首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The paper reports the results obtained by the detailed studying of carbonado (the first find in a gold placer in Primorie) and a collection of diamonds that was confiscated in 1937 from a poaching small digger and was kept safe at the Nezametnyi mine (near the village of Vostretsovo), which had developed this placer deposit. In the concentrate from the placer, carbonado is associated with green corundum, various ilmenite, zircon titanian amphiboles and pyroxenes, rutile, anatase, and fragments of subvolcanic biotite picrites. All of these minerals, native aluminum, and tin occur as inclusions in the diamonds. The carbonado from Primorie was determined to be practically identical to this mineral from Brazil, has a porous structure, is characterized by orange luminescence, contains inclusions of Y, Ce, La, Ba, and Sr phosphates, and has an isotopically light composition of its carbon (13C from ?25 to ?32‰). Pores of the carbonado aggregates contain clusters of diamond crystals. The collection of diamonds from an unknown source included six gem-quality transparent crystals, one rounded ballas, two cuboctahedral crystals (one of greenish and the other of silver-gray color, both with outer coats), and one black carbonado grain. The data obtained on the mineralogy of the diamonds have demonstrated that they are completely identical to this mineral from kimberlites and lamproites but bear traces of intense dissolution, fragmentation, multiple recrystallization, and graphitization at defects, which are the most widespread in the ballas. One of the crystals was determined to contain inclusions: aggregates of potassic omphacite (0.50 wt % K2O) and corundum. Ilmenite (containing up to 8 wt % MgO), titanaugite, kaersutite (4 wt % TiO2, 0.8 wt % K2O), and churchite (aqueous phosphate) were obtained from the core of the ballas. The titanaugite, kaersutite, and ilmenite were proven to be compositionally analogous to these minerals from picrites occurring near the placer. The carbon isotopic composition δ13C of the cores of the single diamond crystals varies from ?6 to ?11‰. The margins of the grains were proved to be enriched in the light carbon isotope (δ13C from ?19 to ?21‰). The gem-quality transparent diamond crystals are characterized by blue luminescence, and the color of luminescence in the carbonado varies from orange red in the bulk of the aggregate to yellowish green in its core. The aforementioned transformations of diamonds were likely caused by their transportation in pipes of micaceous picrites of the Jurassic meymechite complex. The carbonado are thought to correspond to the final stage of the metastable recrystallization (in pores, within the temperature range of the rutile-anatase transition) of the original isotopically heavy diamonds under the effect of various oxidizers (H2O, CO2, F, and others) and in the presence of catalytically acting REE, Ti, and P. The primary diamond source (kimberlite or lamproite) can be older and more distant from the study area. The complete geological analogy between the study area in Primorie, Kalimantan Island in Indonesia, and West Australia (where no sources of the placers are known) led us to consider the territory of Primorie as promising for exploration for diamondiferous placers.  相似文献   

2.
The photoluminescence (PL) spectra, optical excitation spectra and PL decay curves of anthophyllite from Canada were obtained at 300 and 10 K. The MnO content in the sample, determined using an electron probe microanalyzer, was high at 5.77 wt%. In the PL spectra obtained under 410-nm excitation, bright red bands with peaks at 651 and 659 nm were observed at 300 and 10 K, respectively. The origin of the red luminescence was ascribed to Mn2+ in anthophyllite from the analysis of the excitation spectra and PL decay times of 6.1–6.6 ms. In the PL spectra obtained under 240-nm excitation at 300 K, a small violet band with a peak at 398 nm was observed. On the violet band at 10 K, a vibronic structure was observed. The origin of the violet luminescence was attributed to a minor impurity in anthophyllite.  相似文献   

3.
We report the results of textural and mineralogical investigations of fragment #d(3–8)B of the Kaidun meteorite. The fragment is represented by six polished thin sections obtained by sequential sawing of a meteorite sample. Its main mineral is magnesian olivine; pyroxenes, augite and enstatite, are less abundant. The minor minerals are Fe-Ni sulfides, and the accessory minerals are chromian magnetite and apatite. The minerals show highly variable compositions. Several lithological types of material were distinguished on the basis of texture and composition. A characteristic feature is the presence of fractures, whose walls are enriched in olivine and, occasionally, sulfides. Some fractures contain relatively large euhedral crystals of zoned olivine. Olivines occurring on the walls of fractures and within fractures show a negative correlation between Mg# values and nickel content. The fragment has been subjected to multiple impact events. The material of the fragment bears evidence for intense multistage metasomatic alteration with the influx of olivine material and formation of pegmatoid-type segregations. This process has never previously been observed in meteorites, but is quite common in terrestrial massifs. The results of this study are in good agreement with our hypothesis that Phobos is the parent body of the Kaidun meteorite and indicate a possible Martian origin for Kaidun fragment #d(3–8)B.  相似文献   

4.
This study couples in situ 16O, 17O and 18O isotope and in situ trace element analyses to investigate and characterize the geochemical and textural complexity of magmatic-hydrothermal quartz crystals. Euhedral quartz crystals contemporaneous with mineralization were obtained from four magmatic-hydrothermal ore deposits: El Indio Au–Ag–Cu deposit; Summitville Au–Ag–Cu deposit; North Parkes Cu–Au deposit and Kingsgate quartz-Mo–Bi–W deposit. The internal features of the crystals were imaged using cathodoluminescence and qualitative electron microprobe maps. Quantitative isotopic data were collected in situ using 157 nm laser ablation inductively coupled plasma mass spectrometry (for 40 trace elements in quartz) and sensitive high-resolution ion microprobe (for 3 isotopes in quartz). Imaging revealed fine oscillatory zoning, sector zoning, complex “macromosaic” textures and hidden xenocrystic cores. In situ oxygen isotope analyses revealed a δ18O range of up to 12.4 ± 0.3 ‰ in a single crystal—the largest isotopic range ever ascribed to oscillatory zonation in quartz. Some of these crystals contain a heavier δ18O signature than expected by existing models. While sector-zoned crystals exhibited strong trace element variations between faces, no evidence for anisotropic isotope fractionation was found. We found: (1) isotopic heterogeneity in hydrothermal quartz crystals is common and precludes provenance analysis (e.g., δD–δ18O) using bulk analytical techniques, (2) the trace element signature of quartz is not an effective pathfinder toward noble metal mineralization and (3) in three of the four samples, both textural and isotopic data indicate non-equilibrium deposition of quartz.  相似文献   

5.
Chabazite-Ca deposited on dacite laccolith from Osódi Hill, Dunabogdány, Hungary, exhibited bluish-white luminescence under ultraviolet (UV) light. The photoluminescence (PL) and optical excitation spectra of chabazite-Ca were obtained at 300 K. The PL spectrum under 300-nm excitation consists of (1) a Ce3+ band with a peak at 340 nm, (2) a broad main band with a peak at 453 nm and (3) five narrow bands at 592, 616, 650, 700 and 734 nm due to Eu3+. The main band is spread over the entire visible-wavelength region. The excitation spectrum obtained by monitoring green luminescence at 520 nm consists of a band at wavelengths shorter than 200 nm and an extremely broad band with a peak at 385 nm. The extremely broad band is spread over not only the UV region but also the blue region. The features of PL and excitation spectra suggest that the origin of bluish-white luminescence is luminescent organic matter incorporated into chabazite-Ca crystals during growth.  相似文献   

6.
A unique xenolith of eclogite, 23×17×11 cm in size and 8 kg in weight, was found in the Udachnaya kimberlite pipe. One hundred twenty-four diamond crystals recovered from it were analyzed by a number of methods. The diamonds differ in morphology, internal structure, color, size, and composition of defects and impurities. The xenolith contains diamonds of octahedral and cubooctahedral habits. In cathodoluminescence, the octahedral crystals have a brightly glowing core with octahedral zones of growth and a weakly glowing rim. In the cores of these crystals the N impurity is mostly present in the B1 form (30 to 60%). At the same time, N in the rim is chiefly in the A form. The cubooctahedral crystals show a weak luminescence. The content of nitrogen and degree of its aggregation are close to those in the rim of octahedral crystals. The diversity of morphology and impurity composition of diamonds from the xenolith can be explained by their formation in two stages. At the first stage, the diamonds formed which became the cores of octahedra. After a long-time interruption, at the second stage of diamond formation crystals of cubooctahedral habit appeared and the octahedral crystals were overgrown. Wide variations in nitrogen contents in the xenolith crystals allowed their use to estimate the kinetics of aggregated nitrogen. The data obtained show that the aggregation of A centers into B1 centers in the diamonds is described by a kinetic reaction of an order of 1.5.  相似文献   

7.
采用显微观察、红外光谱、可见吸收光谱和低温光致发光谱等分析方法,对9颗俄罗斯高温高压处理钻石样品进行了研究。结果表明,该类钻石样品的内部多见石墨化现象,尤以彩色钻石样品更明显;金黄色、紫红色、黄绿色样品为ⅠaAB型,浅黄色样品为ⅠaB型,近无色样品为Ⅱa型;样品的可见吸收光谱因颜色不同而差异显著,其中金黄色样品可见475 nm处的吸收宽带,紫红色样品可见638,614,595 nm处的吸收峰,黄绿色和浅黄色样品可见415,475,503 nm处的吸收峰,近无色样品则为较光滑的平直曲线。此外,该类样品在低温光致发光谱中可见575 nm与637 nm处强发光峰。这些特征为探讨该类钻石的晶格缺陷与呈色机理提供了一定的科学依据。  相似文献   

8.
The data on photoluminescence (PL) that precisely detects Eu2+ centers and X-ray luminescence (XL) were compared for plagioclases and potassium feldspars in 21 samples from muscovite pegmatites of the Mama region. The Eu contents determined in 10 samples vary from 10?4 to 10?6 wt %. Europium occurs mainly as bivalent species that replaces Sr2+, Ca2+, and Ba2+. Eu is gained in the products of early crystallization, and its relative amounts decrease by an order of magnitude in the course of pegmatite formation down to complete disappearance in late generations of feldspars. It is shown that Eu2+ can be detected in XL spectra, and the Eu2+ content can be determined in qualitative terms, for instance, by the intensity of radiation band 400–420 nm in plagioclase.  相似文献   

9.
Textural characteristics are a major factor in determining the mechanical behaviour of rocks and in the prediction of performance of rock cutting and drilling equipment. The principal textural characteristics of rocks are grain size, grain shape, grain orientation, relative proportion of grains and matrix material which were herein quantitatively measured using a modern image analysis system. These features resulted in a texture coefficient represented by a single number for each rock specimen. In this study a range of both textural and mechanical data for a range of rock types are given with some of the textural determination methodology. Correlation between textural and physical properties are also highlighted. The results of drilling tests using polycrystalline diamond compact (pin and hybrid) and impregnated diamond core bits in the rocks are presented which demonstrate the influence of rock texture on drillability. The rock texture can be used as a predictive factor for assessing the drillability and cuttability, mechanical and wear performance of rocks.  相似文献   

10.

The first studies of diamonds in eclogitic xenoliths from the Komsomolskaya kimberlite pipe are described. Among round and oval-shaped xenoliths with diamond ingrowths, samples with a garnet content of 40–90% of the xenolith volume dominate. Two eclogite samples contain grains of accessory rutile; a kyanite sample is also revealed. Certain samples contain two or more crystals of diamonds. Diamonds with an octahedral habit and crystals with transitional habits, which belong to an octahedral-rhombic dodecahedral row, dominate in eclogites; there are many variety VIII aggregates. A high concentration of structural nitrogen, commonly in the A form, was registered in most of the crystals. Diamonds with a small content of nitrogen impurities, 40–67% in the B1 form, are present in a number of xenoliths. The calculated temperatures of the formation of eclogitic xenoliths is 1100–1300°C. Diversity in the impurity compositions of diamonds in the same xenolith shows that these diamonds were formed at various times and in different settings. The diamond position in xenoliths, the various level of nitrogen aggregation in the diamonds, and a number of other factors point to the later formation of the diamonds, as compared to minerals of eclogites, from fluid or fluid-melts in the process of metasomatosis.

  相似文献   

11.
The Shaw L-group chondrite consists of three intermingled lithologies. One is light-colored and has a poikilitic texture, consisting of olivine (many skeletal and euhedral) and augite crystals surrounded by larger (up to 1 mm) orthopyroxene grains; plagioclase occurs between orthopyroxene crystals and rare, small (<5 μm) patches of Si-K-rich glass or cryptocrystalline material occurs within the plagioclase. The skeletal olivine crystals contain 0.08–0.16 wt% CaO. Petrofabric measurements show that the c-axes of the olivines are aligned. The light-colored lithology also contains numerous vugs and vesicles: SEM studies reveal euhedral, possibly vapor-deposited, crystals of olivine and pyroxene in the vugs. A second lithologic type is dark-colored, contains remnant chondrules. and has a microgranular texture. Poikilitic orthopyroxene crystals, where present, are smaller (0.1–0.2mm) than they are in the light-colored lithology. Microgranular olivine crystals contain <0.08 wt% CaO: most contain 0.03–0.05 wt% CaO. Vugs are rare and Si-K-rich material is absent. The third lithologic type is gray macroscopically and seems to be intermediate between the other two. It has a well-developed poikilitic texture, but contains neither skeletal olivines (euhedral olivines are rare) nor Si-K-rich material: remnant chondrules are present but less abundant than in the dark lithology. A modal analysis of a 5300 mm2 slab shows, contrary to published opinions, that Shaw contains normal L-group chondrite abundances of metal and troilite. However, these phases are distributed irregularly throughout the meteorite. The light colored lithology is nearly devoid of metal and troilite and centimeter-sized metal-troilite globules occur between the three silicate lithologies. Wherever the metal occurs, it consists of nearly homogeneous martensite (13.9 wt% Ni) rimmed by kamacite (7.1 wt% Ni). These data indicate that Shaw is a partly-melted shock-breccia. The light-colored lithology must have been totally melted, as shown by the presence of aligned. CaO-rich, skeletal olivines; Si-K-rich residual material: and vugs and vesicles lined with euhedral crystals of mafic silicates. The dark areas appear to be unmelted target rock of L-group composition. Analysis of the growth of kamacite at the taenite (now martensite) borders indicates a cooling rate of ~ 3 C/103 yr. or one thousand times faster than most ordinary chondntes. The Shaw impact event probably formed a crater several kilometers in diameter on its meteorite parent body.  相似文献   

12.
Diamond from metaultramafic rocks of the Mesoarchean (2.96–3.0 Ga) Olondo greenstone belt, located in the western Aldan–Stanovoy shield, has been studied. Diamonds occur in lenses of olivine–serpentine–talc rocks within metaultramafic rocks of intrusive habit, whose composition corresponds to peridotite komatiites. All diamonds from the metaultramafic rocks are crystal fragments 0.3 to 0.5 mm in size. Morphological examination has revealed laminar octahedra, their transitional forms to dodecahedroids, crystals with polycentric faces, and spinel twins. The crystals vary in photoluminescence color: dark blue, green, yellow, red, or albescent. Characteristic absorption bands in crystals point to nitrogen impurities in the form of A and B1 defects and tabular B2 defects. The crystals studied belong to the IaA/B type, common among natural diamonds. The overall nitrogen content varies from < 100 to 3800 ppm. The relative content of nitrogen in B1 centers varies from 0 to 94%, pointing to long stay in the mantle. The carbon isotope ratio in the diamonds, 13C = ? 26‰, is indicative of involvement of subducted crust matter in diamond formation in the Archean.  相似文献   

13.
The accumulation of structural damage that is created in minerals upon corpuscular irradiation, has two apparently contrarious effects on their luminescence behaviour. First, irradiation may cause the generation of luminescent defect centres, which typically results in broad-band emissions. Such defect emissions are characteristic of low levels of radiation damage. Second, radiation damage depletes in general the luminescence of minerals, which is associated with broadenings and intensity losses of individual emission lines. Minerals that have suffered elevated levels of irradiation hence tend to be virtually non-luminescent. This review paper aims at giving an overview of the possible correlations of radiation damage and emission characteristics of minerals. After a brief, introductory summary of the damage-accumulation process and its causal corpuscular radiation, an array of examples is presented for how internal and/or external irradiation may change appreciably the emission of rock-forming and accessory minerals. As a detailed example for the complexity of changes of emissions upon damage accumulation, preliminary results of a case study of the photoluminescence (PL) of synthetic CePO4 irradiated with 8.8 MeV He ions are presented. Irradiation-induced spectral changes include (i) the initial creation, and subsequent depletion, of a broad-band, defect-related PL emission of orange colour, and (ii) gradual broadenings and intensity losses of PL lines related to electronic transitions of rare-earth elements, eventually leading to gradual loss of their splitting into multiple Stark levels (shown for the 4F3/24I9/2 transition of Nd3+).  相似文献   

14.
Henry O.A. Meyer 《Earth》1977,13(3):251-281
The importance of ultramafic and eclogitic xenoliths in kimberlite as representing the rocks and minerals of the upper mantle has been widely perceived during the last decade. Studies of the petrology and mineral chemistry of these mantle fragments as well as of inclusions in diamond, have led to significant progress in our understanding of the mineralogy and chemistry of the upper mantle. For example, it is now known that textural differences in the ultramafic xenoliths (lherzolite, harzburgite, pyroxenite and websterite) are partially reflected in chemical differences. Thus xenoliths that display a ‘fluidal’ texture, indicative of intense deformation are less depleted in Ca, Al, Na, Fe and Ti than those xenoliths in which granular textures are predominant. It is believed this relative depletion may indicate the sheared (fluidal texture) xenoliths are representative of primary, undifferentiated mantle. This material on partial melting would produce ‘basaltic-type’ material, and leave a residuum whose chemistry and mineralogy is reflected by the granular xenoliths.Also present in kimberlite are large single phase xenoliths that may be either one single crystal (xenocryst, megacryst) or an aggregate of several crystals of the same mineral (discrete xenolith, or discrete nodule). These large single phase samples consist of similar minerals to those occurring in the ultramafic xenoliths but chemically they are distinct in being generally more Fe-rich. The relation between these xenocrysts to their counterparts in the ultramafic xenoliths is unknown. Also unknown, at the present time, is the exact relation between diamond and kimberlite. Evidence obtained from study of the mineral inclusions in diamond suggests that diamond forms in at least two chemically distinct environments in the mantle; one eclogitic, the other, ultramafic. Interestingly, this suggestion is true for diamonds from worldwide localities.The mineral-chemical results of studies on xenoliths and inclusions in diamond have been convincingly interpreted in the light of experimental studies. It is now possible based on several different geothermometers and barometers to determine relatively reasonable physical conditions for the final genesis of many of these mantle rocks. For the most part the final equilibration temperatures range between 1000 and 1400°C and pressure in the region 100–200 km. These conditions are consistent with an upper mantle origin. Future studies will undoubtedly attempt to more concisely, and accurately, define these conditions, as well as understand better the chemical and spatial relationship of the rock-types in the mantle.  相似文献   

15.
A xenolith of eclogite from the kimberlite pipe Udachnaya–East, Yakutia Grt+Cpx+Ky + S + Coe/Qtz + Dia + Gr has been studied. Graphite inclusions in diamond have been studied in detail by Confocal Raman (CR) mapping. The graphite inclusion in diamond has a highly ordered structure and is characterized by a substantial shift in the band (about 1580 cm–1) by 7 cm–1, indicating a significant residual strain in the inclusion. According to the results of FTIR spectroscopic studies of diamond crystals, a high degree of nitrogen aggregation has been detected: it is present mainly in form A, which means an “ancient” age of the diamonds. In the xenolith studied, the diamond formation occurred about 1 Byr, long before their transport by the kimberlite melt, and the conditions of the final equilibrium were temperatures of 1020 ± 40°C at 4.7 GPa. Thus, these graphite inclusions found in a diamond are the first evidence of crystallization of metastable graphite in a diamond stability field. They were formed in rocks of the upper mantle significantly below (≥20 km) the graphite-diamond equilibrium line.  相似文献   

16.
The genesis and primary source of the well-known diamond placers in the Umba-Pizhma region of Timan still remain unclear. Diamonds are not associated with the typical index minerals of the ultramafic assemblage. Epigenetic rare earth aluminophosphates (florencite, goyazite, etc.) occur as individual grains or supergene coatings on the diamonds’ surfaces without any relation to the primary diamond assemblage. They are often observed over syngenetic metal films on the diamond crystals’ surfaces. These minerals also occur as secondary inclusions in pores of leucoxene from the Pizhma deposit, as well as in Brazilian carbonados. Owing to their typomorphic features, aluminophosphates may be used as the secondary index minerals of the diamonds.  相似文献   

17.
Breccia fragments have been analyzed from the 2–4 mm sieve fraction of three Apollo 16 soils collected in the vicinity of North Ray Crater (63503,17 at Station 13; 67603,1 and 67703,14 at Station 11). Ar39-Ar40 ages, Ar37-Ar38 exposure ages, abundances of major and certain trace elements, and petrographie data relevant to thermal history have been obtained for up to 48 individual fragments.Among the samples. 30 gave Ar39-Ar40 release patterns that allowed the assignment of a high- or intermediate-temperature plateau age and the recognition of three age groups. Group I (10 fragments) are 4.12-4.21 AE, Group 2 (13 fragments) are 3.89-4.02 AE, and Group 3 (6 fragments) are <2.5 AE in age. Only one fragment (3.60 AE) falls outside this grouping and possibly represents Theophilus ejecta. The probability that the gap between 4.12 and 4.02 AE is a statistical fluctuation is only ~2%. The exposure ages cluster strongly around 50 × 106y. the age of North Ray Crater.The oldest, Group 1 fragments are all anorthositic metamorphosed breccias of light-matrix type. The younger. Group 2 fragments are noritic anorthosite and anorthositic norite breccias with textures indicative of greater annealing (melted matrix), one totally melted sample being of KREEP-basalt texture. The very young. Group 3 fragments are chiefly of glass or devitrified glass. There is a marked distinction between Groups 1 and 2 in compositional as well as textural properties. The Group 2 breccias are generally enriched in Mg, K and REE relative to the aluminous Group I breccias (eg. K ≤ 400 ppm in Group 1 and mostly ≥ 600 ppm in Group 2). This difference is attributed to the introduction of KREEP and mafic ANT components during the formation of the Group 2 breccias.The results are interpreted as reflecting two magnitudes of cratering. The older craters (>4.1 AE) were of medium size (diameters up to a few hundred kilometers), large enough to reset the ages but not capable of excavating deeper than predominantly feldspathic (anorthositic) layers of the crust. The younger craters (~3.9-4.0 AE) were, in contrast, those ascribed to major basin-forming events and were therefore capable of excavating a deeper and wider spectrum of crustal lithologies. The latter resulted in admixture of KREEP and mafic ANT components with the feldspathic ANT, cover layer. KREEP was thus only excavated in abundance during the basin-forming events, from a sub-crustal layer formed initially at ~4.4 AE but incorporated in the breccias at ~4 AE.The KREEP-contaminated. Group 2 breccias have—except two fragments—ages between 3.95 and 4.02 AE. This group includes a crystallized melt (3.97 ± 0.04 AE), close in composition and texture to 14310 (3.87 ± 0.04 AE) which is generally attributed to the Imbrian basin-forming event (~3.88 AE). The pre-Imbrian. Group 2 breccias of Apollo 16 can best be attributed to the Nectaris basin-forming event, which according to the clustered ages probably occurred at ~3.98 AE. Our results support a multi-impact lunar cataclysm with the formation of Nectaris (3.98 AE). Humorum. South Serenitatis, Crisium and Imbrium (3.88 AE) within a 0.1 AE time interval.  相似文献   

18.
Sediment accumulation rate studies utilizing excess 210Pb and 137Cs were conducted as part of recent investigations of biogeochemical cycling at a single site in Cape Lookout Bight, a rapidly changing coastal basin on the Outer Banks of North Carolina (U.S.A.). Cores three meters in length reveal a depositional history for the bight interior characterized by a gradual transition in texture from coarse-grained to fine-grained material over the period 1946–1979. This transition is controlled by progressive enclosure of the bight by an active northerly migrating recurved spit. The textural gradation is periodically interrupted by layers of well-sorted sand associated with major storm events. Lead-210 data indicate that the upper meter of the sediment has accumulated at a rate of 3.35 to 4.71 g · cm?2 · yr?1 or approximately 8.4 to 11.8 cm · yr?1 (at ø = 0.84). Below 120 cm depth, dilution of clay and silt by low activity sand necessitates correction of the 210Pb profile in order to establish a geochronology. Grain size 210Pb distribution measurements at three depths reveal that the specific activity (dpm · g?1) of clay is 3.2 times that of silt and 24.7 times that of sand. Corrections of bulk sediment excess 210Pb activities based on these measurements lead to dates for textural changes which are consistent with charted changes in basin morphology and major storm events.Sixteen 137Cs measurements between 33–241 cm depth reveal a peak activity at 105–115 cm and indicate a minimum sedimentation rate of approximately 2.7 g · cm?2 · yr?1.  相似文献   

19.
Diamond (~1 μm) and graphite (1–10 μm) in NaCl were melted at 50 to 300 kbar in a diamond anvil cell using a pulsed YAG laser. The samples were removed from the cell and the structures of the quenched phases were studied by transmission electron microscopy. The melted regions of the samples were found to consist of nearly perfect spheres of carbon ranging in size from ~1 μm down to less than a few nanometers. In the diamond sample melted at 300 kbar, the larger spherules (>0.2 μm) are polycrystalline diamond with either a granular or radial texture. The smaller spherules (<0.2 μm) give electron diffraction patterns with four diffuse rings that correspond to the 002, 100, 004 and 110 of graphite. This diffraction pattern is typical of disordered graphite randomly oriented about the c-axis. Dark field imaging, using a portion of the 002 ring, produces a “bow tie” figure in each of the smaller spherules. The orientation of the “bow tie” figure depends on the portion of the ring used to form the image, and indicates a radial orientation of the c-axis of the disordered graphite. The spacing between the 002 layers depends on the pressure at the time of melting. We interpret this to indicate that there is some sp3 bonding between layers in the disordered graphite in the smaller spherules. The smaller spherules may have the disordered graphite structure because of the effect of the size on the free energy relationship between the phases, or they may have been quenched more rapidly than the larger spherules thus preserving some of the character of the melt. If the latter explanation is correct, then our results may indicate that the diamond melt contains significant sp2 bonding. Lattice images (Fig. 12) of the internal structure of the smallest spherules observable (~50 A) clearly show that the carbon layers are parallel to the surface of the spherules and that there is a great deal of disorder in the layers. These observations are entirely consistent with our conclusions based on the dark field images.  相似文献   

20.
The analysis of texture, major element and oxygen isotope compositions of cloudy garnet crystals from a metapelite sampled on Ikaria Island (Greece) is used to assess the model of growth and re‐equilibration of these garnet crystals and to reconstruct the pressure–temperature–fluid history of the sample. Garnet crystals show complex textural and chemical zoning. Garnet cores (100–200 μm) are devoid of fluid inclusions. They are characterized by growth zoning demonstrated by a bell‐shaped profile of spessartine component (7–3 mol.%), an increase in grossular from 14 to 22 mol.% and δ18O values between 9.5 ± 0.3‰ and 10.4 ± 0.2‰. Garnet inner rims (90–130 μm) are fluid inclusion‐rich and show a decreasing grossular component from 22 to 5 mol.%. The trend of the spessartine component observed in the inner rim allows two domains to be distinguished. In contrast to domain I, where the spessartine content shows the same trend as in the core, the spessartine content of domain II increases outwards from 2 to 14 mol.%. The δ18O values decrease towards the margins of the crystals to a lowest value of 7.4 ± 0.2‰. The outer rims (<10 μm) are devoid of fluid inclusions and have the same chemical composition as the outermost part of domain II of the inner rim. Garnet crystals underwent a four‐stage history. Stage 1: garnet growth during the prograde path in a closed system for oxygen. Garnet cores are remnants of this growth stage. Stage 2: garnet re‐equilibration by coupled dissolution–reprecipitation at the temperature peak (630 < T < 650 °C). This causes the creation of porosity as the coupled dissolution–reprecipitation process allows chemical (Ca) and isotopic (O) exchange between garnet inner rims and the matrix. The formation of the outer rim is related to the closure of porosity. Stage 3: garnet mode decreases during the early retrograde path, but garnet is still a stable phase. The resulting garnet composition is characterized by an increasing Mn content in the inner rim’s domain II caused by intracrystalline diffusion. Stage 4: dissolution of garnet during the late retrograde path as garnet is not a stable phase anymore. This last stage forms corroded garnet. This study shows that coupled dissolution–reprecipitation is a possible re‐equilibration process for garnet in metamorphic rocks and that intra‐mineral porosity is an efficient pathway for chemical and isotopic exchange between garnet and the matrix, even for otherwise slow diffusing elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号