首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
I consider the range of Hill stability in the restricted circular problem of three bodies when the larger one of the two principal bodies has a finite oblateness. I show that the range r satisfies the equation
r = 1? μCcr ? 3μ + μr2 ? v (1? μ)r?3 ±(2 + 3v)(1 ? μ 1 + 3vr2r,
where μ is the mass parameter and v is an oblateness parameter. This result is applied to the solar system, the Earth-Moon system and binary star systems. It is then shown that, all the inner planets of the solar system, the great majority of asteroids and some short-period comets are Hill stable, that direct artificial satellites of the Earth are more stable than retrograde ones, and that contact binaries possess cores between which no mass exchange takes place.  相似文献   

2.
The potential ? of the electric field at high latitudes has been obtained by solving numerically the second order differential equation in spherical coordinates:
?12(rσH?θ)θ+1rH?λ)λ+1rP?λ)θ?(σP?θ)λ=1r(rψθ)θ+1r2ψλλ
, where θ is colatitude, λ is longitude, σH and σP are the height-integrated Hall and Perdersen ionospheric conductivities, r = sinθ, and ψ is the current function. The boundary condition is ? = 0 on the geomagnetic parallel θ = 34°. Values of ψ are determined from geomagnetic field variations at the Earth's surface from geomagnetic field variations at the Earth's surface for various conditions in interplanetary space. σP and σH are taken to vary with season, local time, tilt of the geomagnetic dipole axis (UT), and intensity of corpuscular precipitation (the model proposed by Wallis and Budzinski, 1981). The model distributions of ?M and EM = -▽?m so obtained are compared with observational results. The feasibility has been demonstrated of interpreting the statistical results and individual measurement data in terms of a unified dynamic model of ionospheric electric fields. The model makes allowance for the changes of electromagnetic “weather” in interplanetary space.  相似文献   

3.
A theory is presented for charged-particle collection by a cylindrical conducting object, such as a spacecraft or an electrostatic probe, which is moving transversely through a collisionless plasma, such as those in the upper atmosphere and space. The calculation is approximate, using symmetric potential profiles which are exact for the infinite-cylinder stationary case. Theoretical current predictions are presented for ratios of collector potential to electron thermal energy c/kTe from 0 to ?25, for ion-to-electron temperature ratios Ti/Tc = 1 and 0.5, ratio of collector radius to electron Debye length rc/λD from 0 to 100, and ratio of flow speed to ion thermal speed Si = U/(2kTi/mi12) from 0 to 10. Comparisons with existing exact calculations by other authors show that none of these fulfil all of the requirements for nontrivial comparison. Appropriate parameter ranges for future exact calculations are thereby suggested. These are as follows: (a) rc/λD should be large enough that the collector not be in or near orbit-limited conditions; (b) the ratio Si2/¦χc, i¦ of ion directed energy to potential energy change in the sheath, should be close to unity or if
Si2/¦χc,i¦? 1, then Si ? 1
.  相似文献   

4.
We have collected data on 241 galaxies from 13 sources and made a statistical analysis after reduction to a uniform system. We found that the Hubble sequence is one of increasing MHMT and MHLB, these mean values increasing monotonically from .0016 and .024 at E to .084 and .83 at Im, but the dispersion is large.The HI content in barred spiral is greater than that in ordinary spirals, and this is consistent with their statistics of angular momentum and colour.The HI content is related to colour; it is greater in bluer systems. The large dispersion suggests that it also depends on some other factors, but these are smoothed out when averaged over each type, resulting in a linear relation between 〈log(MMMT and 〈(B ? VOT)〉. Unlike the colour-colour diagram, the large dispersion on the log (MHLB) ? (B ? V0T) is not related to peculiar galaxies.  相似文献   

5.
Habitable zones about main sequence stars   总被引:1,自引:0,他引:1  
Michael H. Hart 《Icarus》1979,37(1):351-357
Calculations show that a main sequence star which is less massive than the Sun has a continuously habitable zone about it which is not only closer in than the corresponding zone about the Sun, but is also relatively narrower. Let L(t) represent the luminosity after t billion years of a main sequence star of mass M, and let rinner and router represent the boundaries of the continuously habitable zone about such a star—that is, the zone in which an Earthlike planet will undergo neither a runaway greenhouse effect in the early stages of its history nor runaway glaciation after it develops an oxidizing atmosphere. Then our computer results indicate that routerrinner is roughly proportional to [L(3.5)L(1.0)]12. This ratio is smaller for stars less massive than the Sun (because they evolve more slowly), and the width of the continuously habitable zone about a main sequence star is therefore a strong function of the initial stellar mass. Our calculations show that rinner = router for M~0.83M? (i.e., K1 stars), and it therefore appears that there is no continuously habitable zone about most K stars, nor any about M stars.  相似文献   

6.
Some aspects of the interaction between metal bodies and streaming rarefied plasmas were studied in a newly constructed Plasma Wind Tunnel as part of an attempt to investigate (via simulation) phenomena relevant to the spacecraft/space plasma interaction. Detailed near-wake ion current profiles for both spherical and cylindrical bodies at different body potentials (φS) and at different plasma flow parameters are presented. Various features of the profiles can be correlated, at least qualitatively, with both plasma and body characteristics. For example, the width of the wake zone appears proportional to the Debye length (λD) and depends on the potential of the target body although it appears to be relatively insensitive to the ratio S = Vflow/(2kTeM+)12. The amplitude of the ion current peak(s) also appears proportional to λD while, for fixed φS, the location of the peak is directly related to S and possibly dependent upon body geometry. The general importance of body geometry is qualitatively demonstrated. In addition, a discussion of the relevance of the above studies to previous in situ data obtained from the Ariel I and Gemini/Agena missions is given.  相似文献   

7.
Numerical solutions of the Fokker-Planck equation governing the transport of solar protons are obtained using the Crank-Nicholson technique with the diffusion coefficient represented by Kr=K0rb where r is radial distance from the Sun and b can take on positive or negative values. As b ranges from +1 to ?3, the time to the observation of peak flux decreases by a factor of 5 for 1 MeV protons when VK0 = 3 AUb?1 where V is the solar wind speed. The time to peak flux is found to be very insensitive to assumptions concerning the solar and outer scattering boundary conditions and the presence of exponential time decay in the flux does not depend on the existence of an outer boundary. At VK0? 15 AUb?1, 1 MeV particles come from the Sun by an almost entirely convective process and suffer large adiabatic deceleration at b?0 but for b=+1, large Fermi acceleration is possible at all reasonable VK0 values. Implications of this result for the calculation and measurement of particle diffusion coefficients is discussed. At b?0, the pure diffusion approximation to transport overestimates by a factor 2 or more the time to peak flux but as b becomes more negative, the additional effects of convection and energy loss become less important.  相似文献   

8.
The 1978 photoeletric observations of the late type close binary RZ Dra were reanalyzed with the Wilson and Devinney approach. Photometric parameters were determined (in Tab. 1.). The system is found to be semi-detached where the less massive component fills its Roche surface, whereas the other component almost does so. The configuration of the system is shown in Fig. 1. The absolute dimensions of the system are found to be M1 = 0.61M⊙, M2 = 0.41MR1 = 1.15R,?andR2 = 0.96R. Both components appear to be overluminous and oversized for their masses and spectral types. Its evolutionary stage is also discussed. The variability in the brightness of the primary mlnimum(Fig. 4) indicates mass loss from the vicinity of L2, which would be mainly responsible for the long-term decrease in its period.  相似文献   

9.
An analysis of Titan's solar phase variation as a function of wavelength together with the continuum geometric albedo makes it possible to set limits on the real part of the refractive index and on the average particle size of the aerosol component of Titan's atmosphere: 1.5 ?nr< 2.0 and 0.20 μm <r?0.35 μm. If nris known r can be determined to within a few percent, and varies inversely with nr. Using this information in a two-layer model of a methane-aerosol atmosphere and comparing the result with Titan's visible and near-infrared methane spectrum leads to the conclusion that the top layer of Titan's atmosphere contains 0.01 km atm of methane and 2.5 extinction optical depths of aerosol, while the data are consistent with a bottom layer containing 2.2 km atm of methane and about 7.5 aerosol optical depths for nr = 1.7, r = 0.25 μm.  相似文献   

10.
In the recent estimation by Maltsev and Lyatsky (1984) of the group velocity of surface waves on the inner boundary of the plasma sheet, the effect of the curvature of the field lines of the ambient magnetic field of the Earth on the spectrum has been assessed. The authors have not accounted for the fact, however, that the group velocity of the compressional surface magnetohydrodynamic waves itself is nonzero transverse to the magnetic field—a characteristic which has been omitted in the spectrum of Chen and Hasegawa (1974), being used by Maltsev and Lyatsky.This characteristic of compressional surface MHD waves is inherent for the spectrum ω = (k6k)VA(k26 + 2k2)12, obtained by Nenovski (1978) in the cold plasma limit VA ? VS(VA is Alfvén velocity, and VS, sound velocity). A comment has been made on the restrictions, proceeding from the approximation, used by Maltsev and Lyatsky. The estimation of the velocities for movements of auroral riometer absorption bays have been reviewed.  相似文献   

11.
12.
This paper presents the results of a laboratory study of the limb darkening, near opposition, of the carbonaceous chondrites Orgueil (C1), Murchison (C2), and Allende (C3), the ordinary chondrite Bruderheim (L6), and a stainless-steel powder. These materials represent possible analogs for the surface materials of C, S, and M asteroids respectively. At low phase angles, the limb-darkening behavior of all materials studied is well represented by Minnaert's law. For carbonaceous chondrites, the Minnaert limb-darkening parameter k is nearly independent of wavelength for wavelengths between 0.4 and 0.9 μm, with a typical value of k = 0.55. The reflectance parameter, B0, varies from 0.045 to 0.065 over the same range of wavelengths. Both k and B0 are larger for the stainless-steel powder and the ordinary chondrite, due to the increased importance of multiple scattering in the surface layer. If no limb darkening were present, k would equal 12 and the geometric albedo (p) of an asteroid would equal the normal reflectance (rn ? B0) of its surface material. For bodies whose surface material is appreciably limb darkened, the geometric albedo measured at the telescope will be lower than the true normal reflectance of surface material; we estimate that for S and M objects rn ? 1.05 p. In the case of nonspherical asteroids, because the distribution of incidence and emission angles varies as the asteroid rotates, the geometric albedo must change with aspect. If limb darkening is not considered when interpreting asteroid light curves, the values of b/a derived will be too extreme. This effect is probably too small to be observed for C asteroids, because of their intrinsically low reflectances, but could be appreciable for S and M objects.  相似文献   

13.
A model is proposed in which a mixture of hot solar wind and cold atmospheric plasma flowing in the dayside equatorial boundary layer towards the dawn-dusk plane generates hydromagnetic waves near the frequency ω = ωBi¦1 ? T¦T¦ where ωBi is the ion gyrofrequency and T, T are the temperatures of the solar wind plasma, parallel and perpendicular respectively to the magnetic field B. The model accounts for the properties of IPRP events, i.e. intervals of geomagnetic pulsations of periods rising on average from about 2 s to about 7 s over an interval of about 5 min. The diagnostic potential of this phenomenon for study of the boundary layer is indicated.  相似文献   

14.
Six times of maxima of the ultrashort-period cepheid variable EH Librae were measured in 1980 May to June and in 1981 January, with a three-channel photocounting high-speed photoelectric photometer. These, together with all the photoelectric times of maxima over the past 30 years, are used to re-examine the nature of the change of the period. We found that we can fix the times of maxima by the following formula
Tmax = T0+P0E+12βE2+AsinEP0E0
where T0 = HJD 2433438.6088 and P0 = 0.0884132445 d represent the initial maximum epoch and the pulsation period, β = ?2.8 × 10?8/yr; A = 0.0015 d, P0 = 6251 d = 17.1 yr are the semi-amplitude and the period of the sine curve, and E is the number of periods elapsed since T0, and (E0 = 70700).If we interpret this 17.1 year periodicity as a modulation of the phase of maximum by binary motion, then the semi-amplitude of the orbital radial velocity variation is K = 2πasini/E0 = 0.45 km/s and the mass function is
f(m)=m32sin3i(m1m2)2=(asini)3E20=6 x 10?5M
  相似文献   

15.
Editorial     
The Galilean satellites Io, Europa, and Ganymede interact through several stable orbital resonances where λ1 ? 2λ2 + ω1 = 0, λ1 ? 2λ2 + ω2 = 180°, λ2 ? 2λ3 + ω2 = 0 and λ1 ? 3λ2 + 2λ3 = 180°, with λi being the mean longitude of the ith satellite and ωi the longitude of the pericenter. The last relation involving all three bodies is known as the Laplace relation. A theory of origin and subsequent evolution of these resonances outlined earlier (C. F. Yoder, 1979b, Nature279, 747–770) is described in detail. From an initially quasi-random distribution of the orbits the resonances are assembled through differential tidal expansion of the orbits. Io is driven out most rapidly and the first two resonance variables above are captured into libration about 0 and 180° respectively with unit probability. The orbits of Io and Europa expand together maintaining the 2:1 orbital commensurability and Europa's mean angular velocity approaches a value which is twice that of Ganymede. The third resonance variable and simultaneously the Laplace angle are captured into libration with probability ~0.9. The tidal dissipation in Io is vital for the rapid damping of the libration amplitudes and for the establishment of a quasi-stationary orbital configuration. Here the eccentricity of Io's orbit is determined by a balance between the effects of tidal dissipation in Io and that in Jupiter, and its measured value leads to the relation k1?1/Q1 ≈ 900kJ/QJ with the k's being Love numbers, the Q's dissipation factors, and f a factor to account for a molten core in Io. This relation and an upper bound on Q1 deduced from Io's observed thermal activity establishes the bounds 6 × 104 < QJ < 2 × 106, where the lower bound follows from the limited expansion of the satellite orbits. The damping time for the Laplace libration and therefore a minimum lifetime of the resonance is 1600 QJ years. Passage of the system through nearby three-body resonances excites free eccentricities. The remnant free eccentricity of Europa leads to the relation Q2/?2 ? 2 × 10?4 QJ for rigidity μ2 = 5 × 1011 dynes/cm2. Probable capture into any of several stable 3:1 two-body resonances implies that the ratio of the orbital mean motions of any adjacent pair of satellites was never this large.A generalized Hamiltonian theory of the resonances in which third-order terms in eccentricity are retained is developed to evaluate the hypothesis that the resonances were of primordial origin. The Laplace relation is unstable for values of Io's eccentricity e1 > 0.012 showing that the theory which retains only the linear terms in e1 is not valid for values of e1 larger than about twice the current value. Processes by which the resonances can be established at the time of satellite formation are undefined, but even if primordial formation is conjectured, the bounds established above for QJ cannot be relaxed. Electromagnetic torques on Io are also not sufficient to relax the bounds on QJ. Some ideas on processes for the dissipation of ideal energy in Jupiter yield values of QJ within the dynamical bounds, but no theory has produced a QJ small enough to be compatible with the measurements of heat flow from Io given the above relation between Q1 and QJ. Tentative observational bounds on the secular acceleration of Io's mean motion are also shown not to be consistent with such low values of QJ. Io's heat flow may therefore be episodic. QJ may actually be determined from improved analysis of 300 years of eclipse data.  相似文献   

16.
Using the time observations obtained by 8 instruments in the Chinese Joint System during the years 1966–1980, we analyse the Moon's zonal tidal effect. The results show that the effects of the Mf and Mm waves are obvious. From this, the parameters KC of the zonal tide are estimated and the weighted averages of the 8 instruments are (KC)Mf = 0.909 ± 0.114 and (KC)Mm = 0.905 ± 0.083 respectively.  相似文献   

17.
The odd zonal harmonics in the geopotential are the terms independent of longitude and antisymmetric about the Equator: they define the ‘pear-shape’ effect. The coeffecients J3, J5, J7,…of these harmonics have been evaluated by analysing the variations in eccentricity of 27 orbits covering wide range of inclinations. We use again most of the orbits from our previous (1969) evaluations, but we now have the advantage of 3 accurate orbits at inclinations between 60° and 66°, where the variations in eccentricity become very large, and 3 near-equatorial orbits, at inclinations between 3° and 15°, whereas previously there were none at inclinations lower than 28°. The new data lead to much more accurate and reliable values for the coeffecients. Our recommended set, which terminates at J17, is
109J3 = ?2531 ± 7109J11 = 159 ± 16J5 = ?246 ± 9J13 = ?131 ± 22J7 = ?326 ± 11J15 = ?26 ±24J9 = ?94 ± 12J17 = ?258 ± 19
. With this new set of values the pear-shape tendency of the Earth amounts to 44.7 m at the poles, instead of the previous 40 m, though the new geoid is within 1 m of the old at latitudes away from the poles.  相似文献   

18.
R.D. Cess  S.C. Chen 《Icarus》1975,26(4):444-450
Ethane and acetylene, both of which possess more efficient emission bands than methane, have been incorporated into a thermal structure model for the atmosphere of Jupiter. Choosing for illustrative purposes the mixing ratios [C2H6][H2] = 10?5 and [C2H2][H2] = 5 × 10?7, it is found that these hydrocarbon gases lower the atmospheric temperature within the thermal inversion region by as much as 20 K, subsequently reducing the emission intensity of the 7.7 μm CH4 band below the observed result. It is qualitatively shown, however, that this cooling by C2H6 and C2H2 could be compensated by aerosol heating resulting from a uniformily mixed aerosol which absorbs 15% of the incident solar radiation. Such aerosol heating has been suggested by uv albedo observations.  相似文献   

19.
The magnetopause, the boundary layer, or current sheath, which separates the magnetosphere from the solar wind, is the particular interaction considered in this paper.The collision free electron skin depth, ξe = cωpe, where c is the velocity of light and ωpe, is the plasma frequency, gives a classical measure of the penetration depth of a collisionless plasma by an electromagnetic field. This penetration depth is small compared with the dimensions of the magnetosphere and hence the boundary layer may be conveniently considered in one dimension.In General all one dimensional solutions lie within an order of magnitude of the value of ξe, the only exception being the important one, in which the electric field perpendicular to the current sheath plane is not present, either due to a particular trapped particle distribution or due to a short circuiting end effect. For this exception the thickness is increased by the factor (mii/me)12.The current sheath solutions discussed are equilibrium solutions but not necessarily stable equilibrium solutions.The extension of the models to three dimensions has a larger effect than might at first be expected. The effect may be intuitively understood as a consequence of flux conservation in the sheath. The one dimensional solutions then correspond to the current sheath profiles at the thinnest point of the three dimensional sheath.  相似文献   

20.
Models of the collapse of a protostellar cloud and the formation of the solar nebula reveal that the size of the nebula produced will be the larger of RCF ≡ J2/k2GM3and RV ≡ (GMv/2cc3)12 (where J, M, and cs are the total angular momentum, total mass, and sound speed of the protosetellar material; G is the gravitational constant; k is a number of order unity; and v is the effective viscosity in the nebula). From this result it can be deduced that low-mass nebulas are produced if P ≡ (RV/RCF)2 ? 1; “massive” nebulas result if P ? 1. Gravitational instabilities are expected to be important for the evolution of P ? 1 nebulas. The value of J distinguishes most current models of the solar nebula, since PJ?4. Analytic expressions for the surface density, nebular mass flux, and photospheric temperature distributions during the formation stage are presented for some simple models that illustrate the general properties of growing protostellar disks. It does not yet seem possible to rule out either P ? 1 or P < 1 for the solar nebula, but observed or possible heterogeneities in composition and angular-momentum orientation favor P < 1 models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号