppm). The rare earth element (REE) concentrations are variable (28–240 ppm), with the lighter elements present in the greatest abundance, particularly Ce (up to 83 ppm).The melt compositions in equilibrium with olivine and clinopyroxene cores from different samples suggest that distinct basanite magma batches have played a role in the formation of the Juquiá cumulate rocks. These calculated liquids have compositions that are quite similar to those of the nearby lamprophyre dikes. The CaO/Al2O3 values (>0.8) from the lamprophyre dikes and the high La/Zr and low Ti/Eu values from the calculated liquids point to a previous carbonatite metasomatic event in the magmatic source that lead to the formation of wehrlite veins in a peridotitic mantle. The variation in the Hf/Y ratio implies differences in cpx/gt modal proportions in the source. Non-modal mantle batch-melting models indicate that a homogeneous source with little variation in the degree of partial melting cannot explain the trace element differences among the calculated liquids. The models suggest that the geochemical differences represent (1) mixing between metasomatic vein partial melt and garnet lherzolite partial melt and (2) clinopyroxene/garnet modal ratios of the residual mantle.  相似文献   

5.
Zircons from anatectic melts of the country rocks of three Proterozoic mafic–ultramafic intrusions from the Sveconorwegian Province in SW Sweden were microanalyzed for U–Th–Pb and rare earth elements. Melting and interaction of the wall rocks with the intrusions gave rise to new magmas that crystallized zircon as new grains and overgrowths on xenocrysts. The ages of the intrusions can be determined by dating this newly crystallized zircon. The method is applied to three intrusions that present different degrees of complexity, related to age differences between intrusion and country rocks, and the effects of post-intrusive metamorphism. By careful study of cathodoluminescent images and selection of ion probe spots in zircon grains, we show that this approach is a powerful tool for obtaining accurate and precise ages. In the contact melts around the 916?±?11?Ma Hakefjorden Complex, Pb-loss occurred in some U-rich parts of xenocrystic zircon due to the heat from the intrusion. In back-veins of the 1624?±?6?Ma Olstorp intrusion we succeeded in geochemically distinguishing new magmatic from xenocrystic zircon despite small age differences. At Borås the mafic intrusion mixed with country rock granite to form a tonalite in which new zircon grew at 1674?±?8?Ma. Reworking of zircon occurred during 930+33/–34?Ma upper amphibolite facies Sveconorwegian metamorphism. Pb-loss was the result of re-equilibration with metamorphic fluids. REE-profiles show consistent differences between xenocrystic, magmatic, and metamorphic zircon in all cases. They typically differ in Lu/LaN, Ce/Ce*, and Eu/Eu*, and igneous zircon with marked positive Ce/Ce* and negative Eu/Eu* lost its anomalies during metamorphism.  相似文献   

6.
The Cuaró Formation is part of the sequence of Mesozoic mafic intrusions related to the Early Cretaceous break-up of Gondwana and represents the southernmost occurrences within the Paraná Magmatic Province in Uruguay. We present field data, petrography and lithogeochemical results regarding these dike swarms and sills that crop out in the southern extreme of the Paraná Basin. Dolerites and sills mainly exhibit glomeroporphyritic textures; the phenocrysts consist of plagioclase, clinopyroxene, relicts of olivine and titaniferous magnetite. Bulk-rock geochemical analyses allowed their classification as low-Ti subalkaline tholeiitic basalts and andesitic basalts. Trace element data indicated that the protoliths of these intrusions include the subcontinental lithospheric mantle, as is generally recognized for other Gondwana-related continental flood basalt provinces.  相似文献   

7.
More than 20 layered intrusions were emplaced at c. 1075 Ma across > 100 000 km2 in the Mesoproterozoic Musgrave Province of central Australia as part of the c. 1090–1040 Ma Giles Event of the Warakurna Large Igneous Province (LIP). Some of the intrusions, including Wingellina Hills, Pirntirri Mulari, The Wart, Ewarara, Kalka, Claude Hills, and Gosse Pile contain thick ultramafic segments comprising wehrlite, harzburgite, and websterite. Other intrusions, notably Hinckley Range, Michael Hills, and Murray Range, are essentially of olivine-gabbronoritic composition. Intrusions with substantial troctolitic portions comprise Morgan Range and Cavenagh Range, as well as the Bell Rock, Blackstone, and Jameson–Finlayson ranges which are tectonically dismembered blocks of an originally single intrusion, here named Mantamaru, with a strike length of > 170 km and a width of > 20 km, constituting one of the world's largest layered intrusions.Over a time span of > 200 my, the Musgrave Province was affected by near continuous high-temperature reworking under a primarily extensional regime. This began with the 1220–1150 Ma intracratonic Musgrave Orogeny, characterized by ponding of basalt at the base of the lithosphere, melting of lower crust, voluminous granite magmatism, and widespread and near-continuous, mid-crustal ultra-high-temperature (UHT) metamorphism. Direct ascent of basic magmas into the upper crust was inhibited by the ductile nature of the lower crust and the development of substantial crystal-rich magma storage chambers. In the period between c. 1150 and 1090 Ma magmatism ceased, possibly because the lower crust had become too refractory, but mid-crustal reworking was continuously recorded in the crystallization of zircon in anatectic melts. Renewed magmatism in the form of the Giles Event of the Warakurna LIP began at around 1090 Ma and was characterized by voluminous basic and felsic volcanic and intrusive rocks grouped into the Warakurna Supersuite. Of particular interest in the context of the present study are the Giles layered intrusions which were emplaced into localized extensional zones. Rifting, emplacement of the layered intrusions, and significant uplift all occurred between 1078 and 1075 Ma, but mantle-derived magmatism lasted for > 50 m.y., with no time progressive geographical trend, suggesting that magmatism was unrelated to a deep mantle plume, but instead controlled by plate architecture.The Giles layered intrusions and their immediate host rocks are considered to be prospective for (i) platinum-group element (PGE) reefs in the ultramafic–mafic transition zones of the intrusions, and in magnetite layers of their upper portions, (ii) Cu–Ni sulfide deposits hosted within magma feeder conduits of late basaltic pulses, (iii) vanadium in the lowermost magnetite layers of the most fractionated intrusions, (iv) apatite in unexposed magnetite layers towards the evolved top of some layered intrusions, (v) ilmenite as granular disseminated grains within the upper portions of the intrusions, (vi) iron in tectonically thickened magnetite layers or magnetite pipes of the upper portions of intrusions, (vii) gold and copper in the roof rocks and contact aureoles of the large intrusions, and (viii) lateritic nickel in weathered portions of olivine-rich ultramafic intrusions.  相似文献   

8.
9.
The Malayer–Boroujerd plutonic complex (MBPC) in western Iran, consists of a portion of a magmatic arc built by the northeast verging subduction of the Neo-Tethys plate beneath the Central Iranian Microcontinent (CIMC). Middle Jurassic-aged felsic magmatic activity in MBPC is manifested by I-type and S-type granites. The mafic rocks include gabbroic intrusions and dykes and intermediate rocks are dioritic dykes and minor intrusions, as well as mafic microgranular enclaves (MMEs). MBPC Jurassic-aged rocks exhibit arc-like geochemical signatures, as they are LILE- and LREE-enriched and HFSE- and HREE-depleted and display negative Nb–Ta anomalies. The gabbro dykes and intrusions originated from metasomatically enriched garnet-spinel lherzolite [Degree of melting (fmel) ~ 15%] and exhibit negative Nd and positive to slightly negative εHf(T) (+ 3.0 to ? 1.6). The data reveal that evolution of Middle Jurassic magmatism occurred in two stages: (1) deep mantle-crust interplay zone and (2) the shallow level upper crustal magma chamber. The geochemical and isotopic data, as well as trace element modeling, indicate the parent magma for the MBPC S-type granites are products of upper crustal greywacke (fmel: 0.2), while I-type granites formed by partial melting of amphibolitic lower crust (fmel: 0.25) and mixing with upper crustal greywacke melt in a shallow level magma chamber [Degree of mixing (fmix): 0.3]. Mixing between andesitic melt leaving behind a refractory dense cumulates during partial crystallization of mantle-derived magma and lower crustal partial melt most likely produced MMEs (fmix: 0.2). However, enriched and moderately variable εNd(T) (? 3.21 to ? 4.33) and high (87Sr/86Sr)i (0.7085–0.7092) in dioritic intrusions indicate that these magmas are likely experienced assimilation of upper crustal materials. The interpretations of magmatic activity in the MBPC is consistent with the role considered for mantle-derived magma as heat and mass supplier for initiation and evolution of magmatism in continental arc setting, elsewhere.  相似文献   

10.
Quenched juvenile mafic inclusions (enclaves) are an occasional but informative component in the deposits of large felsic eruptions. Typically, the groundmasses of these inclusions rapidly crystallize as the mafic magma is chilled against a more voluminous, cooler felsic host, providing a physical and chemical record of the nature and timing of mafic–felsic interactions. We examine mafic inclusions of two compositional lineages (tholeiitic and calc-alkaline) from deposits of the 25.4 ka Oruanui eruption (Taupo, New Zealand). 2-D quantitative textural data from analysis of back-scattered electron images reveal a marked diversity in the groundmass textures of the inclusions, including median crystal sizes (amphibole: 14–45 µm; plagioclase: 21–75 µm) and aspect ratios (amphibole: 1.7–4.2; plagioclase: 2.1–4.0), area number densities (amphibole: 122–2660 mm?2; plagioclase: 117–2990 mm?2), area fractions (?) of minerals (?plag?=?23–45%, ?amph?=?0–28%, ?cpx?=?0–6%, ?oxides?=?0.6–5.5%), and the relative abundance of plagioclase and amphibole (?plag/?amph?=?1.0–4.6). Textural parameters vary more significantly within, rather than between, the two compositional lineages, and in some cases show marked variations across individual clasts, implying that each inclusion’s cooling history, rather than bulk composition, was the dominant control on textural development. Groundmass mineral compositions are also diverse both within and between inclusions (e.g. plagioclase from An34–92, with typical intra-clast variability of ~?20 mol%), and do not correlate with bulk chemistry. Diverse groundmass textures and mineral and glass chemistries are inferred to reflect complex interplay of a range of factors including the degree and rate of undercooling, bulk composition, water content and, possibly, intensive variables. Our data are inconsistent with breakup of a crystallizing ponded mafic layer at the base of the Oruanui melt-dominant body, instead implying that each inclusion partially crystallized as a discrete body with a unique cooling history. Extensive ingestion of mush-derived macro-crystals suggests that mechanical breakup of mafic feeder dikes occurred within a transition zone between the mush and melt-dominant magma body. In this zone, the mush lacked yield strength, as has been inferred from field studies of narrow (meters to few tens of meters) mush-melt transition zones preserved in composite intrusions. Evidence for plastic deformation of inclusions during eruption and the abundance of fresh residual glass in inclusions from all eruptive phases suggest that the inclusions formed syn-eruptively, and must have been formed recurrently at multiple stages throughout the eruption.  相似文献   

11.
12.
The ∼260 Ma Baimazhai mafic–ultramafic intrusion is considered to be part of the Emeishan large igneous province and consists of orthopyroxenite surrounded by websterite and gabbro. The intrusion is variably mineralized with a massive sulfide ore body (∼20 vol.%) in the core of the intrusion. Silicate rocks have Ni/Cu ratios ranging from 0.3 to 46 with majority less than 7 and are rich in LREE relative to HREE and show Nb and Ta anomalies in primitive mantle-normalized trace element patterns, with low Nb/Th (1.0–4.5) and Nb/La (0.3–1.0) ratios. Their ɛ Nd(t) values range from −3.3 to −8.4. Uniform Pd/Pt (0.7–3.5) and Cu/Pd (100,000–400,000) ratios throughout the intrusion indicate that all the sulfides in the rocks were formed in a single sulfide-saturation event. Modeling suggests that the Baimazhai rocks were formed when an Mg-rich magma became crustally contaminated in a deep-seated staging chamber. Crustal contamination (up to ∼35%) drove the magma to S-saturation and forced orthopyroxene (Opx) onto the liquidus. The crystal-bearing magma forced out of the staging chamber was migrated by flow differentiation and consequently, the denser sulfide melt and the Opx crystals became centrally disposed in the flowing magma to form the Baimazhai intrusion.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

13.
This paper reports the results of the first comprehensive petrological study of mafic enclaves widespread in the products of recent (2006–2012) eruptions of Bezymianny Volcano, Kamchatka. Four types of mafic enclaves were distinguished on the basis of the composition and morphology of minerals, P–T conditions of formation of mineral assemblages, and structural and textural characteristics of the rocks. Disequilibrium assemblages of mafic enclaves indicate a complex structure of the magmatic plumbing system of the volcano, including a shallow chamber with andesite–basaltic andesite magmas and a deep reservoir filled in part with plagioclase–hornblende cumulates and fed by basic magmas with mantle harzburgite xenoliths. The mafic enclaves were formed at different levels of the magmatic plumbing system of the volcano and correspond to different degrees of mixing of interacting magmas. The most abundant enclaves were formed during magma ascent from the deep reservoir (960–1040°C, 5–9 kbar) into the shallow andesitic chamber (940–980°C). Enclaves of plagioclase–hornblende cumulates from the basic magmas feeding the deep reservoir (T > 1090°C and P > 9 kbar) are much less common.  相似文献   

14.
The Wonaminta Block is bounded on its eastern and western margins by Lower Cambrian or upper Vendian intrusive and extrusive igneous rocks. The extrusive rocks include pillow lavas. Low‐grade metamorphism has not influenced the distribution of P2O3, Zr, Y, and Nb, but remobilization of Ti has occurred in rocks containing Ti within the oxide phases rather than in the silicate phases. Immobile trace‐element discrimination techniques indicate that the basalts on the western margin of the Wonaminta Block are alkaline whereas those on the eastern margin are tholeiitic. The possibility that these rocks represent petrological variants across an arc system is discussed.  相似文献   

15.
Devonian magmatism was very intensive in the tectonic evolutionary history of the Chinese Altai, a key part of the Central Asian Orogenic Belt (CAOB). The Devonian Keketuohai mafic–ultramafic complex in the Chinese Altai is a zoned intrusion consisting of dunite, olivine gabbro, hornblende gabbro and pyroxene diorite. The pyroxene diorite gives a zircon U–Pb age of 409 ± 5 Ma. Variations in mineral assemblage and chemical composition suggest that the petrogenesis of the Keketuohai Complex was chiefly governed by fractional crystallization from a common magma chamber. Low SiO2, K2O and Na2O contents, negative covariations between P2O5, TiO2 and Mg# value suggest insignificant crustal assimilation/contamination. Thus the positive εNd(t) values (0 to + 2.7) and slight enrichments in light rare earth elements (e.g., La/YbN = 0.98–3.64) suggest that their parental magma was possibly produced by partial melting of the lithospheric mantle. Model calculation suggests that their parental magma was high-Mg (Mg# = 66) tholeiitic basaltic melt. The Keketuohai intrusion was coeval with diverse magmatism, high temperature metamorphism and hydrothermal mineralization, which support a previously proposed model that ridge subduction most likely played an important role in the tectonic evolution of the Chinese Altai.  相似文献   

16.
Mawpyut igneous suite in Jaintia Hills of Meghalaya plateau comprises differentiated suite of ultramafic–mafic rocks. The complex differs from other ultramafic–alkaline–carbonatite igneous emplacements of Shillong plateau and Mikir Hills like Jesra, Sung, Samchampi complexes, by the absence of alkaline–carbonatite rocks as major litho-units. Melanite garnet-bearing nepheline syenite, occurs as late phase minor intrusion in Mawpyut igneous complex, posseses alkaline character and shows inubiquitous relation with the host ultramafic–mafic rocks. On the other hand, this alkaline intrusive bodies of the Mawpyut igneous complex shows chemico-mineralogical resemblance with garnet-bearing nepheline syenite, ijolite litho-members of Jesra, Sung, Samchampi complexes of the region. It is interpreted that melanite garnet-bearing nepheline syenite intrusion in Mawpyut is contemporaneous with Jesra, Sung, Samchampi ultramafic–alkaline–carbonatite complexes and the host rocks of Mawpyut complex is an earlier magmatic activity possibly from a comparatively least enriched source.  相似文献   

17.
We present evidence for a thick (∼100 km) sequence of cogenetic rocks which make up the root of the Sierra Nevada batholith of California. The Sierran magmatism produced tonalitic and granodioritic magmas which reside in the Sierra Nevada upper- to mid-crust, as well as deep eclogite facies crust/upper mantle mafic–ultramafic cumulates. Samples of the mafic–ultramafic sequence are preserved as xenoliths in Miocene volcanic rocks which erupted through the central part of the batholith. We have performed Rb-Sr and Sm-Nd mineral geochronologic analyses on seven fresh, cumulate textured, olivine-free mafic–ultramafic xenoliths with large grainsize, one garnet peridotite, and one high pressure metasedimentary rock. The garnet peridotite, which equilibrated at ∼130 km beneath the batholith, yields a Miocene (10 Ma) Nd age, indicating that in this sample, the Nd isotopes were maintained in equilibrium up to the time of entrainment. All other samples equilibrated between ∼35 and 100 km beneath the batholith and yield Sm-Nd mineral ages between 80 and 120 Ma, broadly coincident with the previously established period of most voluminous batholithic magmatism in the Sierra Nevada. The Rb-Sr ages are generally consistent with the Sm-Nd ages, but are more scattered. The 87Sr/86Sr and 143Nd/144Nd intercepts of the igneous-textured xenoliths are similar to the ratios published for rocks outcroping in the central Sierra Nevada. We interpret the mafic/ultramafic xenoliths to be magmatically related to the upper- and mid-crustal granitoids as cumulates and/or restites. This more complete view of the vertical dimension in a batholith indicates that there is a large mass of mafic–ultramafic rocks at depth which complement the granitic batholiths, as predicted by mass balance calculations and experimental studies. The Sierran magmatism was a large scale process responsible for segregating a column of ∼30 km thick granitoids from at least ∼70 km of mainly olivine free mafic–ultramafic residues/cumulates. These rocks have resided under the batholith as granulite and eclogite facies rocks for at least 70 million years. The presence of this thick mafic–ultramafic keel also calls into question the existence of a “flat” (i.e., shallowly subducted) slab at Central California latitudes during Late Cretaceous–Early Cenozoic, in contrast to the southernmost Sierra Nevada and Mojave regions. Received: 27 December 1997 / Accepted: 11 June 1998  相似文献   

18.
《International Geology Review》2012,54(11):1241-1270
Origins and positions of gold fields and ores, particularly of placers, in the Yana-Kolyma area and elsewhere in the Northeast, as indicated by the morphostructural analysis and the behavior of gold in endogenic and exogenic processes. – V.P. Sokoloff.  相似文献   

19.
This study concentrates on the petrological and geochemical investigation of mafic rocks embedded within the voluminous Triassic June Complex of the central Sanandaj–Sirjan zone (Iran), which are crucial to reconstruct the geodynamics of the Neotethyan passive margin. The Triassic mafic rocks are alkaline to sub-alkaline basalts, containing 43.36–49.09 wt% SiO2, 5.19–20.61 wt% MgO and 0.66–4.59 wt% total alkalis. Based on MgO concentrations, the mafic rocks fall into two groups: cumulates (Mg# = 51.61–58.94) and isotropic basaltic liquids (Mg# = 24.54–42.66). In all samples, the chondrite-normalized REE patterns show enrichment of light REEs with variable (La/Yb)N ratios ranging from 2.48 to 9.00, which confirm their amalgamated OIB-like and E-MORB-like signatures. Enrichment in large-ion lithophile elements and depletion in high field strength elements (HFSE) relative to the primitive mantle further support this interpretation. No samples point to crustal contamination, all having undergone fractionation of olivine + clinopyroxene + plagioclase. Nevertheless, elemental data suggest that the substantial variations in (La/Sm)PM and Zr/Nb ratios can be explained by variable degrees of partial melting rather than fractional crystallization from a common parental magma. The high (Nb/Yb)PM ratio in the alkaline mafic rocks points to the mixing of magmas from enriched and depleted mantle sources. Abundant OIB alkaline basalts and rare E-MORB appear to be linked to the drifting stage on the northern passive margin of the Neotethys Ocean.  相似文献   

20.
Mafic–ultramafic rocks in structurally dismembered layered intrusions comprise approximately 40% by volume of greenstones in the Murchison Domain of the Youanmi Terrane, Yilgarn Craton. Mafic–ultramafic rocks in the Murchison Domain may be divided into five components: (i) the ~2810 Ma Meeline Suite, which includes the large Windimurra Igneous Complex; (ii) the 2800 ± 6 Ma Boodanoo Suite, which includes the Narndee Igneous Complex; (iii) the 2792 ± 5 Ma Little Gap Suite; (iv) the ~2750 Ma Gnanagooragoo Igneous Complex; and (v) the 2735–2710 Ma Yalgowra Suite of layered gabbroic sills. The intrusions are typically layered, tabular bodies of gabbroic rock with ultramafic basal units which, in places, are more than 6 km thick and up to 2500 km2 in areal extent. However, these are minimum dimensions as the intrusions have been dismembered by younger deformation. In the Windimurra and Narndee Igneous Complexes, discordant features and geochemical fractionation trends indicate multiple pulses of magma. These pulses produced several megacyclic units, each ~200 m thick. The suites are anhydrous except for the Boodanoo Suite, which contains a large volume of hornblende gabbro. They also host significant vanadium mineralisation, and at least minor Ni–Cu–PGE mineralisation. Collectively, the areal distribution, thickness and volume of mafic–ultramafic magma in these complexes is similar to that in the 2.06 Ga Bushveld Igneous Complex, and represents a major addition of mantle-derived magma to Murchison Domain crust over a 100 Ma period. All suites are demonstrably contemporaneous with packages of high-Mg tholeiitic lavas and/or felsic volcanic rocks in greenstone belts. The distribution, ages and compositions of the earlier mafic–ultramafic rocks are most consistent with genesis in a mantle plume setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号