首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The solubility of all possible Zn and Pb species in aqueous chloride fluids was evaluated by means of thermodynamic simulations in systems ZnO(PbO)-aqueous solution of NaCl (KCl, NaCl + HCl) within broad ranges of temperature (600–900°C), pressure (0.7–5 kbar), and chloride concentrations, under parameters corresponding to the crystallization and degassing of granitoid magmas in the Earth’s crust. Our simulation results demonstrate that the addition of Cl to the fluid phase in the form of Na(K)Cl and HCl significantly increases the concentrations of Cl-bearing Zn and Pb complexes and the total concentration of the metals in the solutions in equilibrium with the solid oxides. In Zn-bearing fluids, the Zn(OH) 2 0 , ZnOH+, and Zn(OH) 3 ? —hydroxyl complexes and the ZnCl 2 0 , and ZnCl+ chlorocomplexes, which are predominant at low Cl concentrations (CCl < 0.05–0.1 m) give way to ZnCl 4 2? with increasing CCl, which becomes the predominant Zn species of the fluid at CCl > 0.1–0.5 m throughout the whole temperature range in question and pressures higher than 1 kbar. For Pb-bearing fluids, the T-P-X region dominated by the Pb(OH) 2 0 , and Pb(OH) 3 ? hydroxyl complexes is remarkably wider than the analogous region for Zn, particularly at elevated temperatures (≥700°C) in alkaline solutions. An increase in CCl is associated with an increase in the concentration and changes in the speciation of Pb chlorocomplexes: PbCl 2 0 → PbCl 3 ? → PbCl 4 2? . The concentrations of Zn and Pb chlorocomplexes increase with increasing pressure, decreasing temperature, and decrease pH with the addition of HCl to the system. It is demonstrated that the solubility of ZnO at any given T-P-X in alkaline solutions with low chloride concentrations are lower than the solubility of PbO. The Zn concentration increases more significantly than with the Pb concentration with increasing CCl and decreasing pH, so that the Zn concentration in acidic solutions is higher than the Pb concentration over broad ranges of temperature, pressure, and Cl concentration. Chloride complexes of Zn (ZnCl 2 0 , and ZnCl 4 2? ) and Pb (PbCl 2 0 , and PbCl 3 ? are proved to be predominant within broad T-P-X-pH ranges corresponding to the parameters under which magmatic fluid are generated. Our simulation results confirm the hypothesis that chlorocomplexes play a leading role in Zn and Pb distribution between aqueous chloride fluids and granitic melts. These simulation results are consistent with experimental data on the Zn and Pb distribution coefficients (D(Zn)f/m and D(Pb)f/m, respectively) between aqueous chloride fluids and granitic melts that demonstrated that (1) D(Zn)f/m and D(Pb)f/m increase with increasing Na and K chloride concentrations in the aqueous fluid, (2) both D(Zn)f/m and D(Pb)f/m drastically increase when HCl is added to the fluid, and (3) (D(Zn)f/m is higher than D(Pb)f/m at any given T-P-X parameters. The experimentally established decrease in D(Zn)f/m and D(Pb)f/m with increasing pressure (at unchanging temperature and Cl concentration) is likely explained by an increase in the alkalinity of the aqueous chloride fluid in equilibrium with granite melt and, correspondingly, a decrease in the Zn and Pb solubility in this fluid.  相似文献   

2.
This paper reports the results of numerical simulation for the behavior of rare earth elements (REE) during decompression degassing of H2O- and Cl-bearing granite melts at pressures decreasing from 3 to 0.5–0.3 kbar under near isothermal conditions (800 ± 25°C). Fluid phase in equilibrium with the melt contains mainly chloride REE complexes, and their behavior during magma degassing is, therefore, intimately related to the behavior of chlorine. It was shown that the contents and distribution patterns of REE in the aqueous chloride fluid phase formed during decompression vary considerably depending on (1) the contents of volatiles (Cl and H2O) in the initial melt, (2) the redox state of the magma, and (3) the dynamics of fluid phase separation from magmas during their ascent toward the Earth’s surface. During decompressiondriven degassing, the contents of both Cl and REE in the fluid decrease, especially dramatically under opensystem conditions. The REE patterns of the fluid phase compared with those of the melt are characterized by a higher degree of light to heavy REE fractionation. A weak negative Eu anomaly may be present in the REE patterns of Cl-rich fluids formed during the early stages of degassing at relatively high pressures. At a further decrease in pressure and Cl content in the fluid, it is transformed into a positive Eu anomaly increasing during decompression degassing. Such an anomalous behavior of Eu during degassing is related to its occurrence in magmatic melts in two valence states, Eu3+ and Eu2+, whereas the other REE occur in melts mainly as (REE)3+. The Eu3+/Eu2+ ratio of melt is controlled by the redox state of the magmatic system. The higher the degree of melt reduction, the more pronounced the anomalous behavior of Eu during decompression degassing. The amount of REE extracted by fluid from melt during various stages of degassing does not significantly influence the content and distribution patterns of REE in the melt.  相似文献   

3.
The specific heat capacity (C p) of six variably hydrated (~3.5 wt% H2O) iron-bearing Etna trachybasaltic glasses and liquids has been measured using differential scanning calorimetry from room temperature across the glass transition region. These data are compared to heat capacity measurements on thirteen melt compositions in the iron-free anorthite (An)–diopside (Di) system over a similar range of H2O contents. These data extend considerably the published C p measurements for hydrous melts and glasses. The results for the Etna trachybasalts show nonlinear variations in, both, the heat capacity of the glass at the onset of the glass transition (i.e., C p g ) and the fully relaxed liquid (i.e., C p l ) with increasing H2O content. Similarly, the “configurational heat capacity” (i.e., C p c  = C p l  ? C p g ) varies nonlinearly with H2O content. The An–Di hydrous compositions investigated show similar trends, with C p values varying as a function of melt composition and H2O content. The results show that values in hydrous C p g , C p l and C p c in the depolymerized glasses and liquids are substantially different from those observed for more polymerized hydrous albitic, leucogranitic, trachytic and phonolitic multicomponent compositions previously investigated. Polymerized melts have lower C p l and C p c and higher C p g with respect to more depolymerized compositions. The covariation between C p values and the degree of polymerization in glasses and melts is well described in terms of SMhydrous and NBO/T hydrous. Values of C p c increase sharply with increasing depolymerization up to SMhydrous ~ 30–35 mol% (NBO/T hydrous ~ 0.5) and then stabilize to an almost constant value. The partial molar heat capacity of H2O for both glasses (\( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{g}} \)) and liquids (\( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \)) appears to be independent of composition and, assuming ideal mixing, we obtain a value for \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \) of 79 J mol?1 K?1. However, we note that a range of values for \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \) (i.e., ~78–87 J mol?1 K?1) proposed by previous workers will reproduce the extended data to within experimental uncertainty. Our analysis suggests that more data are required in order to ascribe a compositional dependence (i.e., nonideal mixing) to \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \).  相似文献   

4.
S and Cl distribution between sodalite and fluid was experimentally studied at temperatures of 300–800°C and pressure of 0.5–3 kbar. It is demonstrated that S is preferably distributed into fluid in equilibrium with sodalite of the composition X S Sod > 0.05 throughout the whole temperature range. The distribution of S in the sodalite-fluid system is nonideal. An equation (derived from experimental data) is presented for evaluating the S mole fraction in fluid from the composition of sodalite at a known temperature. The S mole fractions in the fluid are evaluated for sodalite assemblages from nepheline syenites of the Lovozero Massif as being within the range of 0.036–0.23. The S mole fraction in the fluid is proved to increase with increasing mineral formation temperatures.  相似文献   

5.
Changes in magmatic assemblages and crystal stability as a response of CO2-flushing in basaltic systems have rarely been directly addressed experimentally, making the role of CO2 in magma dynamics still controversial and object of scientific debate. We conducted a series of experiments to understand the response of magmas from Etna volcano to CO2 flushing. We performed a first experiment at 300 MPa to synthesize a starting material composed of crystals of some hundreds of µm and melt pools. This material is representative of an initial magmatic assemblage composed of plagioclase, clinopyroxene and a water-undersaturated melt with 1.6 wt% H2O. In a second step, the initial assemblage was equilibrated at 300 and 100 MPa with fluids having different XCO 2 fl (CO2/(H2O + CO2)). At low XCO 2 fl (< 0.2 to 0.4), plagioclase is completely dissolved and clinopyroxene show dissolution textures. For relatively high XCO 2 fl (0.9 at 300 MPa), the flushing of a CO2-rich fluid phase leads to an increase of the amount of clinopyroxene and a decrease of the abundance of plagioclase at 300 MPa. This decrease of plagioclase proportion is associated with a change in An content. Our experiments demonstrate that flushing basaltic systems with fluids may drastically affect crystal textures and phase equilibria depending on proportions of H2O and CO2 in the fluid phase. Since texture and crystal proportions are among the most important parameters governing the rheology of magmas, fluid flushing will also influence magma ascent to the Earth’s surface. The experimental results open new perspectives to decipher the textural and compositional record of minerals observed in volcanic rocks from Mt. Etna, and at the same time offer the basis for interpreting the information preserved in minerals from other basaltic volcanoes erupting magmas enriched in CO2.  相似文献   

6.
The incorporation of hydrogen into ferrosilite, Fe-bearing enstatite and orthopyroxene containing different trivalent cations (Cr3+ and Al3+, Cr3+ and Fe3+) was investigated experimentally at 25 kbar. Hydrogen concentration was determined by FTIR-spectroscopy on oriented crystal sections and by secondary ion mass spectroscopy, whereas Mößbauer spectroscopy and optical spectroscopy were used to characterise the valence state of Fe in orthopyroxene. Results suggest that hydrogen incorporation in ferrosilite is achieved by a similar mechanism as in pure enstatite. In Cr-bearing samples, however, hydrogen incorporation is reduced by the presence of other trivalent cations by an increased tendency to form Tschermaks substitutions, e.g. Si T 4+ + Mg M1 2+ ? Al T 3+ + Cr M1 3+ . Thus, hydrogen solubility in natural orthopyroxenes from the Earth’s mantle, containing significant amounts of Cr3+, Al3+, and Fe3+, may be much more limited than expected from their trivalent cation content, as a large fraction of the trivalent cations does not participate in H-incorporating reactions as 2 Mg M1 2+ ? M M1 3+ + VM1 + H i + .  相似文献   

7.
In this study, the effects of salinity of infiltrating solutions on the swelling strain, compressibility, and hydraulic conductivity of compacted GMZ01 Bentonite were investigated. After swelling under vertical load using either distilled water or NaCl solutions with concentrations of 0.1, 0.5 M, and 1 M, laboratory oedometer tests were conducted on the compacted GMZ01 Bentonite. Based on the oedometer test results, hydraulic conductivity was determined using the Casagrande’s method. Results show that the swelling strain of highly compacted GMZ01 Bentonite decreases as the concentration of NaCl solution increases. The compression index C c * increases and then turns to decrease with an increase in the vertical stress or a decrease in the void ratio for different solutions, and the C c * decreases as the concentration of NaCl solution increases. The secondary consolidation coefficient C α increases linearly with the increase of the compression index C c * . Furthermore, a bi-linear relationship between the swelling index C s * and the secondary consolidation coefficient C α can be characterized clearly. The hydraulic conductivity increases as the concentration of NaCl solution increases, however, this increase can be prevented if a high confining stress is applied.  相似文献   

8.
Analysis of hydrogeochemical materials on As distribution in CO2-bearing (carbonate) waters in various regions and the thermodynamic simulation of geochemical processes in rock-CO2-bearing water systems made it possible to constrain the optimal conditions for As transfer from rocks into carbonate waters and the accumulation of this element in the waters. The problem was solved with regard for the various rates of As transitions from rocks to water: (a) high rates of As transitions from rocks in compliance with the ion exchange mechanism and (b) low rates of As transitions from rocks in compliance with the mechanism involving the decomposition of As-bearing minerals. Various mechanisms of As extraction from rocks result in the compositional diversity of the aqueous phase and various As migration species in CO2-bearing waters, which, in turn, control the equilibrium concentration levels of this element. The principally important boundary conditions of As enrichment in CO2-bearing waters are high \(P_{CO_2 } \) and R/W ratios in the geochemical systems, a preliminary increase in the Cl concentration in the CO2-bearing waters, and the origin of these waters at high-density heat fluxes. As migration species were simulated for the model solutions and real carbonate waters of various geochemical types, and it is demonstrated that the predominant As species are oxygen-bearing HAsO 2 0 , and AsO 2 ? at a subordinate role of the sulfide HAs2S 4 2? , and As2S 4 2? — species even at high Σ S2? in the system. Two models of the genesis of solid As sulfides in CO2-bearing waters are analyzed: (1) with oxygen-bearing species (HAsO 2 0 , and AsO 2 ? ), which occur most widely, and (2) with sulfide species (As2S 4 2? , HAs2S 4 ? , and As4S 7 2? ), which occur not as widely.  相似文献   

9.
The paper reports the first results of the petrological studies of magmatic melts that formed siliceous pyroclastic deposits related to voluminous eruptions on Iturup Island. The caldera-forming eruptions of the Lvinaya Past and the Vetrovoy Isthmus, having similar features, resulted from the evolution of silicic melts that originated from partial melting of metabasalts. According to the mineral thermometry results, the melt was crystallized at ~800°C. The phenocrysts from the Vetrovoy Isthmus pumices were crystallized at <1 kbar, while those from the Lvinaya Past were formed at higher pressures. The pyroclastic rock compositions in both calderas correspond to moderately aluminous dacite and rhyolitic dacite of the normal series, whose melts likely did not undergo significant crystallization differentiation before the eruptions. The main volatile components of the magma include H2O, CO2, S, F, and Cl. Degassing with emission of water–carbon-dioxide fluid accompanied the early crystallization of plagioclase in the Vetrovoy Isthmus pumice. Evidence of pre-eruption melt degassing in the Lvinaya Past were not found. Water release from the melts may be related to both the early magma degassing and the eruptions. The lack of data evidencing the deep differentiation and mixing of contrasting melts implies a relatively small time period between the acid melt appearance and eruptions.  相似文献   

10.
Crystal-structure modeling of experimental Ca-rich clinopyroxenes [Ca + Na > 0.5 apfu; Mg/(Mg + Fe2+) > 0.7] coexisting with basic and ultrabasic melts was utilized for calibration of geobarometers based on unit-cell volume (Vcell) vs M1-site volume (VM1). The clinopyroxene database includes over one hundred experiments from literature and sixteen previously unpublished experiments on basanite and picrobasalt starting materials. The coexisting melts span a wide range of petrologically relevant anhydrous and hydrous compositions (from quartz-normative basalt to nephelinite, excluding high-Al basalts and melts coexisting with garnet or melilite) at pressure conditions pertinent to the earth's crust and uppermost mantle (P= 0–24 kbar) in a variety of fO 2 conditions (from CCO-buffered to air-buffered) and mineral assemblages (Cpx ± Opx ± Pig ± Ol ± Plag ± Lc ± Ne ± Spl ± Amp ± Ilm). As previously found for near-liquidus products of basaltic melts, the experimental clinopyroxenes follow two distinct trends: (i) at a given P, Vcell is linearly and negatively correlated with VM1. This corresponds with the extent of Tschermak-type substitutions, which depends strongly on aSiO2 and a CaO; (ii) for a fixed melt composition, Vcell and VM1 decrease linearly as P increases, due to a combination of M1, M2 and T site exchanges. Despite the chemical complexity of these relationships, P could be modeled as a linear function of Vcell and VM1. A simplified solution for anhydrous magmas reproduced the experimental pressures with an uncertainty of 1.75 kbar (=1 ; max. dev. = 5.5 kbar; N = 135). An expanded T-dependent solution capable of recovering the measured pressures of both anhydrous and hydrous experiments with an uncertainty of 1.70 kbar (=1 ; max. dev. = 5.4 kbar; N = 157) was obtained by correcting unit-cell and M1-site volumes for thermal expansivity and compressibility. The corrected formulation is more resistant to the effects of temperature variations and is therefore recommended. Nevertheless, it requires an independent, accurate estimate of crystallization T. Underestimating T by 20 °C propagates into a 1-kbar increase of calculated P. The applicability of the T-dependent formulation was tested on hydrous ultramafic to gabbroic rocks of the southern Adamello batholith for which P-T evolution could independently be constrained by field observation, petrography and experimentally determined phase relations. The pressure estimates obtained by clinopyroxene structural geobarometry closely matched those predicted by phase equilibria of a picrobasaltic melt parental to the investigated magmatic rocks. To facilitate application of the present geobarometers, both anhydrous and corrected solutions were implemented as MS-DOS® and UNIX® software programs (CpxBar) designed to permit retrieval of the pressure of crystallization directly from a chemical analysis or from uncorrected unit-cell and M1-site volume X-ray data.  相似文献   

11.
Surface snow and lake water samples were collected at different locations around Indian station at Antarctica, Maitri, during December 2004–March 2005 and December 2006–March 2007. Samples were analyzed for major chemical ions. It is found that average pH value of snow is 6.1. Average pH value of lake water with low chemical content is 6.2 and of lake water with high chemical content is 6.5. The Na+ and Cl? are the most abundantly occurring ions at Antarctica. Considerable amount of SO 4 2? is also found in the surface snow and the lake water which is attributed to the oxidation of DMS produced by marine phytoplankton. Neutralization of acidic components of snow is mainly done by NH 4 + and Mg2+. The Mg2+, Ca2+ and K+ are nearly equally effective in neutralizing the acidic components in lake water. The NH 4 + and SO 4 2? occur over the Antarctica region mostly in the form of (NH4)2SO4.  相似文献   

12.
A new mineral, droninoite, was found in a fragment of a weathered Dronino iron meteorite (which fell near the village of Dronino, Kasimov district, Ryazan oblast, Russia) as dark green to brown fine-grained (the size of single grains is not larger than 1 μm) segregations up to 0.15 × 1 × 1 mm in size associated with taenite, violarite, troilite, chromite, goethite, lepidocrocite, nickelbischofite, and amorphous Fe3+ hydroxides. The mineral was named after its type locality. Aggregates of droninoite are earthy and soft; the Mohs hardness is 1–1.5. The calculated density is 2.857 g/cm3. Under a microscope, droninoite is dark gray-green and nonpleochroic. The mean (cooperative for fine-grained aggregate) refractive index is 1.72(1). The IR spectrum indicates the absence of S O 4 2? and C O 3 2? anions. Chemical composition (electron microprobe, partition of total iron into Fe2+ and Fe3+ made on the basis of the ratio (Ni + Fe2+): Fe3+ = 3: 1; water is calculated from the difference) is as follows, wt %: 36.45 NiO, 12.15 FeO, 17.55 Fe2O3, 23.78 H2O, 13.01 Cl, ?O=Cl2 ?2.94, total is 100.00. The empirical formula (Z = 6) is Ni2.16Fe 0.75 2+ Fe 0.97 3+ Cl1.62(OH)7.10 · 2.28H2O. The simplified formula is Ni3Fe3+Cl(OH)8 · 2H2O. Droninoite is trigonal, space group R \(\bar 3\) m, R3m, or R32; a = 6.206(2), c = 46.184(18) Å; V = 1540.4(8) Å3. The strong reflections in the X-ray powder diffraction pattern [d, Å (I, %) (hkl)] are 7.76(100)(006), 3.88(40)(0.0.12), 2.64(25)(202, 024), 2.32(20)(0.2.10), 1.965(0.2.16). The holotype specimen is deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 3676/1.  相似文献   

13.
The chemical composition of aerosols in the Marine Atmospheric Boundary Layer (MABL) of Bay of Bengal (BoB) and Arabian Sea (AS) has been studied during the spring and inter-monsoon (March-May 2006) based on the analysis of water soluble constituents (Na+, NH 4 + , K+, Mg2+, Ca2+, Cl?, NO 3 ? and SO 4 2? ), crustal elements (Al, Fe, and Ca) and carbonaceous species (EC, OC). The total suspended particulates (TSP) ranged from 5.2 to 46.6 μg m?3 and 8.2 to 46.9 μg m?3 during the sampling transects in the BoB and AS respectively. The water-soluble species, on average, accounted for 44% and 33% of TSP over BoB and AS respectively, with dominant contribution of SO 4 2? over both the oceanic regions. However, distinct differences with respect to elevated abundances of NH 4 + in the MABL of BoB and that of Na+ and Ca2+ in AS are clearly evident. The non-sea-salt component of SO 4 2? ranging from 82 to 98% over BoB and 35 to 98% over AS; together with nss-Ca2+/nss-SO 4 2? equivalent ratios 0.12 to 0.5 and 0.2 to 1.16, respectively, provide evidence for the predominance of anthropogenic constituents and chemical transformation processes occurring within MABL. The concentrations of OC and EC average around 1.9 and 0.4 μg m?3 in BoB and exhibit a decreasing trend from north to south; however, abundance of these carbonaceous species are not significantly pronounced over AS. The abundance of Al, used as a proxy for mineral aerosols, varied from 0.2 to 1.9 μg m?3 over BoB and AS, with a distinctly different spatial pattern — decreasing north to south in BoB in contrast to an increasing pattern in the Arabian Sea.  相似文献   

14.
A geothermometer equation \(T = \frac{{1531}} {{\ln K_d + 0.883}}\), where \(K_{\dot d} = \frac{{X_{Zr}^S X_{Hf}^m }} {{X_{Zr}^m X_{Hf}^s }}\) [X j i is the concentration (in ppm) of component i in phase j] is the Zr and Hf distribution coefficient between melt and zircon, and T is temperature in K, was derived by thermodynamic processing of literature experimental data on Zr and Hf distribution between acid melts (m) and zircon (s) and on the solubility of zircon and hafnon in the melts with variable silica content. In calculations with this equations, we assumed the Zr concentration in zircon to be constant: 480000 ppm. It is shown that the commonly observed increase in Hf concentration from the cores to margins of magmatic zircon crystals is caused by the fractional crystallization of zircon. For differentiated acid magmatic series, the initial crystallization temperature of zircon in the least silicic cumulates should be evaluated using the cores of large zircon grains with the highest Zr/Hf ratio. Application of the geothermometer for mafic and intermediate rocks may be hampered due to simultaneous crystallization of zircon with some other ore and mafic minerals relatively enriched in Zr and Hf. The newly derived geothermometer has some advantages over other indicators of the crystallization temperature of magmatic zircon based on the zircon saturation index (Watson and Harrison, 1983; Boehnke et al., 2013) and on Ti concentration in this mineral (Ferry and Watson, 2007) as it does not depend on the major-oxide melt composition and on the accuracy of the estimated SiO2 and TiO2 activities in the melts. Calculations of the Zr and Hf fractionation trends in the course of zircon crystallization in granitoid melts allow one to evaluate the temperature at which more evolved melt portions were segregated.  相似文献   

15.
The results of a systematic analysis of master radial-velocity curves for the X-ray binary 4U 1700-37 are presented. The dependence of the mass of the X-ray component on the mass of the optical component is derived in a Roche model based on a fit of the master radial-velocity curve. The parameters of the optical star are used to estimate the mass of the compact object in three ways. The masses derived based on information about the surface gravity of the optical companion and various observational data are 2.25 ?0.24 +0.23 M and 2.14 ?0.56 +0.50 M. The masses based on the radius of the optical star, 21.9R, are 1.76 ?0.21 +0.20 M and 1.65 ?0.56 +0.78 M. The mass of the optical component derived from the mass-luminosity relation for X-ray binaries, 27.4M, yields masses for the compact object of 1.41 ?0.08 + M and 1.35 ?0.18 +0.18 M.  相似文献   

16.
The concentration of the Al and Ti paramagnetic impurity centers in pre-ore and ore-stage quartz at the Peschanka porphyry copper–molybdenum–gold deposit in the Western Chukchi Peninsula, Russia were determined using electron paramagnetic resonance spectroscopy (EPR). The [AlO 4 - /h+]0 concentration in pre-ore and ore-stage quartz varies from 29 to 124 and from 13 to 101 at. ppm, respectively. The contents of the [TiO 4 - /Li+]0 and [TiO 4 - /H+]0 centers reach 20 and 6.3 at. ppm, respectively. Pre-ore quartz associated with the formation of biotite–potassium feldspar–quartz alteration and ore-stage quartz associated with the formation of quartz–sericite rocks followed by the ore deposition differ considerably in the Ti center content, especially the [TiO 4 - /H+]0 center. The [TiO 4 - /H+]0 concentration is much higher in the pre-ore quartz (>2 at. ppm) than that in the ore-stage quartz related to copper mineralization (<2 at. ppm). The [TiO 4 - /Li+]0 concentration also decreases from pre-ore to ore-stage quartz. Taking the data we obtained into account, the formation temperature of pre-ore and ore-stage quartz estimated from a titaniumin-quartz geothermometer is 590–470°C (weighted average 520°C) and 510–310°C (weighted average 430°C), respectively. The obtained temperature range of 590 to 310°C is similar to that determined from homogenization of fluid inclusions in quartz.  相似文献   

17.
A new statistical model is proposed for the molecular mass distributions (MMD) of polymerized anions in silicate melts. The model is based on the known distribution of Q n species in the MeO-Me2O-SiO2 system. In this model, chain and ring complexes are regarded as a random series of Q n structons with various concentrations of bridging bonds (1 ≤ n ≤ 4, Q 0 corresponds to SiO 4 4? ). This approach makes it possible to estimate the probability of formation of various ensembles of polymer species corresponding to the general formula (Si i O3i+1?j )2(i+1?j)?, where i is the size of the ion, and j is the cyclization number of intrachain bonds. The statistical model is utilized in the STRUCTON computer model, which makes use of the Monte Carlo method and is intended for the calculation of the composition and proportions of polyanions at a specified degree of polymerization of silicate melts (STRUCTON, version 1.2; 2007). Using this program, we simulated 1200 MMD for polyanions in the range of 0.52 ≤ p ≤98, where p is the fraction of nonbridging bonds in the silicon-oxygen matrix. The average number of types of anions in this range was determined to increase from three (SiO 4 4? , Si2O 7 6? , and Si3O 10 8? ) to 153, and their average size increases from 1 to 7.2. A special option of the STRUCTON program combines MMD reconstructions in silicate melts with the formalism of the Toop-Samis model, which enables the calculation of the mole fraction of the O2? ion relative to all anions in melts of specified composition. It is demonstrated that, with regard for the distribution and average size of anion complexes, the concentration of the O2? ion in the MeO-SiO2 system is characterized by two extrema: a minimum at 40–45 mol % SiO2, which corresponds to the initial stages of the gelenization of the polycondensated silicate matrix, and a maximum, which is predicted for the range of 60–80 mol % SiO2.  相似文献   

18.
Study on geochemistry of groundwater occurring at different depths is rarely attempted due to inherent difficulties in sample isolation and lack of significant species variations. Three-dimensional (spatial, temporal and depth-wise) evaluation of water chemistry variations would give holistic picture of aquatic chemistry. In order to fill the knowledge gap the vertical hydrogeochemistry of Penna-Chitravati inter-stream sub-basin is studied.Water samples are segregated into different groups based on water levels of source wells. The group samples pertaining to granite terrain (A to C) does not show much variation for tested parameters as most of the samples fall within 20m water level. In shale aquifers groundwater is progressively less ionized as depth to levels increases (Group D to G). Reduction of EC and Na-Cl along with falling water levels indicates deeper aquifers are free from contamination. Gradual decrease in HCO 3 - with depth substantiates that deeper aquifers are getting less fresh water due to lack of inter connectivity in shale formations. Sodium in groundwater of both the granite and shale aquifers is contributed by weathering of silicate rocks as the Na+/Cl- molar ratio is >1 in many samples. Majority of the samples in both the geological terrains have Ca2+/Mg2+ ratio between 1 to < 2 indicating dolomite dissolution is responsible for Ca2+-Mg2+ contribution. The chemistry of tested water indicate aquifer matrix is responsible for chemical make-up of pore water which was obliterated due to extraneous sources like anthropogenic contamination as Na+, Cl-, NO 3 - and SO 4 2- /HCO 3 - is high in many samples belonging to shallow aquifers. Thermodynamic action in deep aquifers could be responsible for dissimilar water chemistry in aquifers belonging to same geological domain.  相似文献   

19.
In order to describe sulfide-silicate liquid immiscibility, coefficients and constants in sulfide thermobarometer equation X S = EXP(A/T ? ??P/T ? B ? CT ? $D\log f_{O_2 } $ ? ??J i X i ) were determined by multidi-mensional statistic analysis of a data set of more than 200 quench experiments on the solubility of sulfide sulfur in dry basaltic melts. Experiments characterize the sulfide-silicate equilibrium in a wide range of compositions, temperatures (1115-1800°C), pressures (1 atm-90 kbar) and oxygen fugacities ( $\log f_{O_2 } $ from ?3.7 to ?12.2). The average difference between experimental and calculated values of sulfur contents in sulfide-saturated basaltic melts is close to zero (0.0006 mol %), which indicates the absence of a systematic shift. The values of 5% confidence interval are described by equation ±(0.415C S 2 ? 0.211C S + 0.038) (C S in mol %) and fall within the range from ±0.012 to ±0.076 mol %. Proposed thermobarometer is presently a single thermobarometer that provides accuracy better than ±10 rel % of sulfur content, not logarithmic contents, within concentration range of 0.1-0.7 mol %. Verification of the thermobarometer on the basis of layered intrusion data showed that the proposed thermobarometer predicts the position of cumulus sulfide in the vertical sections of the Tsipringa and Kivakka intrusions with an accuracy of ±70 meters. At the same time, the reliable local prediction of layering-associated low-sulfide mineralization is impossible in the framework of model with ideal convective magma mixing in a chamber.  相似文献   

20.
For the first time, chemical characterization of PM10 aerosols was attempted over the Bay of Bengal (BoB) and Arabian Sea (AS) during the ICARB campaign. Dominance of SO 4 2? , NH 4 + and NO 3 ? was noticed over both the regions which indicated the presence of ammonium sulphate and ammonium nitrate as major water soluble particles playing a very important role in the radiation budget. It was observed that all the chemical constituents had higher concentrations over Bay of Bengal as compared to Arabian Sea. Higher concentrations were observed near the Indian coast showing influence of landmass indicating that gaseous pollutants like SO2, NH3 and NO x are transported over to the sea regions which consequently contribute to higher SO 4 2? , NH 4 + and NO 3 ? aerosols respectively. The most polluted region over BoB was 13°?19°N and 70°?90°E while it was near 11°N and 75°E over AS. Although the concentrations were higher over Bay of Bengal for all the chemical constituents of PM10 aerosols, per cent non-sea salt (nss) fraction (with respect to Na) was higher over Arabian Sea. Very low Ca2+ concentration was observed at Arabian Sea which led to higher atmospheric acidity as compared to BoB. Nss SO 4 2? alone contributed 48% of total water soluble fraction over BoB as well as AS. Ratios SO 4 2? /NO ? 3 over both the regions (7.8 and 9 over BoB and AS respectively) were very high as compared to reported values at land sites like Allahabad (0.63) and Kanpur (0.66) which may be due to very low NO.3 over sea regions as compared to land sites. Air trajectory analysis showed four classes: (i) airmass passing through Indian land, (ii) from oceanic region, (iii) northern Arabian Sea and Middle East and (iv) African continent. The highest nss SO 4 2? was observed during airmasses coming from the Indian land side while lowest concentrations were observed when the air was coming from oceanic regions. Moderate concentrations of nss SO2. 4 were observed when air was seen moving from the Middle East and African continent. The pH of rainwater was observed to be in the range of 5.9–6.5 which is lower than the values reported over land sites. Similar feature was reported over the Indian Ocean during INDOEX indicating that marine atmosphere had more free acidity than land atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号