首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 936 毫秒
1.
Quasi-periodic variations in the power of incoherent scattered signals, caused by wave disturbances of the electron concentration in the ionosphere, are analyzed for the day of a partial solar eclipse and for a background day. The windowed and adaptive Fourier transforms and the wavelet transform are used for spectral analysis. The spectral parameters of the wave disturbances at altitudes of 100–500 km in the 10–120 min period range differed significantly on the day of the solar eclipse and on the background day. Variations in the spectrum began near the onset of the phase of maximum disk occultation and continued no less than 2 h. The amplitude of time variations N was 2 × 109–4 × 1010 m?3, and the relative amplitude was 0.10–0.15. Wave disturbances have been compared for five solar eclipses; the comparison shows a noticeable variation in the spectrum of the wave disturbances during these events.  相似文献   

2.
The results of observations in the Vasil’sursk Laboratory (56.1° N, 46.1° E) of partial solar eclipses of August 11, 1999, August 1, 2008, and March 20, 2015 are discussed. Ionospheric observations in the eclipse periods and on control days were conducted by the method of resonant scatter of radio waves at artificial periodic irregularities of the ionospheric plasma and the partial reflection method based on radio wave scatter by natural irregularities in the D region. The lower ionosphere reaction to solar eclipses, including variations in the electron concentration and characteristics of the signals scattered by APIs, was studied. An intensification of the lower ionosphere turbulization, an increase in the signal amplitudes backscattered by APIs in the E region, stratification of the D region, and the arrival of scattered signals from mesopause heights were observed during the eclipses. A decrease in the electron concentration of the D region up to a factor of 3–5 was found by the partial reflection method. Above 88 km, the ionospheric response was delayed by 20–25 min relative to the moment of the eclipse maximum phase, whereas this delay in the lower part of the D region was 2–4 min.  相似文献   

3.
The effect of the solar eclipse that occurred on August 1, 2008, on the level of the natural electro-magnetic emission signals in the ELF-VLF range, simultaneously observed at Kamchatka and in Yakutsk, and the variations in the amplitude and phase of signals from the VLF radiostations, registered in Yakutsk, has been considered. The VLF radiostations in Krasnodar, Novosibirsk, and Khabarovsk successively emitted signals at frequencies of 11 905, 12 649, and 14 880 Hz. Based on the observations of the signals from these radiostations, it has been established that the signal amplitudes and phases increased by 3–5% and 30°–45° when the signals crossed the lunar shadow region. The synchronous registration of the ELF-VLF noise emission indicated that a bay-like increase and the following decrease in the emission to the background level was observed at both receiving points during the eclipse from ∼1000 to 1130 UT. This effect was registered at frequencies of 0.6–5.6 kHz in Yakutsk and at lower (30–200 Hz) and higher (2.5–11 kHz) frequencies at Kamchatka. In this case the noise emission intensity maximum was observed when the lunar shadow maximally approached the registration point. At higher frequencies, the emission maximum was observed simultaneously at both points (at 1100 UT) but with a delay relative to the maximum at lower frequencies. The possible causes of the appearance of the solar eclipse effects in the natural ELF-VLF emission are considered.  相似文献   

4.
The effects of the solar eclipse of March 29, 2006, in the signals of ULF radio stations, in the intensity of regular radio noise at frequencies of 0.3–10 kHz, and in the number of atmospherics received in Yakutsk mostly from the west have been considered. The observations were performed using a multichannel parallel analyzer-recorder (11 channels in the frequency band 0.47–8.7 kHz), one-point lightning direction and range finder (0.3–100 kHz), narrow-sector radio noise direction-finder (0.3–10 kHz), recorder of signals from VLF radio stations, and broadband radio noise recorder (0.3–100 kHz). A GPS clock was used to synchronize a recorder of signals from VLF radio stations. The effect was observed in radio signals, radio noise, and number of atmospherics from the direction 270° ± 20° counted off clockwise from the north during the last stage of the eclipse (~ 1100–1200 UT), when the lunar shadow approached the line of the nighttime terminator and obscured part of the signal propagation path. The effect was observed as an enhancement of the received signals by a factor of ~1.2, a factor of ~1.4 increase in the number of atmospherics, and a change in the radio station phase values.  相似文献   

5.
Aperiodic and quasi-periodic variations in the critical frequency of the F2 layer and Doppler frequency shift of radiowaves at vertical paths on the day of a partial (the magnitude was ~0.78) solar eclipse and on background days are analyzed. According to the experiment, the relative decrease in the electron concentration was 0.41 (0.46 according to calculations) and 0.50 (0.53 according to calculations) in the E region and in the lower part of the F region of the ionosphere. At a height of the main maximum of the electron concentration, the relative decrease in the electron concentration was 0.52 (0.51 according to calculations). It is shown that on the day of the eclipse and on the background day, the characteristics of wave disturbances within the height range 160–240 km were substantially different. Changes in the spectral composition began 30 min after the eclipse occurrence and, depending on the period, lasted from 2 to 4 h. The calculation results of the main parameters of the medium and signal correspond to the observational results.  相似文献   

6.
Both P- and S-wave arrivals were collected for imaging upper crustal structures in the source region of the April 20, 2013 Lushan earthquake. High-resolution, three-dimensional P and S velocity models were constructed by travel-time tomography. Moreover, more than 3700 aftershocks of the Lushan earthquake were relocated via a grid search method. The P- and S-wave velocity images of the upper crust show largely similar characters, with high and low velocity anomalies, which mark the presence of significant lateral and vertical heterogeneity at the source region of the Lushan earthquake. The characteristics of the velocity anomalies also reflect the associated surface geological tectonics in this region. The distributions of high velocity anomalies of both P- and S-waves to 18 km depth are consistent with the distributions of relocated aftershocks, suggesting that most of the ruptures were localized inside the high velocity region. In contrast, low P and S velocities were found in the surrounding regions without aftershocks, especially in the region to the northeast of the Lushan earthquake. For the relocated aftershocks of the Lushan earthquake from this study, we found that most aftershocks were concentrated in a zone of about 40 km long and 20 km wide, and were located in the hanging wall of Dayi–Mingshan fault. The focal depths of aftershocks increase from the southeast to the northwest region in the direction perpendicular to the fault strike, suggesting that the fault ruptured at an approximate dip angle of 45°. The main depths of the aftershocks in the northwest of the main shock are significantly shallower than expected, revealing the different seismogenic conditions in the source region.  相似文献   

7.
The observation results of the effects in the geospace plasma during a partially (magnitude ~0.42) solar eclipse are presented. The experimental data were obtained with an incoherent scatter radar of the Institute of the Ionosphere (near Kharkov). During the eclipse, the density at the F2 layer maximum decreased by 32%, the foF2 critical frequency decreased by 17.5%, and the altitude of the F2 layer maximum increased insignificantly. At altitudes of 290–680 km, the electron density decreased by ~25%. During the eclipse, the electron and ion temperature decreased by 70–180 and 0–140 K, respectively, at altitudes of 190–490 km. Near the eclipse main phase, the plasma velocity vertical component decreased by 10–45 m/s at altitudes of 200–470 km, respectively. At the time of the eclipse main phase, the hydrogen ion fractional density increased by 50% as compared to the reference day at altitudes of 450–650 km.  相似文献   

8.
Time variations in the amplitude and phase of signals of the Russian telecommunication station (the frequency is 25 kHz) on the Arkhangelsk—Kharkov path with a length of about 1600 km on the day of the August 1, 2008 solar eclipse (SE) and on the adjacent days are analyzed. Two types of effects are detected. An increase of the signal amplitude by approximately 32% in comparison with the background days and the 2.1 μs time shift of the signal during 2—2.5 h is referred to the first type. Changes in the spectral composition of the quasiperiodic disturbances in the ionosphere presented the second type of the effects. For spectral analysis of the quasiperiodic variations in the amplitude and phase of the radio signal, the window Fourier transform, adaptive Fourier transform, and wavelet transformation were applied simultaneously. In the period of SE and after it, oscillations with periods of 10—15 min (according to the amplitude data) and also about 10 and 18 min (according to the phase data) were intensified. Based on radio signal characteristics, the parameters of ionospheric disturbances are estimated.  相似文献   

9.
The GPS radio occultation technique is sensitive for layered structures with horizontal scales of around 100 km and with vertical scales of a few 100 m or more at the Earth's limb. These structures cause strong fluctuations of the GPS L1 and L2 phase paths which have been measured by a GPS receiver onboard of Microlab-1 satellite in 730 km orbit during the GPS/Meteorology experiment (GPS/MET of UCAR, Boulder). By means of GPS/MET radio occultation data, profiles of electron density fluctuations are derived for the mesosphere/lower thermosphere region with a height resolution of around 1 km. Data analysis of 1900 radio occultation events in June/July 1995, 1540 events in October 1995, and 2690 events in February 1997 confirms seasonal dependence of sporadic E layers. The meridian slices of average sporadic E activity show a dominance of plasma irregularities in the summer hemisphere. The irregularities mainly occur at heights 90–110 km. Auroral and equatorial sporadic E, electron density depletions, and multiple ionization layers are also present in the high resolution GPS/MET data. The multiple layers often have a distance of around 5–10 km in height, and appear up to a height of 140 km (upper height limit for 50 Hz sampling rate of GPS receiver). For February and June, the GPS/MET observations are compared to ground-based observations of the Asia/Australia ionosonde chain.  相似文献   

10.
The observations of the effects of the partial (about 77%) solar eclipse (SE) of March 29, 2006, in the ionospheric plasma are presented. The experimental data were obtained using the Kharkov incoherent scatter radar. At the moment of the maximum phase of SE, a decrease in the critical frequency of the ionospheric F 2 layer by 18%, a depletion of the density in the F 2 layer maximum by 33%, and an increase in the maximum height z m by 30 km were observed. The solar eclipse caused a decrease in the electron and ion temperatures by 150–300 and 100–200 K, respectively, within the height range 210–490 km. An increase in the relative density of the hydrogen ions during the maximum phase of SE by 20–25% within the height range 900–1200 km is detected. Calculations of the parameters of dynamical processes and thermal regime of the ionospheric plasma during SE are performed.  相似文献   

11.
The results of observations of the solar eclipse ionospheric effects on March 29, 2006, are presented. The observations were conducted using the partial reflection method near Nizhni Novgorod and the vertical sounding method at the automatic ionospheric station near Murmansk. It has been obtained that the electron density at altitudes of 77 and 91 km decreases by a factor of more than 4; in this case the response of the ionosphere at an altitude of 91 km lags behind the eclipse maximum phase on the Earth by approximately 20 min. It has been established that the eclipse in the E and F1 regions of the polar ionosphere causes a change in the electron density by 15–20%. The delay time of this effect varies from 12 to 24 min depending on the altitude. It has been registered that the reflection virtual altitude at altitudes of the ionospheric F region increases in Murmansk and Nizhni Novgorod.  相似文献   

12.
The paper is focused on the global spatial structure, seasonal and interannual variability of the ~5-day Rossby (W1) and ~6-day Kelvin (E1) waves derived from the SABER/TIMED temperature measurements for 6 full years (January 2002–December 2007). The latitude structure of the ~5-day W1 wave is related to the gravest symmetric wave number 1 Rossby wave. The vertical structure of the ~5-day Rossby wave amplitude consists of double-peaked maxima centred at ~80–90 km and ~105–110 km. This wave has a vertically propagating phase structure from the stratosphere up to 120 km altitude with a mean vertical wavelength of ~50–60 km. The ~6-day E1 wave is an equatorially trapped wave symmetric about the equator and located between 20°N and 20°S. Its seasonal behaviour indicates some equinoctial and June solstice amplifications, while the vertical phase structure indicates that this is a vertically propagating wave between 20–100 km altitudes with a mean vertical wavelength of ~25 km.  相似文献   

13.
The radioholographic method is briefly described and tested by using data of 4 radio occultation events observed by the GPS/MET experiment on 9 February 1997. The central point of the radioholographic method (Pavelyev, 1998) is the generation of a radiohologram along the LEO satellite trajectory which allows the calculation of angular spectra of the received GPS radio wave field at the LEO satellite. These spectra are promising in view of detection, analysis and reduction of multipath/diffraction effects, study of atmospheric irregularities and estimation of bending angle error. Initial analysis of angular spectra calculated by the multiple signal classification (MUSIC) method gives evidence that considerable multibeam propagation occurs at ray perigee heights below 20 km and at heights around 80–120 km for the 4 GPS/MET occultation events. Temperature profiles obtained by our analysis (radioholographic method, Abel inversion) are compared with those of the traditional retrieval by the UCAR GPS/MET team (bending angle from slope of phase front, Abel inversion). In 3 of 4 cases we found good agreement (standard deviation σT∼1.5°K between both retrievals at heights 0–30 km).  相似文献   

14.
我们采用COSMIC掩星系统提供的2009年1月1日至2010年12月31日的GPS信号信噪比(signal-to-noise ratio,SNR)的观测数据,通过计算SNR数据的归一化标准差对80~130 km高度范围内的中国内陆偶发E层(Sporadic E,Es)的空间分布以及垂直厚度等特性进行分析研究,获得了Es发生率的空间分布以及发生率随着季节的变化特征.中国内陆30°N纬线以上区域Es分布随季节变化较为明显,夏季最多,秋季次之,春冬季最少,而南部低纬地区发生率水平常年较高.一般情况下Es主要存在于90~110 km高度范围内,但在夏季100 km高度以下探测到了较多的Es事件,且主要表现为多层Es结构,可能是由大气重力波引起Es下行运动所致.Es厚度的分布统计表明:大结构Es的厚度分布在2.5~3 km范围内存在峰值,小结构Es厚度分布峰值出现在150~200 m范围内.  相似文献   

15.
Several experiments were undertaken at Kolkata (latitude: 22°34′N, longitude: 88°30′E) on the solar eclipse day of August 1, 2008 to observe the effects of the solar eclipse on Fair Weather Field (FWF) and VLF amplitude and phase. The experimental results presented here show significant deviations of the observed parameters from their normal values, as they are determined by the average of the records obtained on 5 days adjacent to the day of the solar eclipse.  相似文献   

16.
The results of the observations of aperiodic and quasi-periodic disturbances in E and F1 ionospheric layers and air temperature variations in the surface atmosphere on the day of the solar eclipse and control days are presented. The ionospheric processes were monitored by vertical sounding Doppler radar. The measurements showed that, near the time of the maximum coverage of the solar disk, the greatest decrease in the density of electrons in the layers E and F1 was ~27%, which is close to the calculated value (25%). The solar eclipse was accompanied by the generation of traveling ionospheric disturbances with a period of 8–12 min and a relative amplitude of electron density variations of ~0.6–1.5%. Because of the haze in the surface atmosphere, its temperature, which was monitored at observation points at a distance of 50–60 km from each other did not exceed 1°C near the time of the maximum eclipse magnitude.  相似文献   

17.
The results of observations of disturbances in the lower and middle ionosphere and in the geomagnetic field accompanying the partial solar eclipse over Kharkov are presented. The ionospheric effects have been studied with the use of an ionosonde and measurements of the phase and amplitude of a radio signal with a frequency of 66.(6) kHz on the Moscow–Kharkov route, and the effects in the magnetic field have been analyzed with the help of a magnetometer–fluxmeter in the range of periods from 1 to 1000 s. Disturbances in both the lower and middle ionosphere, as well as in the geomagnetic field, have been detected. The observation results have been compared with the results of a simulation of physical processes accompanying the solar eclipse. A good agreement has been found between observational and modeling results.  相似文献   

18.
The occurrence of strong ionospheric scintillations with S4≥0.2 was studied using global positioning system (GPS) measurements at Guilin (25.29°N, 110.33°E; geomagnetic: 15.04°N, 181.98°E), a station located near the northern crest of equatorial anomaly in China. The results are presented for data collected from January 2007 to December 2008. The results show that amplitude scintillations occurred only during the first five months of the considered years. Nighttime amplitude scintillations, observed mainly in the south of Guilin, always occurred with phase scintillations, total electron content (TEC) depletions, and Rate Of change of TEC (ROT) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations usually occurred in most of the azimuth directions. GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively.  相似文献   

19.
Parameters of split shear waves from local earthquakes in the area of the PET IRIS station (town of Petropavlovsk-Kamchatski) were measured over the period 1993–2002 for the study of anisotropic properties of rocks in the subduction zone and variations in the fast azimuth of the fast shear wave (?). The dominating fast shear wave polarization directions were oriented in 1993–2002 along N90°E ± 20° in agreement with the direction of the Pacific plate motion. The normalized shear wave delay times δt SS increase to a depth of 150 km. The values of δt SS are largest (up to 20 ms/km) for earthquakes at depths of 50–60 and 90–150 km and smallest (up to 6 ms/km) for earthquakes at depths greater than 200 km. The fast azimuths for events with H < 80 km are described in terms of a horizontal transversely isotropic (HTI) model of the medium, with the axis oriented northward. Temporal variations in the fast azimuths with an amplitude of up to 90° and a predominant period of about 400–600 days are observed for events at depths of 80–120 km. The anisotropy of rocks is described by effective models of the orthorhombic and HTI symmetries. The predominant fast shear wave fast azimuths from events at depths of 120–310 km vary with time: the polarization axis was oriented to the north in 1993–1995, to the north and east in 1996–1998, to the east in 1999–2000, and to the northeast and southeast in 2001–2002. The anisotropy of rocks can be described in terms of the HTI model with the symmetry axis subparallel to the focal zone dip.  相似文献   

20.
The observations of the state of the midlatitude ionospheric D region during the March 29, 2006, solar eclipse, based on the measurements of the characteristics of partially reflected HF signals and radio noise at a frequency of f = 2.31 MHz, are considered. It has been established that the characteristic processes continued for 2–4 h and were caused mainly by atmospheric gas cooling, decrease in the ionization rate, and the following decrease in the electron density. An increase in the electron density on average by 200–250% approximately 70–80 min after the eclipse beginning at altitudes of 90–93 km and approximately 240 min after the end of the solar eclipse at altitudes of 81–84 km, which lasted about 3–4 h, has been detected experimentally. This behavior of N is apparently caused by electron precipitation from the magnetosphere into the atmosphere during and after the solar eclipse. Based on this hypothesis, the fluxes of precipitating electrons (about 107–108 m?2s?1) have been estimated using the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号