首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have formulated a 3-D inverse solution for the magnetotelluric (MT) problem using the non-linear conjugate gradient method. Finite difference methods are used to compute predicted data efficiently and objective functional gradients. Only six forward modelling applications per frequency are typically required to produce the model update at each iteration. This efficiency is achieved by incorporating a simple line search procedure that calls for a sufficient reduction in the objective functional, instead of an exact determination of its minimum along a given descent direction. Additional efficiencies in the scheme are sought by incorporating preconditioning to accelerate solution convergence. Even with these efficiencies, the solution's realism and complexity are still limited by the speed and memory of serial processors. To overcome this barrier, the scheme has been implemented on a parallel computing platform where tens to thousands of processors operate on the problem simultaneously. The inversion scheme is tested by inverting data produced with a forward modelling code algorithmically different from that employed in the inversion algorithm. This check provides independent verification of the scheme since the two forward modelling algorithms are prone to different types of numerical error.  相似文献   

2.
A data space approach to magnetotelluric (MT) inversion reduces the size of the system of equations that must be solved from M × M , as required for a model space approach, to only N × N , where M is the number of model parameter and N is the number of data. This reduction makes 3-D MT inversion on a personal computer possible for modest values of M and N . However, the need to store the N × M sensitivity matrix J remains a serious limitation. Here, we consider application of conjugate gradient (CG) methods to solve the system of data space Gauss–Newton equations. With this approach J is not explicitly formed and stored, but instead the product of J with an arbitrary vector is computed by solving one forward problem. As a test of this data space conjugate gradient (DCG) algorithm, we consider the 2-D MT inverse problem. Computational efficiency is assessed and compared to the data space Occam's (DASOCC) inversion by counting the number of forward modelling calls. Experiments with synthetic data show that although DCG requires significantly less memory, it generally requires more forward problem solutions than a scheme such as DASOCC, which is based on a full computation of J .  相似文献   

3.
An iterative solution to the non-linear 3-D electromagnetic inverse problem is obtained by successive linearized model updates using the method of conjugate gradients. Full wave equation modelling for controlled sources is employed to compute model sensitivities and predicted data in the frequency domain with an efficient 3-D finite-difference algorithm. Necessity dictates that the inverse be underdetermined, since realistic reconstructions require the solution for tens of thousands of parameters. In addition, large-scale 3-D forward modelling is required and this can easily involve the solution of over several million electric field unknowns per solve. A massively parallel computing platform has therefore been utilized to obtain reasonable execution times, and results are given for the 1840-node Intel Paragon. The solution is demonstrated with a synthetic example with added Gaussian noise, where the data were produced from an integral equation forward-modelling code, and is different from the finite difference code embedded in the inversion algorithm  相似文献   

4.
Finite difference (FD) simulation of elastic wave propagation is an important tool in geophysical research. As large-scale 3-D simulations are only feasible on supercomputers or clusters, and even then the simulations are limited to long periods compared to the model size, 2-D FD simulations are widespread. Whereas in generally 3-D heterogeneous structures it is not possible to infer the correct amplitude and waveform from 2-D simulations, in 2.5-D heterogeneous structures some inferences are possible. In particular, Vidale & Helmberger developed an approach that simulates 3-D waveforms using 2-D FD experiments only. However, their method requires a special FD source implementation technique that is based on a source definition which is not any longer used in nowadays FD codes. In this paper, we derive a conversion between 2-D and 3-D Green tensors that allows us to simulate 3-D displacement seismograms using 2-D FD simulations and the actual ray path determined in the geometrical optic limit. We give the conversion for a source of a certain seismic moment that is implemented by incrementing the components of the stress tensor.
Therefore, we present a hybrid modelling procedure involving 2-D FD and kinematic ray-tracing techniques. The applicability is demonstrated by numerical experiments of elastic wave propagation for models of different complexity.  相似文献   

5.
The standard 1-D inversion approach for the interpretation of transient electromagnetic (TEM) data usually fails in the presence of near-surface conductivity anomalies. Since multidimensional inversion codes are not routinely available, the only alternative to discarding the data may be trial-and-error forward modelling. We interpret data from a long-offset transient electromagnetic (LOTEM) survey which was carried out in 1995 in the Odenwald area, using 2-D finite-difference modelling. We focus on a subsegment of the LOTEM profile, which was shot with two different electric dipole transmitters. A model is found which consistently explains the electric and magnetic field data at eight locations for both transmitters. First, we introduce a conductive dyke under the receiver spread to explain sign reversals in the magnetic field transients. A conductive slab under one of the transmitters is required to obtain a reasonable quantitative fit for that transmitter. Consideration of the electric field data then requires a modification of the layered earth background. Finally, we study the response of a crustal conductor, which was the original target of the survey. The data are sensitive to the conductor, and for the investigated subset of the data the fits are slightly better without the conductive layer.  相似文献   

6.
A Bayesian approach to inverse modelling of stratigraphy, part 1: method   总被引:2,自引:0,他引:2  
The inference of ancient environmental conditions from their preserved response in the sedimentary record still remains an outstanding issue in stratigraphy. Since the 1970s, conceptual stratigraphic models (e.g. sequence stratigraphy) based on the underlying assumption that accommodation space is the critical control on stratigraphic architecture have been widely used. Although these methods considered more recently other possible parameters such as sediment supply and transport efficiency, they still lack in taking into account the full range of possible parameters, processes, and their complex interactions that control stratigraphic architecture. In this contribution, we present a new quantitative method for the inference of key environmental parameters (specifically sediment supply and relative sea level) that control stratigraphy. The approach combines a fully non‐linear inversion scheme with a ‘process–response’ forward model of stratigraphy. We formulate the inverse problem using a Bayesian framework in order to sample the full range of possible solutions and explicitly build in prior geological knowledge. Our methodology combines Reversible Jump Markov chain Monte Carlo and Simulated Tempering algorithms which are able to deal with variable‐dimensional inverse problems and multi‐modal posterior probability distributions, respectively. The inverse scheme has been linked to a forward stratigraphic model, BARSIM (developed by Joep Storms, University of Delft), which simulates shallow‐marine wave/storm‐dominated systems over geological timescales. This link requires the construction of a likelihood function to quantify the agreement between simulated and observed data of different types (e.g. sediment age and thickness, grain size distributions). The technique has been tested and validated with synthetic data, in which all the parameters are specified to produce a ‘perfect’ simulation, although we add noise to these synthetic data for subsequent testing of the inverse modelling approach. These tests addressed convergence and computational‐overhead issues, and highlight the robustness of the inverse scheme, which is able to assess the full range of uncertainties on the inferred environmental parameters and facies distributions.  相似文献   

7.
Rapid relaxation inversion of CSAMT data   总被引:7,自引:0,他引:7  
In this paper an inversion algorithm for controlled-source audio frequency magnetotelluric data is presented. This algorithm combines 2.5-D finite element forward modelling with the concepts of rapid relaxation inversion of magnetotelluric data. The inversion uses the same technique to compute sensitivities as the rapid relaxation inversion, and these approximate sensitivities are validated by comparison with exact 2.5-D sensitivities. The comparison shows that the approximate sensitivities are similar in shape to the exact sensitivities when transmitter–receiver offsets are greater than one skin depth in the Earth. The magnitudes of the two sensitivities differ but the variations with depth are similar. Tests of the algorithm on synthetic data and field data provide promising results.  相似文献   

8.
Collocated magnetotelluric (MT) and seismic profiling is emerging as a necessary combined approach for deep and near-surface imaging but the resulting experimental data are typically interpreted separately since no production programs exist for multidimensional joint inversion of MT and seismic data. We present a joint 2-D inversion approach for imaging collocated MT and seismic refraction data with cross-gradient structural constraints. We describe the main features of the algorithm and first apply it to synthetic data generated for a hypothetical complex geological model. For the synthetic data, we find that the scheme leads to models with remarkable structural resemblance and improved estimates of electrical resistivity and seismic velocity. We apply the scheme to near-surface field data to test the consistency of a previously suggested resistivity–velocity interrelationship and its potential use for subsurface lithofacies discrimination or structural classification. The MT-seismic relationship is found to be in excellent accord with that derived previously for DC resistivity and seismic data set at the test site. Our results suggest that joint MT-seismic cross-gradient imaging leads to improved characterization of heterogeneous geological targets at near-surface to mantle depths.  相似文献   

9.
Summary. Moment tensor inversion methods can be applied with success in the determination of source properties of simple earthquakes. However, these methods utilize the assumption of a point source, which is inadequate for modelling many complicated, shallow earthquakes. For complex earthquakes, an inversion using finite faulting models is desirable but the number of parameters involved requires that a good starting model be found or that independent constraints be placed on some of the parameters. A method is presented for low-pass filtering both the data and Green's functions, passing only signals with wavelengths greater than the dimension of the entire fault. The filter tends to smooth complications in the waveforms and allows application of the point source moment tensor inversion. This method is applied to body waves from the 1978 Thessaloniki, Greece, earthquake, the 1971 San Fernando earthquake and to a multiple-point source synthetic model of the San Fernando event. For the Thessaloniki event, although a multiple-source mechanism has been suggested, inversion results before and after filtering were essentially identical, indicating that a point source mechanism is sufficient in modelling the long-period, teleseismic body waves. In the case of the San Fernando earthquake, the point source Green's functions were incapable of simultaneously modelling the P - and SH -waves. Inversion of P -waves alone resulted in extreme parameter resolution problems, but allowed constraint in one axis of the moment tensor and suggested an overall source time function. Inversion of a synthetic San Fernando data set yielded similar results, but allowed an investigation of the shortcomings of the method under controlled circumstances. Although the results may require substantial interpretation, the method presented represents a simple first step in the analysis of complex earthquakes.  相似文献   

10.
Summary. The computational effectiveness of travel-time inversion methods depends on the parameterization of a 3-D velocity structure. We divide a region of interest into a few layers and represent the perturbation of wave slowness in each layer by a series of Chebyshev polynomials. Then a relatively complex velocity structure can be dcscribed by a small set of parameters that can be accurately evaluated by a linearized inversion of travel-time residuals. This method has been applied to artificial and real data at small epicentral distances and in the teleseismic distance range. The corresponding matrix equations were solved using singular value decomposition. The results suggest that the method combines resolution with computational convenience.  相似文献   

11.
分布式水文模型软件系统研究综述   总被引:3,自引:1,他引:2  
分布式水文模型软件系统作为分布式水文模型的技术外壳,是模型应用的重要技术保障。当前分布式水文模型应用呈现出多过程综合模拟、用户群范围广和计算量大的特点,对分布式水文模型软件系统的灵活性、易用性和高效性提出了更高的要求。本文首先分析了分布式水文模型应用的主要流程,之后从应用视角对现有分布式水文模型软件系统的特点进行了归纳,主要结论为:①软件系统按照模型结构灵活性的高低分为以下3种类型:不支持子过程选择和算法设置,不支持子过程选择、但支持算法设置,同时支持子过程选择和算法设置;②根据用户操作数据预处理软件方式的不同,参数提取方式分为菜单/命令行式和向导式;③按照模型的程序实现方法分为串行和并行方式,按照模型运行环境分为本地和网络模式。现有软件系统在灵活性、易用性和高效性方面存在如下问题:一是尚未解决模型结构灵活性和对用户知识依赖性之间的矛盾;二是现有菜单/命令行式和向导式的参数提取方式步骤繁琐,难以实现参数的自动提取;三是模型大多为串行方式和本地模式,容易遇到计算瓶颈问题。最后从模块化、智能化、网络化及移动化、并行化和虚拟仿真等方面探讨了分布式水文模型软件系统的发展趋势和研究方向。  相似文献   

12.
Summary. Numerical modelling is one of the most efficient methods for an investigation of the relationship between structural features and peculiarities of observed wavefields. It is practically the only method for 2-D and 3-D inhomogeneous media.
An algorithm based on ray theory has been developed for calculations of travel times and amplitudes of seismic waves in 3-D inhomogeneous media with curved interfaces. It was applied for numerical modelling of kinematic and dynamic characteristics of seismic waves propagating in laterally inhomogeneous media.
Travel-time and amplitude patterns were studied in the 2-D and 3-D models of a geosyncline, in which velocity distribution was given by an analytical function of the coordinates. For a more complicated model representing a subducting high-velocity lithospheric plate in a transition zone between oceanic and continental upper mantle, the velocity distribution was given by discrete values on a 2-D non-rectangular grid. It was shown that when a source was placed above the lithospheric plate, a shadow zone appeared along a strike of the structure, i.e. in the direction which is perpendicular to a strong lateral velocity gradient. Travel-time residuals were calculated along the seismological profile for a 3-D velocity distribution in the upper mantle beneath Central Asia, obtained as a result of inversion of travel times by the Backus-Gilbert method. They were found to be in a good agreement with the observed data.  相似文献   

13.
We developed an inversion method to estimate the stress fields related to earthquake generation (seismogenic stress fields) from the centroid moment tensors (CMT) of seismic events by using Akaike's Bayesian information criterion (ABIC). On the idea that the occurrence of an earthquake releases some part of the seismogenic stress field around its hypocentre, we define the CMT of a seismic event by a weighted volume integral of the true but unknown seismogenic stress field. Representing each component of the seismogenic stress field by the superposition of a finite number of 3-D basis functions (tri-cubic B-splines), we obtain a set of linear observation equations to be solved for the expansion coefficients (model parameters). We introduce prior constraint on the roughness of the seismogenic stress field and combine it with observed data to construct a Bayesian model with hierarchic, highly flexible structure controlled by hyper-parameters. The optimum values of the hyper-parameters are objectively determined form observed data by using ABIC. Given the optimum values of the hyper-parameters, we can obtain the best estimates of model parameters by using a maximum likelihood algorithm. We tested the validity of the inversion method through numerical experiments on two synthetic CMT data sets, assuming the distribution of fault orientations to be aligned with the maximum shear stress plane in one case and to be random in the other case. Then we applied the inversion method to actual CMT data in northeast Japan, and obtained the pattern of the seismogenic stress field consistent with geophysical and geological observations.  相似文献   

14.
In this study, we propose a new numerical method, named as Traction Image method, to accurately and efficiently implement the traction-free boundary conditions in finite difference simulation in the presence of surface topography. In this algorithm, the computational domain is discretized by boundary-conforming grids, in which the irregular surface is transformed into a 'flat' surface in computational space. Thus, the artefact of staircase approximation to arbitrarily irregular surface can be avoided. Such boundary-conforming gridding is equivalent to a curvilinear coordinate system, in which the first-order partial differential velocity-stress equations are numerically updated by an optimized high-order non-staggered finite difference scheme, that is, DRP/opt MacCormack scheme. To satisfy the free surface boundary conditions, we extend the Stress Image method for planar surface to Traction Image method for arbitrarily irregular surface by antisymmetrically setting the values of normal traction on the grid points above the free surface. This Traction Image method can be efficiently implemented. To validate this new method, we perform numerical tests to several complex models by comparing our results with those computed by other independent accurate methods. Although some of the testing examples have extremely sloped topography, all tested results show an excellent agreement between our results and those from the reference solutions, confirming the validity of our method for modelling seismic waves in the heterogeneous media with arbitrary shape topography. Numerical tests also demonstrate the efficiency of this method. We find about 10 grid points per shortest wavelength is enough to maintain the global accuracy of the simulation. Although the current study is for 2-D P-SV problem, it can be easily extended to 3-D problem.  相似文献   

15.
Controlled-source electromagnetic (CSEM) surveys have the ability to provide tomo-graphic images of electrical conductivity within the Earth. the interpretation of such data sets has long been hampered by inadequate modelling and inversion techniques. In this paper, a subspace inversion technique is described that allows electric dipole-dipole data to be inverted for a 2-D electrical conductivity model more efficiently than with existing techniques. the subspace technique is validated by comparison with conventional inversion methods and by inverting data collected over the East Pacific Rise in 1989. A model study indicates that, with adequate data, a variety of possible mid-ocean-ridge conductivity models could be distinguished on the basis of a CSEM survey.  相似文献   

16.
Results are presented from a numerical simulation of two-dimensional flow patterns in a braided river using a simple cellular routing scheme. The results of the routing scheme are compared with field measurements of discharge per unit width obtained within the study reach at low flow and, for higher flows, with the predictions of a more sophisticated hydraulic model that solves the two-dimensional shallow water form of the Navier–Stokes equations. An assessment is made of the sensitivity of the routing scheme to variations in the values of its main parameters, and appropriate values are determined based on the physical characteristics of the study site and available flow measurements. It is shown that despite the simple approach adopted by the cellular routing scheme to simulate processes of water redistribution, it is able to replicate accurately both the field data and the results of the more sophisticated hydraulic model. These results indicate that the routing scheme outlined here is able to overcome some of the limitations of previous simple cellular automata models and may be suitable for use in modelling bedload transport and channel change in complex fluvial environments. As such this research represents a small and ongoing contribution to the field of numerical simulation of braided river processes.  相似文献   

17.
An algorithm for the numerical modelling of magnetotelluric fields in 2-D generally anisotropic block structures is presented. Electrical properties of the individual homogeneous blocks are described by an arbitrary symmetric and positive-definite conductivity tensor. The problem leads to a coupled system of partial differential equations for the strike-parallel components of the electromagnetic field. E x, and H x These equations are numerically approximated by the finite-difference (FD) method, making use of the integro-interpolation approach. As the magnetic component H x, is constant in the non-conductive air, only equations for the electric mode are approximated within the air layer. The system of linear difference equations, resulting from the FD approximation, can be arranged in such a way that its matrix is symmetric and band-limited, and can be solved, for not too large models, by Gaussian elimination. The algorithm is applied to model situations which demonstrate some non-trivial phenomena caused by electrical anisotropy. In particular, the effect of 2-D anisotropy on the relation between magnetotelluric impedances and induction arrows is studied in detail.  相似文献   

18.
Telluric distortion occurs when electric charges accumulate along near-surface inhomogeneities. At low frequencies, the electric currents associated with these charges can be neglected compared to currents induced deeper in the Earth. At higher frequencies, the magnetic fields associated with these currents may be significant. Some parameters describing the distortion magnetic fields can be estimated from measured magneto-telluric impedance matrices. For regional magnetic fields aligned with regional strike directions, parameters associated with the distortion magnetic field component parallel to the regional magnetic field are undeterminable, whereas parameters associated with the distortion magnetic field component perpendicular to the regional magnetic field can be estimated. Optimal estimates are straightforward even for the realistic case of measurement errors that are correlated between elements of a measured impedance matrix. In a simple example of a 1-D anisotropic model with anisotropy direction varying with depth, the modelling of distortion magnetic fields results in regional impedance estimates corresponding more closely to the responses of uncoupled isotropic models, allowing sensible interpretation of an additional one and a half decades of data.  相似文献   

19.
The BABEL marine seismic experiment has been carried out to investigate the lithospheric structure and antecedent tectonic signatures of the Baltic Shield, including the Archaean-Proterozoic collisional structure in the northern part of the Gulf of Bothnia.
Lithospheric seismic-reflection streamer data and simultaneously recorded wide-angle reflection and refraction data collected in the Gulf of Bothnia as part of the BABEL project have been used for 3-D modelling. The distribution of land stations around the Gulf provides a good 3-D ray coverage of the PMP reflection data recorded at the eight stations in the area and allows an estimation of strikes and dips of the Moho boundary in the area. The traveltimes of reflected phases are calculated using a method that utilizes the finite-difference solution of the eikonal equation. The Moho wide-angle-reflection (PMP) traveltimes are modelled using an inversion method. A 2-D model from the Gulf of Bothnia extended into the third dimension is used as an initial model. During the inversion the velocity is kept constant and only the Moho boundary is allowed to vary. To estimate the strike of the Moho boundary and the stability of the inversion, two initial models with different strikes are examined.
The results indicate that the Moho depth in the Gulf of Bothnia undulates and has a maximum depth of 55 km in the south, rising to 42 km in the north. The Moho depth variations seem to be step-like. This change in the Moho depth coincides with the location of the presumed fossil subduction zone in the area. The crustal-thickness variations seem to be well approximated by a nearly 2-D structure striking parallel to a postulated subduction zone immediately to the south of the Skellefte area. The presence of the step at the crust/mantle boundary can be interpreted as a result of a plate-collision event at about 2 Ga.  相似文献   

20.
GIS技术支持下的洪水模型建模   总被引:11,自引:4,他引:11  
在复杂区域建立洪水模型时,计算网格的手工生成方法容易出错甚至不可行,自动生成算法则可大大节省计算网格生成的工作量。洪水模型中的计算网格与GIS栅格数据及不规则三角网空间数据结构非常相似,因此,GIS中成熟的网格自动生成算法可用于生成洪水模型计算网格。文章详细讨论了GIS支持下的洪水模型自动建立步骤,并以黄河下游花园口~夹河滩河段为例,利用地形图、土地利用图、水利工程设施分布、水文站点图等资料,通过自动生成网格及其空间拓扑关系,建立了洪水过程数值模拟模型,并详细解释了计算网格数据格式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号