首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
Lake George contains the longest continuous sedimentary record of any Australian lake basin, but previous age models are equivocal, particularly for the oldest (pre-Quaternary) part of the record. We have applied a combination of cosmogenic nuclide burial dating, magnetostratigraphy and biostratigraphy to determine the age of the basal (fluvial) unit in the basin, the Gearys Gap Formation. Within the differing resolutions achievable by the three dating techniques, our results show that (i) the Gearys Gap Formation, began accumulating at ca 4 Ma, in the early Pliocene (Zanclean), and (ii) deposition had ceased by ca 3 Ma, in the mid late Pliocene (Piacenzian). Whether the same age control provides an early Pliocene (Zanclean) age for the formation of the lake basin is uncertain. During the Piacenzian, the vegetation at the core site was a wetland community dominated by members of the coral fern family Gleicheniaceae, while the surrounding dryland vegetation was a mix of sclerophyll and temperate rainforest communities, with the latter including trees and shrubs now endemic to New Guinea–New Caledonia and Tasmania. Mean annual rainfall and temperatures are inferred to have been ~2000–3000 mm, although probably not uniformly distributed throughout the year, and within the mesotherm range (>14°C <20°C), respectively. Unresolved issues are: (1) Does the basal gravel unit predate uplift of the Lake George Range and therefore provide evidence that one of the proposed paleo-spillways of Lake George, that above Geary's Gap, has been elevated up to 100–200 m by neotectonic activity over the past 4 million years? (2) Did a shallow to deepwater lake exist elsewhere in the lake basin during the Pliocene?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号