首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Three C26 tetracyclic terpanes were detected in the saturated hydrocarbon fractions of oil sand samples especially rich in bicadinanes W, T and R from the Oligocene Huizhou Formation in the XW-1 well in the Haitoubei–Maichen Sag of the Beibuwan Basin. Their mass spectra show molecular ions of the three tetracyclic terpanes at m/z 358, and their key fragment ions at m/z 343 (M+-15) and m/z 315 due to loss of an isopropyl group. These characteristics are very similar to that of C30 ciscistrans (W) and transtranstrans (T) bicadinanes. In addition, the relative abundances of the C26 tetracyclic terpanes show an excellent positive correlation with the C30 bicadinanes W and T in 27 oil sand samples. Therefore, the three C26 tetracyclic terpanes are tentatively identified as degraded bicadinanes, which like bicadinanes, may indicate input from dammar resins and can be used to discriminate the origin of crude oils.  相似文献   

3.
The molecular composition of Carboniferous–Permian coals in the maturity range from 0.66 to 1.63% vitrinite reflectance has been analysed using organic geochemistry to investigate the factors influencing the biomarker compositions of humic coals. The Carboniferous–Permian coal has a variable organofacies and is mainly humic-prone. There is a significant difference in the distribution of saturated and aromatic hydrocarbons in these coals, which can be divided into three types. The Group A coals have biomarker compositions typical of humic coal, characterised by high Pr/Ph ratios, a lower abundance of tricyclic terpanes with a decreasing distribution from C19 tricyclic terpane to C24 tricyclic terpane and a high number of terrigenous-related biomarkers, such as C24 tetracyclic terpane and C29 steranes. The biomarker composition of Group B coals, which were deposited in a suboxic environment, have a higher abundance of rearranged hopanes than observed in Group A coals. In contrast, in Group C coals, the Pr/Ph ratio is less than 1.0, and the sterane and terpane distributions are very different from those in groups A and B. Group C coals generally have abnormally abundant tricyclic terpanes with a normal distribution maximising at the C23 peak; C27 steranes predominates in the m/z 217 mass fragmentograms. The relationships between biomarker compositions, thermal maturity, Pr/Ph ratios and depositional environments, indicate that the biomarker compositions of Carboniferous–Permian coals in Ordos Basin are mainly related to their depositional environment. This leads to the conclusion that the biomarker compositions of groups A and B coals collected from Shanxi and Taiyuan formations in the northern Ordos Basin are mainly related to their marine–terrigenous transitional environment, whereas the biomarker compositions for the Group C coals from Carboniferous strata and Shanxi Formation in the eastern Ordos Basin are associated with marine incursions.  相似文献   

4.
5.
The Middle–Upper Jurassic Shishugou Group in the central Junggar Basin was deposited in a lacustrine shallow-water delta-meandering river sedimentary system. The integrated petrological (thin-section, granularity and heavy minerals analysis), geochemical (trace elements and rare earth elements analysis) and geophysical analyses (well logging and 3D-seismic slice analysis) are used to determine redox conditions, paleoclimate, paleosalinity, provenance and sedimentary evolution extant during deposition of the Shishugou Group: (1) the redox condition changed from a weak anoxic/oxic condition to a strongly oxic condition; (2) the climate changed from humid to hot and arid in the Middle–Late Jurassic, which may have resulted in the lake water having slight–medium salinity; (3) the relatively distant northeastern provenance from the Kelameili Mountain is the most important sediment source; and (4) the south provenance from the Tianshan Mountains (Bogeda Shan) decreases with the development of the sag piedmont, which supplies sediments to the southeastern Fukang Sag. The sedimentary environment changed from a lacustrine shallow-water delta to a meandering river during the deposition of the Shishugou Group. The shallow-water meandering river delta was characterised by pervasive mudstones with oxide colours, thin single-layer sand bodies (1–15?m, mean 3?m), relatively low sand–strata ratios (0.2–0.5) and the absence of progradation, mouth bars and reverse rhythms. The gentle slope is the primary condition necessary for the formation of a shallow-water meandering river delta. Paleo-environment (climate change from warm-humid to hot-arid) and the stable and remote Kelameili Mountain provenance played critical roles in the development and evolution of lacustrine–delta-meandering river sedimentary systems.  相似文献   

6.
The Tarim Basin is located in northwestern China and is the biggest basin in China with huge oil and gas resources. Especially the Lower to Middle Cambrian and Middle to Upper Ordovician possess the major marine source rocks in the Tarim Basin and have large shale gas resource potential. The Cambrian–Ordovician shales were mainly deposited in basin–slope facies with thicknesses between 30–180 m. For shales buried shallower than 4500 m, there is high organic matter abundance with TOC (total organic carbon) mainly between 1.0% and 6.0%, favorable organic matter of Type I and Type II, and high thermal maturity with RoE as 1.3%–2.75%. The mineral composition of these Cambrian–Ordovician shale samples is mainly quartz and carbonate minerals while the clay minerals content is mostly lower than 30%, because these samples include siliceous and calcareous shale and marlstone. The Cambrian and Ordovician shales are compacted with mean porosity of 4% and 3%, permeability of 0.0003×10?3–0.09×10?3 μm2 and 0.0002×10?3–0.11×10?3 μm2, and density of 2.30 g/m3 and 2.55 g/m3, respectively. The pores in the shale samples show good connectivity and are mainly mesopore in size. Different genetic types of pores can be observed such as intercrystal, intergranular, dissolved, organic matter and shrinkage joint. The reservoir bed properties are controlled by mineral composition and diagenesis. The maximum adsorption amount to methane of these shales is 1.15–7.36 cm3/g, with main affecting factors being organic matter abundance, porosity and thermal maturity. The accumulation characteristics of natural gas within these shales are jointly controlled by sedimentation, diagenesis, hydrocarbon generation conditions?, reservoir bed properties and the occurrence process of natural gas. The natural gas underwent short-distance migration and accumulation, in-place accumulation in the early stage, and adjustment and modification in the later stage. Finally, the Yulin (well Y1) and Tazhong (well T1) areas are identified as the targets for shale gas exploration in the Tarim Basin.  相似文献   

7.
《Gondwana Research》2001,4(3):421-426
The Rio Bonito Formation in southern Paraná basin contains a set of tonsteins interbedded with coal-seams. These tonsteins are composed mainly of kaolinite with zircon, apatite and beta-quartz paramorphs as accessory minerals, and were interpreted as volcanic ashes deposited by ash falls over pits protected by barrier islands in a barrier-lagoon system. A U-Pb dating of zircons in the tonstein A, which furnished an age of 267.1 ± 3.4 Ma (Early Permian) confirming previous age-dates based on palynology and correlating them with one of the main periods of volcanic activity in the Gondwana.The source of the pyroclastic material was attributed to the early Permian Choiyoi magmatic arc in Argentina, developed during the Sanrafaelic orogeny, and with a main peak of volcanic activity between 260 and 272 Ma.  相似文献   

8.
The present research is an attempt to assess the Barakar Formation of the Raniganj Gondwana Basin, India, in the frame of fluvio-marine (estuarine) depositional systems using sequence stratigraphic elements. Analysis of predominant facies associations signify deposition in three sub-environments: (i) a river-dominated bay-head delta zone in the inner estuary, with transition from braided fluvial channels (FA-B1) to tide-affected meandering fluvial channels and flood plains (FA-B2) in the basal part of the succession; (ii) a mixed energy central basin zone, which consists of transitional fluvio-tidal channels (FA-B2), tidal flats, associated with tidal channels and bars (FA-B3) in the middle-upper part of the succession; and (iii) a wave-dominated outer estuary (coastal) zone (FA-B4 with FA-B3) in the upper part of the succession. Stacked progradational (P1, P2)–retrogradational (R1, R2) successions attest to one major base level fluctuation, leading to distinct transgressive–regressive (T–R) cycles with development of initial falling stage systems tract (FSST), followed by lowstand systems tract (LST) and successive transgressive systems tracts (TST-1 and TST-2). Shift in the depositional regime from regressive to transgressive estuarine system in the early Permian Barakar Formation is attributed to change in accommodation space caused by mutual interactions of (i) base level fluctuations in response to climatic amelioration and (ii) basinal tectonisms (exhumation/sagging) related to post-glacial isostatic adjustments in the riftogenic Gondwana basins.  相似文献   

9.
This work restored the erosion thickness of the top surface of each Cretaceous formations penetrated by the typical well in the Hari sag, and simulated the subsidence burial history of this well with software BasinMod. It is firstly pointed out that the tectonic subsidence evolution of the Hari sag since the Cretaceous can be divided into four phases: initial subsidence phase, rapid subsidence phase,uplift and erosion phase, and stable slow subsidence phase. A detailed reconstruction of the tectonothermal evolution and hydrocarbon generation histories of typical well was undertaken using the EASY R_0% model, which is constrained by vitrinite reflectance(R_0) and homogenization temperatures of fluid inclusions. In the rapid subsidence phase, the peak period of hydrocarbon generation was reached at c.a.105.59 Ma with the increasing thermal evolution degree. A concomitant rapid increase in paleotemperatures occurred and reached a maximum geothermal gradient of about 43-45℃/km. The main hydrocarbon generation period ensued around 105.59-80.00 Ma and the greatest buried depth of the Hari sag was reached at c.a. 80.00 Ma, when the maximum paleo-temperature was over 180℃.Subsequently, the sag entered an uplift and erosion phase followed by a stable slow subsidence phase during which the temperature gradient, thermal evolution, and hydrocarbon generation decreased gradually. The hydrocarbon accumulation period was discussed based on homogenization temperatures of inclusions and it is believed that two periods of rapid hydrocarbon accumulation events occurred during the Cretaceous rapid subsidence phase. The first accumulation period observed in the Bayingebi Formation(K_1 b) occurred primarily around 105.59-103.50 Ma with temperatures of 125-150℃. The second accumulation period observed in the Suhongtu Formation(K_1 s) occurred primarily around84.00-80.00 Ma with temperatures of 120-130℃. The second is the major accumulation period, and the accumulation mainly occurred in the Late Cretaceous. The hydrocarbon accumulation process was comprehensively controlled by tectono-thermal evolution and hydrocarbon generation history. During the rapid subsidence phase, the paleo temperature and geothermal gradient increased rapidly and resulted in increasing thermal evolution extending into the peak period of hydrocarbon generation,which is the key reason for hydrocarbon filling and accumulation.  相似文献   

10.
Sequence stratigraphical analysis was applied to the Upper Carboniferous–Lower Permian sedimentary succession of the northeastern Ordos Basin, north China based on data acquired from ten entire logging curves and eight outcrops. The facies framework of the lithostratigraphical unit, the Taiyuan Formation comprises seven facies in two facies associations, varying from fluvio-delta to shelf-barrier islands. The facies are presented within a chronostratigraphical framework, linked by systems tract, which in turn are limited by flooding surfaces and sequence boundaries. Six third-order depositional sequences are recognised, bounded by six type 2 unconformities. An upwards-shallowing epicontinental sea sedimentary model is created, which consists of a sandstone, coal seam and carbonate succession.  相似文献   

11.
Measured lithostratigraphic sections of the classic Permian–Triassic non-marine transitional sequences covering the upper Quanzijie, Wutonggou, Guodikeng and lower Jiucaiyuan Formations at Dalongkou and Lucaogou, Xinjiang Province, China are presented. These measured sections form the framework and reference sections for a range of multi-disciplinary studies of the P–T transition in this large ancient lake basin, including palynostratigraphy, vertebrate biostratigraphy, chemostratigraphy and magnetostratigraphy. The 121 m thick Wutonggou Formation at Dalongkou includes 12 sandstone units ranging in thickness from 0.5 to 10.5 m that represent cyclical coarse terrigenous input to the lake basin during the Late Permian. The rhythmically-bedded, mudstone-dominated Guodikeng Formation is 197 m and 209 m thick on the north and south limbs of the Dalongkou anticline, respectively, and 129 m thick at Lucaogou. Based on limited palynological data, the Permian–Triassic boundary was previously placed approximately 50 m below the top of this formation at Dalongkou. This boundary does not coincide with any mappable lithologic unit, such as the basal sandstones of the overlying Jiucaiyuan Formation, assigned to the Early Triassic. The presence of multiple organic δ13C-isotope excursions, mutant pollen, and multiple algal and conchostracan blooms in this formation, together with Late Permian palynomorphs, suggests that the Guodikeng Formation records multiple climatic perturbation signals representing environmental stress during the late Permian mass extinction interval. The overlap between the vertebrates Dicynodon and Lystrosaurus in the upper part of this formation, and the occurrence of late Permian spores and the latest Permian to earliest Triassic megaspore Otynisporites eotriassicus is consistent with a latest Permian age for at least part of the Guodikeng Formation. Palynostratigrahic placement of the Permian–Triassic boundary in the Junggar Basin remains problematic because key miospore taxa, such as Aratrisporites spp. are not present. Palynomorphs from the Guodikeng are assigned to two assemblages; the youngest, from the upper 100 m of the formation (and the overlying Jiucaiyuan Formation), contains both typical Permian elements and distinctive taxa that elsewhere are known from the Early Triassic of Canada, Greenland, Norway, and Russia. The latter include spores assigned to Pechorosporites disertus, Lundbladispora foveota, Naumovaspora striata, Decussatisporites mulstrigatus and Leptolepidites jonkerii. While the presence of Devonian and Carboniferous spores and Early Permian pollen demonstrate reworking is occurring in the Guodikeng assemblages, the sometimes common occurrence of Scutasporites sp. cf. Scutasporites unicus, and other pollen, suggests that the Late Permian elements are in place, and that the upper assemblage derives from a genuine transitional flora of Early Triassic aspect. In the Junggar Basin, biostratigraphic data and magnetostratigraphic data indicate that the Permian–Triassic boundary (GSSP Level) is in the middle to upper Guodikeng Formation and perhaps as high as the formational contact with the overlying Jiucaiyuan Formation.  相似文献   

12.
The Middle–Late Jurassic transition period is a critical period for the evolution of terrestrial vertebrates, but the global fossil record from this time is relatively poor. The Shishugou Fauna of this period has recently produced significant fossil remains of dinosaurs and other vertebrate groups, some representing the earliest known members of several dinosaurian groups and other vertebrate groups and some representing the best-known specimens of their group. These discoveries are significant for our understanding of the origin and evolution of several vertebrate lineages. Radiometric dating indicates that the fauna is aged approximately 159–164 Ma. Comparisons with other similarly-aged terrestrial faunas such as Shaximiao and Yanliao show both taxonomic similarities and differences between these faunas and indicate that the Junggar deposits might have preserved the most complete vertebrate fossil record for a Middle–Late Jurassic Laurasian terrestrial fauna.  相似文献   

13.
Abstract: This paper aims to gain insight into Laoyemiao (LYM) tectonic features and utilizes the tectonic–hydrocarbon accumulation model by integrated analysis tectonic controls on suitable reservoirs, trap styles, and hydrocarbon migration. On the basis of 3-D seismic data interpretation and the Xi’nanzhuang (XNZ) Fault geometry analysis, it has been assessed that the LYM tectonics is essentially a transverse anticline produced by flexure of the XNZ Fault surface and superimposed by Neocene north-east-trending strike-slip faults. Transverse anticline is found to exert controls both on major sediment transportation pathways and sedimentary facies distribution. Fan-delta plains that accumulated on the anticline crest near the XNZ Fault scrap and fan-delta front on the anticline front and the upper part of both limbs slumps on synclines and the Linque subsag. In combination with the reservoir properties, suitable reservoirs are predicted in the subfacies of subaqueous distributary channel and mouth bar deposited on the anticline crest. The LYM-faulted anticline accounts for the following trap groups: faulted-block and anticline-dominated trap, fault-dominated traps, and combined and stratigraphic traps. Evidence from biomarkers of crude oil and hydrocarbon-filling period simultaneous, or a little later to the strike-slip fault activity, reveal that the strike-slip faults penetrating into the deep source rock, by connecting with shallow reservoirs, provide the major hydrocarbon migration pathways.  相似文献   

14.
The Shishugou Group, which consists of Middle Jurassic Toutunhe Formation and Upper Jurassic Qigu Formation, is currently an important hydrocarbon exploration target in the Fukang Sag of Junggar Basin, China. The Shishugou Group sandstones experienced a complex diagenetic history with deep burial (3600–5800 m) to develop low–ultralow porosity and permeability reservoir with some high-quality reservoirs found in the tight sandstones owing to the reservoir heterogeneity. This integrated petrographic and geochemical study aims to unravel the origin and alteration of calcite cement in the Shishugou Group sandstones and predict fluid–rock interaction and porosity evolution. The Shishugou Group sandstones (Q43.8F7.4R48.8) have a dominant calcite cement with strong heterogeneity forming in two generations: poikilotopic, pore-filling masses that formed at an early diagenetic stage and isolated rhombs or partial grain replacements that formed at a late stage. The Shishugou Group, which are lacustrine sediments formed in low–medium salinity lake water in a semiarid–arid climatic environment, provided the alkaline diagenetic environment needed for precipitation of chlorite and early calcite cements in early diagenesis. The Ca2+ of the pore-filling calcite cements was sourced from weathering or dissolution of volcanic clasts in the sediment source or during transport in under oxidising conditions. The δ18OV-PDB and δ13CV-PDB values of calcite were significantly controlled by distance from the top unconformity and underlying coal-bearing stratum with carbon sourced from atmospheric CO2, and organic matter. The early carbonate cement inhibited burial compaction producing intergranular pore spaces with enhanced reservoir properties by late dissolution under acidic conditions. Anhydrite cement reflects reaction of organic acid and hydrocarbon with the sandstones and is associated with fluid migration pathways. The fluid–rock interactions and porosity evolution of the tight deep sandstones produced secondary pores that filled with hydrocarbon charge that forms this deep high-quality reservoir.  相似文献   

15.
The hydrodynamic processes and impacts exerted by river–groundwater transformation need to be studied at regional and catchment scale, especially with respect to diverse geology and lithology. This work adopted an integrated method to study four typical modes (characterized primarily by lithology, flow subsystems, and gaining/losing river status) and the associated hydrodynamic processes and ecological impacts in the southern part of Junggar Basin, China. River–groundwater transformation occurs one to four times along the basin route. For mode classification, such transformation occurs: once or twice, controlled by lithological factors (mode 1); twice, impacted by geomorphic features and lithological structures (mode 2); and three or four times, controlled by both geological and lithological structures (modes 3 and 4). Results also suggest: (1) there exist local and regional groundwater flow subsystems at ~400 m depth, which form a multistage nested groundwater flow system. The groundwater flow velocities are 0.1–1.0 and?<0.1 m/day for each of two subsystems; (2) the primary groundwater hydro-chemical type takes on apparent horizontal and vertical zoning characteristics, and the TDS of the groundwater evidently increases along the direction of groundwater flow, driven by hydrodynamic processes; (3) the streams, wetland and terminal lakes are the end-points of the local and regional groundwater flow systems. This work indicates that not only are groundwater and river water derived from the same source, but also hydrodynamic and hydro-chemical processes and ecological effects, as a whole in arid areas, are controlled by stream–groundwater transformation.  相似文献   

16.
Well Zheng-1 is located in the combined area of the central uplift and the north Tianshan piedmont depression in the Junggar Basin. Two oil-bearing beds are recognized at 4788–4797 m of the Lower Cretaceous Tugulu Formation (K1tg) and 4808.5–4812.5 m of the Lower Jurassic Sangonghe Formation (J1s). The geochemical characteristics of family composition, carbon isotopic composition, saturated hydrocarbons, sterane and terpane biomarkers and carotane of two crude oils are described in this paper. The results show that the geochemical characteristics of the two crude oils are basically similar to each other, indicating they were all derived mainly from the high mature, brine, algae-rich lake facies sediments. Oil-source correlation revealed that crude oils of the two beds were derived mainly from the source rocks of Permian and mixed by the oil derived from the source rocks of Jurassic and Triassic. This is consistent with the geological background with several sets of source rocks in the area studied.  相似文献   

17.
Based on the compositions and distributions of biomarkers in thirty-five representative oil samples, oils from the Tarim Basin of northwestern China are mainly divided into two oil families. One oil family contains relatively low amounts of C15-C20 isoprenoid hydrocarbons and shows pristane predominance with Pr/Ph ratios ranging from 1.50 to 3.00. The GC/MS analytical data of these oils show the occurrence of abundant hopanes, and low concentrations of steranes and tricyclic terpanes with hopanes/steranes ratios from 6.25 to 12.24 and tricyclic terpanes/hopanes ratios from 0.03 to 0.24. These oils contain low drimane relative to homodrimane (C15/C16 < 1.0) and abundant rearranged bicyclanes in bicyclic sesquiterpanes. They are dominated by low carbon number (C19-C21) compounds in the tricyclic terpanes, and are rich in rearranged hopanes, C29Ts and an unknown C30 compound in pentacyclic triterpanes. These geochemical characteristics suggest that the oils were generated mainly from terrigenous organic matter. The other oil family shows remarkably different biomarker compositions and distributions. The oils revealed Pr/Ph ratios of about 1.0, high drimane/homodrimane ratios (>1.0), low hopanes/steranes ratios (0.65–2.50), high tricyclic terpanes/hopanes ratios (0.30–2.00) and a dominant peak at C23 in tricyclic tepanes, suggesting a marine organic origin. Oil-source rock correlation indicates that these two oil families seem to have been derived from Mesozoic Jurassic-Triassic terrestrial source rocks (shales and coal seams) and Lower Paleozoic Ordovician-Cambrian marine source rocks, respectively.  相似文献   

18.
19.
In the south of the Ordos Basin, the oil source of the Upper Triassic Yanchang Formation is confused all the time, which affects further exploration. In this study, oil sources from the oil layers of Ch6, Ch8 and Ch9 are all analyzed and confirmed. Through their carbon isotope value and biomarkers, characteristics of crude oils from the Yanchang Formation are analyzed. Then, the oil–source relation is discussed, with the source rocks’ features. Finally, the oil–source relation is calculated through cluster analysis. It is believed that the oils from the Yanchang Formation deposit in a similar redox environment, with weak oxidation–weak reduction, and have all entered maturity stage. Ch9 crude oil is more mature than crude oils from Ch6 and Ch8, and has more advanced plants and fewer algae. Gas chromatography (GC) and gas chromatography–mass spectrometry (GC–MS) analysis show that crude oils from Ch6 and Ch8 may come from Ch7, and Ch9 crude oil may not. Cluster analysis displays that crude oils from Ch6 and Ch8 have closer squared Euclidean distance with Ch7 source rocks than Ch9 crude oil does, indicating crude oils from Ch6 and Ch8 stem from Ch7 source rocks. And Ch9 crude oil has rather close squared Euclidean distance with Ch9 source rocks, illustrating Ch9 crude oil may be from Ch9 source rocks. This research may provide the theoretical basis for the next exploration deploy in the south of Ordos Basin.  相似文献   

20.
The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions, acting as important unconventional hydrocarbon source rocks. However, the mechanism of organic matter (OM) enrichment throughout this period is still controversial. Based on geochemical data, the marine redox conditions, paleogeographic and hydrographic environment, primary productivity, volcanism, and terrigenous input during the Late Permian in the Lower Yangtze region have been studied from the Putaoling section, Chaohu, to provide new insights into OM accumulation. Five Phases are distinguished based on the TOC and environmental variations. In Phase I, anoxic conditions driven by water restriction enhanced OM preservation. In Phase II, euxinic and cycling hydrological environments were the two most substantial controlling factors for the massive OM deposition. During Phase III, intensified terrestrial input potentially diluted the OM in sediment and the presence of oxygen in bottom water weakened the preservation condition. Phase IV was characterized by a relatively higher abundance of mercury (Hg) and TOC (peak at 16.98 wt%), indicating that enhanced volcanism potentially stimulated higher productivity and a euxinic environment. In Phase V, extremely lean OM was preserved as a result of terrestrial dilutions and decreasing primary productivity. Phases I, II and IV are characterized as the most prominent OM-rich zones due to the effective interactions of the controlling factors, namely paleogeographic, hydrographic environment, volcanism, and redox conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号