首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Icarus》1987,69(1):176-184
The 22 April 1982 stellar occultation of KME 14 by Uranus was observed from Tenerife, Canary Islands, using the Teide Observatory 1.5-m telescope. From model fits to the immersion and emersion ring profiles, we obtained (1) midtimes of the ring events with a typical uncertainty of 0.01 sec; (2) ring widths for rings 4, α, β, γ, δ, and ϵ with a typical uncertainty of a few tenths of a kilometer; and (3) equivalent widths and normal optical depths of all nine rings. The immersion planetary occultation was clouded out, but emersion was successfully observed, and the stratospheric temperature profile was obtained by numerical inversion. The profile shows a temperature maximum near the 8-μbar pressure level, characterized by T(8 μbar) = 141°K and T(8 μbar)–T(13 μbar) = 5°K for the sampled suboccultation latitude of −11°.9. Both the mean temperature and the temperature variations are consistent with the latitude-dependent atmospheric structure found by B. Sicardy et al. (1985, Icarus 64, 88–106) from widely separated observations of the same event.  相似文献   

2.
The properties of the stellar scintillation were investigated using high speed photometry. The zenithal dependence of the total scintillation power turned out to be weaker than predicted by scintillation theory. The dependence of the total scintillation power on wavelength and the distribution of the intensity fluctuations according to a log-normal distribution agree with the theoretical predictions. The temporal behaviour of the stellar scintillation shows correlation time scales of less than 10 ms and some ten second which indicate the presence of the inner and outer scale of the atmospheric turbulence. The influence of other processes which cause intensity variations on the measurement of the total scintillation power was analyzed.  相似文献   

3.
《Icarus》1987,69(3):499-505
The 1 May 1982 occultation of KME 15 by Uranus and its rings was observed at λ = 2.2 μm using the 1.9-m telescope of the Mount Stromlo Observatory. From model fits to the immersion and emersion ring profiles, accurate midtimes for rings 6, 5, 4, α, β, η, γ, σ, and ϵ, and ring widths, equivalent widths, and normal optical depths for all but ring 6 were obtained. The recently discovered ring 1986 U1R is not detectable in the data, setting an upper limit on the product of ring width and normal optical depth of ≤0.4 km at λ = 2.2 μm. From the immersion and emersion atmosphere occultations, vertical temperature profiles were obtained by numerical inversion. Both profiles show mean temperatures near 130°K and a local maximum near the 8-μbar pressure level.  相似文献   

4.
Observations of the 24 May 1981 occultation of an uncatalogued star by Neptune made at the Cerro Tololo Inter-American Observatory have been analyzed to yield temperature profiles of Neptune's upper atmosphere for number densities near 5 × 1013 cm?3. The mean temperatures at immersion (latitude ?56°) and emersion (latitude ?16°) obtained by numerical inversion were 140 ± 10°K and 154 ± 10°K, respectively. The immersion and emersion profiles are remarkably similar in overall shape, suggestive of global atmospheric layering. From the astrometry of the event, precise relative positions of Neptune and the occulted were obtained.  相似文献   

5.
The Alice ultraviolet spectrograph onboard the New Horizons spacecraft observed two occultations of the bright star χ Ophiucus by Jupiter’s atmosphere on February 22 and 23, 2007 during the approach phase of the Jupiter flyby. The ingress occultation probed the atmosphere at 32°N latitude near the dawn terminator, while egress probed 18°N latitude near the dusk terminator. A detailed analysis of both the ingress and egress occultations, including the effects of molecular hydrogen, methane, acetylene, ethylene, and ethane absorptions in the far ultraviolet (FUV), constrains the eddy diffusion coefficient at the homopause level to be  cm2 s−1, consistent with Voyager measurements and other analyses (Festou, M.C., Atreya, S.K., Donahue, T.M., Sandel, B.R., Shemansky, D.E., Broadfoot, A.L. [1981]. J. Geophys. Res. 86, 5717-5725; Vervack Jr., R.J., Sandel, B.R., Gladstone, G.R., McConnell, J.C., Parkinson, C.D. [1995]. Icarus 114, 163-173; Yelle, R.V., Young, L.A., Vervack Jr., R.J., Young, R., Pfister, L., Sandel, B.R. [1996]. J. Geophys. Res. 101 (E1), 2149-2162). However, the actual derived pressure level of the methane homopause for both occultations differs from that derived by [Festou et al., 1981] and [Yelle et al., 1996] from the Voyager ultraviolet occultations, suggesting possible changes in the strength of atmospheric mixing with time. We find that at 32°N latitude, the methane concentration is  cm−3 at 70,397 km, the methane concentration is  cm−3 at 70,383 km, the acetylene concentration is  cm−3 at 70,364 km, and the ethane concentration is  cm−3 at 70,360 km. At 18°N latitude, the methane concentration is  cm−3 at 71,345 km, the methane concentration is  cm−3 at 71,332 km, the acetylene concentration is cm−3 at 71,318 km, and the ethane concentration is  cm−3 at 71,315 km. We also find that the H2 occultation light curve is best reproduced if the atmosphere remains cold in the microbar region such that the base of the thermosphere is located at a lower pressure level than that determined by in situ instruments aboard the Galileo probe (Seiff, A., Kirk, D.B., Knight, T.C.D., Young, R.E., Mihalov, J.D., Young, L.A., Milos, F.S., Schubert, G., Blanchard, R.C., Atkinson, D. [1998]. J. Geophys. Res. 103 (E10), 22857-22889) - the Sieff et al. temperature profile leads to too much absorption from H2 at high altitudes. However, this result is highly model dependent and non-unique. The observations and analysis help constrain photochemical models of Jupiter’s atmosphere.  相似文献   

6.
We present a simple physical mechanism that can account for the observed stellar mass spectrum for masses M ∗≳0.5 M . The model depends solely on the competitive accretion that occurs in stellar clusters where each star's accretion rate depends on the local gas density and the square of the accretion radius. In a stellar cluster, there are two different regimes depending on whether the gas or the stars dominate the gravitational potential. When the cluster is dominated by cold gas, the accretion radius is given by a tidal-lobe radius. This occurs as the cluster collapses towards a ρ  ∝  R −2 distribution. Accretion in this regime results in a mass spectrum with an asymptotic limit of γ =−3/2 (where Salpeter is γ =−2.35) . Once the stars dominate the potential and are virialized, which occurs first in the cluster core, the accretion radius is the Bondi–Hoyle radius. The resultant mass spectrum has an asymptotic limit of γ =−2 with slightly steeper slopes ( γ ≈−2.5) if the stars are already mass-segregated. Simulations of accretion on to clusters containing 1000 stars show that, as expected, the low-mass stars accumulate the majority of their masses during the gas-dominated phase whereas the high-mass stars accumulate the majority of their masses during the stellar-dominated phase. This results in a mass spectrum with a relatively shallow γ ≈3/2 power law for low-mass stars and a steeper power law for high-mass stars −2.5≲ γ ≤−2 . This competitive accretion model also results in a mass-segregated cluster.  相似文献   

7.
Stratospheric temperature profiles of Uranus were derived from the stellar occultation of 22 April 1982 in the pressure range 5–30 μbar. The observations were made at the European Southern Observatory, Chile, and at the Observatoire du Pic du Midi et de Toulouse, France with two telescopes in both sites. The study of these profiles confirms that Uranus' stratosphere is warmer than had been expected from radiative models (J. F. Appleby, 1980, Atmospheric Structures of the Giant Planets from Radiative-Convective Equilibrium Models. PhD. Thesis, State University of New York at Stony Brook) and that there has been a general increase of temperature since 1977 (R. G. French, J. L. Elliot, E. W. Dunham, D. A. Allen, J. H. Elias, J. A. Frogel, and W. Liller, 1983, Icarus53, 399–414). Furthermore, the profiles exhibit a nonisothermal feature with a maximum temperature around the 8-μbar pressure level. The amplitude of this feature increases linearly with the diurnally averaged insolation 〈D〉 up to the observed value 〈D〉 ~ 0.15. Moreover, the temperature at 8 μbar, as well as the mean stratospheric temperature, reaches a plateau around the equator of the planet which is far from maximum insolation. For a nominal abundance of methane ηCH4 ~ 3 × 10?5 and normal incidence, the UV absorption could compete with the IR methane absorption bands at the pressure level 8 μbar. However, the high temperatures observed even at grazing incidence imply important circulation phenomena to isothermalize distant regions of the planet. Alternatively, the observed profiles may suggest that an optically thin aerosol layer distributed over one scale height is responsible for the temperature maximum at 8 μbar. The total mass of dust necessary to heat this region up significantly would be a small fraction (6 × 1010 g vs 5 × 1018 g) of the Uranian ring system, which appears then as a possible reservoir of dust. However, a falling rate of ~1 msec?1 would deplete the rings in a short time (≈2 × 105 years) so that a dynamical process is needed to sustain the aerosol layer.  相似文献   

8.
We use a radiative-conductive-convective model to assess the height of Pluto’s troposphere, as well as surface pressure and surface radius, from stellar occultation data from the years 1988, 2002, and 2006. The height of the troposphere, if it exists, is less than 1 km for all years analyzed. Pluto has at most a planetary boundary layer and not a troposphere. As in previous analyses of Pluto occultation light curves, we find that the surface pressure is increasing with time, assuming that latitude and longitude variations in Pluto’s atmosphere are negligible. The surface pressure is found to be slightly higher ( μbar in 1988,  μbar in 2002, and 18.5 ± 4.7 μbar in 2006) than in our previous analyses with the troposphere excluded. The surface radius is determined to be . Comparison of the minimum reduced chi-squared values between the best-fit radiative-conductive-convective (i.e., troposphere-included) model and best-fit radiative-conductive (i.e., troposphere-excluded) shows that the troposphere-included model is only a slightly better fit to the data for all 3 years. Uncertainties in the small-scale physical processes of Pluto’s lower atmosphere and consequently the functional form of the model troposphere lend more confidence to the troposphere-excluded results.  相似文献   

9.
《Icarus》2009,199(2):458-476
On September 8, 2001 around 2 h UT, the largest uranian moon, Titania, occulted Hipparcos star 106829 (alias SAO 164538, a V=7.2, K0 III star). This was the first-ever observed occultation by this satellite, a rare event as Titania subtends only 0.11 arcsec on the sky. The star's unusual brightness allowed many observers, both amateurs or professionals, to monitor this unique event, providing fifty-seven occultations chords over three continents, all reported here. Selecting the best 27 occultation chords, and assuming a circular limb, we derive Titania's radius: (1-σ error bar). This implies a density of using the value derived by Taylor [Taylor, D.B., 1998. Astron. Astrophys. 330, 362-374]. We do not detect any significant difference between equatorial and polar radii, in the limit , in agreement with Voyager limb image retrieval during the 1986 flyby. Titania's offset with respect to the DE405 + URA027 (based on GUST86 theory) ephemeris is derived: ΔαTcos(δT)=−108±13 mas and ΔδT=−62±7 mas (ICRF J2000.0 system). Most of this offset is attributable to a Uranus' barycentric offset with respect to DE405, that we estimate to be: and ΔδU=−85±25 mas at the moment of occultation. This offset is confirmed by another Titania stellar occultation observed on August 1st, 2003, which provides an offset of ΔαTcos(δT)=−127±20 mas and ΔδT=−97±13 mas for the satellite. The combined ingress and egress data do not show any significant hint for atmospheric refraction, allowing us to set surface pressure limits at the level of 10-20 nbar. More specifically, we find an upper limit of 13 nbar (1-σ level) at 70 K and 17 nbar at 80 K, for a putative isothermal CO2 atmosphere. We also provide an upper limit of 8 nbar for a possible CH4 atmosphere, and 22 nbar for pure N2, again at the 1-σ level. We finally constrain the stellar size using the time-resolved star disappearance and reappearance at ingress and egress. We find an angular diameter of 0.54±0.03 mas (corresponding to projected at Titania). With a distance of 170±25 parsecs, this corresponds to a radius of 9.8±0.2 solar radii for HIP 106829, typical of a K0 III giant.  相似文献   

10.
We study the kinematics of the Galactic thin and thick disk populations using stars from the RAVE survey’s second data release together with distance estimates from Breddels et al. (2010). The velocity distribution exhibits the expected moving groups present in the solar neighborhood. We separate thick and thin disk stars by applying the X (stellar-population) criterion of Schuster et al. (1993), which takes into account both kinematic and metallicity information. For 1906 thin disk and 110 thick disk stars classified in this way, we find a vertical velocity dispersion, mean rotational velocity and mean orbital eccentricity of (σW, 〈VΦ〉, 〈e〉)thin = (18 ± 0.3 km s−1, 223 ± 0.4 km s−1, 0.07 ± 0.07) and (σW, 〈VΦ〉, 〈e〉)thick = (35 ± 2 km s−1, 163 ± 3 km s−1, 0.31 ± 0.16), respectively. From the radial Jeans equation, we derive a thick disk scale length in the range 1.5-2.2 kpc, whose greatest uncertainty lies in the adopted form of the underlying potential. The shape of the orbital eccentricity distribution indicates that the thick disk stars in our sample most likely formed in situ with minor gas-rich mergers and/or radial migration being the most likely cause for their orbits. We further obtain mean metal abundances of 〈[M/H]〉thin = +0.03 ± 0.17, and 〈[M/H]〉thick = −0.51 ± 0.23, in good agreement with previous estimates. We estimate a radial metallicity gradient in the thin disk of −0.07 dex kpc−1, which is larger than predicted by chemical evolution models where the disk grows inside-out from infalling gas. It is, however, consistent with models where significant migration of stars shapes the chemical signature of the disk, implying that radial migration might play at least part of a role in the thick disk’s formation.  相似文献   

11.
Comet Bowell (1980b) was observed to pass within 0.25 ± 0.09 arc sec of a star (about 540 km at the comet), where the absorption of starlight by the dust coma was found to be 3% (±1%). The implied optical thickness of 0.03 differs greatly from other determinations and gives a mass of 3 × 1013 g for the coma within 1 × 104 km of the nucleus. Coupled with absolute continuum filter photometry, these results indicate a very low particle albedo consistent with fluffy carbonaceous material. This experiment indicates the need to observe nearly central occulations by several observers to measure the optical thickness profile of a comet. The advantages of using a charge-coupled device area photometer for such observations are discussed.  相似文献   

12.
13.
14.
15.
Silicon burning at a temperatureT=3×109K has been studied for three initial abundance configurations: (1) X(Si28)=1; (2) X(Si28)=X(Mg24)=0.5; and (3) X(Si28)=X(S32)=0.5. It may be observed that, in the absence of beta-decay, the results obtained for cases (2) and (3), in which admixtures of substantial mass fractions of Mg24 and S32 into a silicon region are considered, will converge toward those of the pure silicon relaxation problem. This convergence takes place on a rapid time scale for the Mg24 admixture while, in the case of a S32 admixture, the abundances of the heavy elements (A>28) are enhanced for a substantial fraction of the lifetime of the silicon burning process.  相似文献   

16.
The initial stages of deceleration in the circumstellar medium of a stellar envelope, thrown off by a shock wave, are investigated. The equations of spherical-symmetric adiabatic hydrodynamics are shown to have a similarity solution in the case of the density of the expanding envelope being approximated by a reasonable power law. The overall flow pattern has such a form that the stellar material is decelerated in the internal shock wave while another shock propagates through the circumstellar matter. Between the shocks there is a contact discontinuity separating the circumstellar and stellar matter. The characteristics of the similarity solution are calculated for various exponents in the density laws of an expanding envelope and circumstellar matter and for two values of the adiabatic index (=5/3, 4/3). Some parts of the flow exhibit Rayleigh-Taylor instability.Special attention is paid to the validity of the hydrodynamics. In full agreement with D'yachenkoet al. (1969), we conclude that the kinetic and collisionless processes are of great importance if the initial stages of stellar envelope deceleration are to be properly monitored.The results obtained can also be employed to describe the interaction between the exploding core of a red giant star and its rarefied envelope. This is of interest for explosive nucleosynthesis.The similarity solution is applied to the envelopes expelled both by type-II supernovae and by rapid novae. In particular, the thermalization time-scale of circumstellar plasma is estimated. For SNii this time-scale proves to be of the order of 60 yr. This confirms with the observational data on the moment of the maximum radio-emission of young SNRs. In the case of rapid novae, this time is less by a factor of 10. Therefore, the peak radio and X-ray (2 keV) lumnosity may occur several years after the rapid nova outburst. The explosion of a degenerate carbon core is found to result in the heating of the hydrogen-helium envelope of a red giant star up to 3×106 K.  相似文献   

17.
《New Astronomy》2003,8(4):337-370
We summarize the main results from MODEST-1, the first workshop on MOdeling DEnse STellar systems. Our goal is to go beyond traditional population synthesis models, by introducing dynamical interactions between single stars, binaries, and multiple systems. The challenge is to define and develop a software framework to enable us to combine in one simulation existing computer codes in stellar evolution, stellar dynamics, and stellar hydrodynamics. With this objective, the workshop brought together experts in these three fields, as well as other interested astrophysicists and computer scientists. We report here our main conclusions, questions and suggestions for further steps toward integrating stellar evolution and stellar (hydro)dynamics.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号