首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2D magnetic resonance tomography applied to karstic conduit imaging   总被引:1,自引:1,他引:1  
Karstic conduits play a crucial role for water supply in many parts of the world. However, the imaging of such targets is generally a difficult task for most geophysical methods. Magnetic Resonance Sounding (MRS) is a geophysical method designed for imaging of water bearing structures. Initially, MRS was developed for characterizing horizontally stratified aquifers. However, when applying a 1D MRS measuring setup to the imaging of 2D–3D targets, the size of which may be much smaller than the loop, the accuracy and the lateral resolution may not be sufficient. We have studied the possibility of simultaneously processing several MRS aligned along a profile to perform a Magnetic Resonance Tomography (MRT). This work emphasizes the gain of resolution for 2D–3D imagery of MRT versus the interpolation of 1D inversion results of MRS along the same profile. Numerical modelling results show that the MRT response is sensitive to the size and location of the 2D target in the subsurface. Sensitivity studies reveal that by using the coincident transmitting/receiving (TX/RX) setup and shifting the loop around the anomaly area, the depth, section and position of a single karstic conduit with a size smaller than the MRS loop size can be resolved. The accuracy of the results depends on the noise level and signal level, the latter parameter being linked to the depth and volume of the karstic conduit and the water content in the limestone matrix. It was shown that when applying MRT to the localization of 2D anomalies such as karstic conduits, the inclination of the geomagnetic field, the orientation of the MRT profile and the angle of crossover of the conduit by the MRT profile must be taken into account. Otherwise additional errors in interpretation should be expected. A 2D inversion scheme was developed and tested. Both numerical and experimental results confirm the efficiency of the developed approach.  相似文献   

2.
A new methodology for magnetic resonance sounding (MRS) data acquisition and interpretation was developed for locating water-filled karst cavities. This methodology was used to investigate the Ouysse karst system in the Poumeyssens shaft in the Causse de Gramat (France). A new 2D numerical MRS response model was designed for improved accuracy over the previous 1D MRS approach. A special survey performed by cave divers confirmed the accuracy of the MRS results. Field results demonstrated that in favourable conditions (a low EM noise environment and a relatively shallow, large target) the MRS method, used with a coincident transmitter/receiver loop, can be an effective tool for locating a water-filled karst conduit. It was shown numerically that because an a priori orientation of the MRS profile with the karst conduit is used in the inversion scheme (perpendicular for instance), any error in this assumption introduces an additional error in locating the karst. However, the resulting error is within acceptable limits when the deviation is less than 30°. The MRS results were compared with an electrical resistivity tomography (ERT) survey. It was found that in Poumeyssens, ERT is not able to locate the water-filled karst. On the other hand, ERT provides additional information about heterogeneities in the limestone.  相似文献   

3.
Magnetic resonance sounding applied to aquifer characterization   总被引:3,自引:0,他引:3  
Magnetic resonance sounding (MRS) is distinguished from other geophysical tools used for ground water investigation by the fact that it measures a magnetic resonance signal generated directly from subsurface water molecules. An alternating current pulse energizes a wire loop on the ground surface and the MRS signal is generated; subsurface water is indicated, with a high degree of reliability, by nonzero amplitude readings. Measurements with varied pulse magnitudes then reveal the depth and thickness of water saturated layers. The hydraulic conductivity of aquifers can also be estimated using boreholes for calibration. MRS can be used for both predicting the yield of water supply wells and for interpolation between boreholes, thereby reducing the number of holes required for hydrogeological modeling. An example of the practical application of MRS combined with two-dimensional electrical imaging, in the Kerbernez and Kerien catchments area of France, demonstrates the efficiency of the technique.  相似文献   

4.

颅内动脉狭窄(ICAS)导致的缺血性脑卒中,具有高致残率和致死率的特点。临床上常规检查方法包括经颅多普勒超声、CT血管造影、磁共振血管造影和X射线数字减影血管造影等,上述方法都是针对血管狭窄,不能显示血管壁病变。高分辨磁共振血管壁成像技术(HR-VWI)是一种新出现的影像学检查手段,能够无创性显示血管壁病变,对判断ICAS病变性质具有重要价值。本文针对HR-VWI在ICAS病因鉴别中的应用研究进展进行综述。

  相似文献   

5.
二维阵列线圈核磁共振地下水探测理论研究   总被引:4,自引:4,他引:4       下载免费PDF全文
核磁共振法(Magnetic Resonance Sounding, MRS)是一种直接探测地下水的地球物理方法,目前只能对水平层状的含水层进行一维测深,对于尺寸小于线圈直径的二维或三维含水构造成像时,其灵敏度和横向分辨率很低.本文从研究二维阵列线圈核磁共振地下水探测方式的可行性出发,推导了地面发射线圈产生的椭圆极化激发场和阵列接收线圈的核磁共振响应核函数的表达式,数值计算了二维阵列线圈测量方式的MRS信号初始振幅图像和探测灵敏度,通过与二维发射/接收同一线圈测量方式对比,得到结论如下:二维阵列线圈测量方式可直接确定地下含水构造的水平位置,但需更大的激发电流强度和接收灵敏度;当中浅层(2,以上三种分辨率均由仪器噪声水平所决定.通过实施增加接收线圈的数量和匝数、提高激发脉冲矩和接收灵敏度等改进措施,现有的仪器系统可用二维阵列线圈测量方式.本文提出的理论和方法,将促使二维阵列线圈核磁共振方法在地下暗河、喀斯特溶洞和堤坝渗漏等二维或三维含水构造快速探测方面得到应用.  相似文献   

6.
磁异常△T三维相关成像   总被引:3,自引:3,他引:3       下载免费PDF全文
本文将重力和重力梯度数据三维相关成像方法推广到磁力勘探领域,推导并建立了磁异常△T的三维相关成像方法,同时提出了基于熵滤波分离异常的三维相关成像算法来提高成像分辨率.组合模型磁异常△T数据和实际磁测资料试验分析表明,本文方法能成像出地下地质体的空间赋存状态和等效磁性分布,具有良好的横向和纵向分辨率.  相似文献   

7.
A groundwater recharge process of heterogeneous hard rock aquifer in the Moole Hole experimental watershed, south India, is being studied to understand the groundwater flow behaviour. Significant seasonal variations in groundwater level are observed in boreholes located at the outlet area indicating that the recharge process is probably taking place below intermittent streams. In order to localize groundwater recharge zones and to optimize implementation of boreholes, a geophysical survey was carried out during and after the 2004 monsoon across the outlet zone. Magnetic resonance soundings (MRS) have been performed to characterize the aquifer and measure groundwater level depletion. The results of MRS are consistent with the observation in boreholes, but it suffers from degraded lateral resolution. A better resolution of the regolith/bedrock interface is achieved using electrical resistivity tomography (ERT). ERT results are confirmed by resistivity logging in the boreholes. ERT surveys have been carried out twice—before and during the monsoon—across the stream area. The major feature of recharge is revealed below the stream with a decrease by 80% of the calculated resistivity. The time‐lapse ERT also shows unexpected variations at a depth of 20 m below the slopes that could have been interpreted as a consequence of a deep seasonal water flow. However, in this area time‐lapse ERT does not match with borehole data. Numerical modelling shows that in the presence of a shallow water infiltration, an inversion artefact may take place thus limiting the reliability of time‐lapse ERT. A combination of ERT with MRS provides valuable information on structure and aquifer properties respectively, giving a clue for a conceptual model of the recharge process: infiltration takes place in the conductive fractured‐fissured part of the bedrock underlying the stream and clayey material present on both sides slows down its lateral dissipation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Experiments on model and real soil blocks designed to assess the feasibility of using magnetic resonance imaging for three-dimensional mapping of the time-varying spatial distribution of water in structured soils are reported. The results show that, notwithstanding inherent problems in imaging natural soils with a significant iron content, experimental parameters can be identified which allow satisfactory images to be obtained. Magnetic resonance imaging may therefore provide important information on soil structure and water movement in dual porosity soils, with attendant benefits for the calibration of models of non-Darcian flow in such soils.  相似文献   

9.
2D多尺度非线性地震速度成像   总被引:3,自引:0,他引:3       下载免费PDF全文
将遗传算法和单纯形算法相结合,得到了一种高效、健全的2D混合地震走时反演方法.把速度场划分为不同的空间尺度,定义网格节点上的速度作为待反演参数,采用双三次样条函数模型参数化,正问题采用有限差分走时计算方法,反问题采用多尺度混合反演方法.首先在较大的空间尺度内反演,然后减小空间尺度,将大尺度的反演结果作为次一级尺度反问题的初始模型,再进行混合反演,如此类推逐次逼近全局最优解.一个低速度异常体的数值模拟试验和抗走时扰动试验表明该方法是有效和健全的.我们将该方法应用到青藏高原东北缘阿尼玛卿缝合带东段上部地壳速度结构研究中,并与前人的成果进行了对比.  相似文献   

10.
The estimation of velocity models is still crucial in seismic reflection imaging as it controls the quality of the depth‐migrated image, which is the basis of geological interpretation. Among the numerous existing methods for velocity determination, tomographic methods are very attractive for their efficiency and ability to retrieve heterogeneities of the medium. We present three tomographic methods in order to estimate heterogeneous velocity models from 2D prestack PP reflection data: a traveltime tomography in the time‐migrated domain, a traveltime and slope tomography in the non‐migrated time domain, and a slope tomography in the depth‐migrated domain. The first method (traveltime tomography in the time domain) is based on continuous picked events, whereas the two slope tomographic methods, one in the time domain and the other in the depth domain, are based on locally coherent events, with no assumptions about reflector geometry or the unknown velocity field. The purpose of this paper is not to describe in detail the theoretical basis and implementation of the methods, but to apply and compare their output using the same marine real data set. Based on the estimated velocity models, the migrated images and the common‐image gathers from the three processing routes, the relative strengths and weaknesses of the methods are discussed. Finally, similarities are indicated and potential alternative approaches are proposed.  相似文献   

11.
This paper demonstrates capabilities of low-field nuclear magnetic resonance (NMR) and microfocus X-ray computed tomography (μCT) in advanced, nondestructive, and quantitative characterization of pore types, producible porosity, pore structure, and spatial disposition of pore-fractures in coals. Results show that the NMR transverse relaxation time (T2) at 0.5–2.5, 20–50, and >100 ms correspond to pores of <0.1 μm, >0.1 μm, and fractures, respectively. A much higher T2 spectrum peak reflects a much better de...  相似文献   

12.
Cross-well seismic reflection data, acquired from a carbonate aquifer at Port Mayaca test site near the eastern boundary of Lake Okeechobee in Martin County, Florida, are used to delineate flow units in the region intercepted by two wells. The interwell impedance determined by inversion from the seismic reflection data allows us to visualize the major boundaries between the hydraulic units. The hydraulic (flow) unit properties are based on the integration of well logs and the carbonate structure, which consists of isolated vuggy carbonate units and interconnected vug systems within the carbonate matrix. The vuggy and matrix porosity logs based on Formation Micro-Imager (FMI) data provide information about highly permeable conduits at well locations. The integration of the inverted impedance and well logs using geostatistics helps us to assess the resolution of the cross-well seismic method for detecting conduits and to determine whether these conduits are continuous or discontinuous between wells. A productive water zone of the aquifer outlined by the well logs was selected for analysis and interpretation. The ELAN (Elemental Log Analysis) porosity from two wells was selected as primary data and the reflection seismic-based impedance as secondary data. The direct and cross variograms along the vertical wells capture nested structures associated with periodic carbonate units, which correspond to connected flow units between the wells. Alternatively, the horizontal variogram of impedance (secondary data) provides scale lengths that correspond to irregular boundary shapes of flow units. The ELAN porosity image obtained by cokriging exhibits three similar flow units at different depths. These units are thin conduits developed in the first well and, at about the middle of the interwell separation region, these conduits connect to thicker flow units that are intercepted by the second well. In addition, a high impedance zone (low porosity) at a depth of about 275 m, after being converted to ELAN porosity, is characterized as a more confined low porosity structure. This continuous zone corresponds to a permeability barrier in the carbonate aquifer that separates the three connected conduits observed in the cokriging image. In the zones above and below this permeability barrier, the water production is very high, which agrees with water well observations at the Port Mayaca aquifer.  相似文献   

13.
本文提出了磁总场异常垂直梯度三维相关成像方法,用于成像地下等效磁源分布.它首先将地下待成像空间划分为三维规则网格,然后直接计算每个网格节点磁偶板子在观测面理论磁总场异常垂直梯度与实测磁总场异常垂直梯度的互相关,其相关系数值表征等效磁偶极子分布(即磁偶极子发生的概率).理论长方体组合模型数据和实际某矿区磁测资料试验结果表明本文方法计算得到的相关系数值能基本反映地下的磁源分布,且分辨率明显高于磁总场异常三维相关成像的分辨率,也高于基于熵滤波分离异常的磁总场异常三维相关成像的分辨率.  相似文献   

14.
2D磁异常分步反演方法是利用二维(剖面)磁测数据确定场源几何参数以及物性参数的一种反演方法,该方法的优点是构造的形态函数S不受场源磁化特征的影响,因此可以在未知场源物性参数的前提下,通过拟合依次反演得到磁性源形体横截面几何参数、磁化强度以及磁化方向.本文阐述了2D磁异常分步反演方法的原理及步骤,对形态函数S的特征及求取方法进行了讨论,分析了区域背景干扰(正常场)对反演结果的影响并提出了初步解决方案.在方法研究的基础上,进行了单一理论模型及组合理论模型的试算,得到了较好的反演结果.为了验证该方法的效果,对实测剖面进行了试算,得到了场源的边界及场源埋深信息,为进一步反演提供了有用的参考.  相似文献   

15.
Sinkholes in dolomitic areas are notoriously difficult geophysical targets, and selecting an appropriate geophysical solution is not straightforward. Electrical resistivity imaging, or tomography (RESTOM) is well suited to mapping sinkholes because of the ability of the technique for detecting resistive features and discriminating subtle resistivity variations. RESTOM surveys were conducted at two sinkhole sites near Pretoria, South Africa. The survey areas are located in the dolomites of the Lyttelton Formation, which forms part of the Malamani Subgroup and Chuniespoort Group of the Transvaal Supergroup. The survey results suggest that RESTOM is an ideal geophysical tool to aid in the detection and monitoring of sinkholes and other subsurface cavities.  相似文献   

16.
Inversion of 2D spectral induced polarization imaging data   总被引:1,自引:0,他引:1  
Laboratory measurements of various materials suggest that more information can be obtained by measuring the in‐phase and out‐of‐phase potentials at a number of frequencies. One common model used to describe the variation of the electrical properties with frequency is the Cole‐Cole model. Apart from the DC resistivity (ρ) and chargeability (m) parameters used in conventional induced‐polarization (IP) surveys, the Cole‐Cole model has two additional parameters, i.e. the time (τ) and relaxation (c) constants. Much research has been conducted on the use of the additional Cole‐Cole parameters to distinguish between different IP sources. Here, we propose a modified inversion method to recover the Cole‐Cole parameters from a 2D spectral IP (SIP) survey. In this method, an approximate inversion method is initially used to construct a non‐homogeneous starting model for the resistivity and chargeability values. The 2D model consists of a number of rectangular cells with constant resistivity (ρ), chargeability (m), time (τ) and relaxation (c) constant values in each cell. A regularized least‐squares optimization method is then used to recover the time and relaxation constant parameters as well as to refine the chargeability values in the 2D model. We present results from tests carried out with the proposed method for a synthetic data set as well as from a laboratory tank experiment.  相似文献   

17.
A significant body of current research is aimed at developing methods for numerical simulation of flow and transport in porous media that explicitly resolve complex pore and solid geometries, and at utilizing such models to study the relationships between fundamental pore-scale processes and macroscopic manifestations at larger (i.e., Darcy) scales. A number of different numerical methods for pore-scale simulation have been developed, and have been extensively tested and validated for simplified geometries. However, validation of pore-scale simulations of fluid velocity for complex, three-dimensional (3D) pore geometries that are representative of natural porous media is challenging due to our limited ability to measure pore-scale velocity in such systems. Recent advances in magnetic resonance imaging (MRI) offer the opportunity to measure not only the pore geometry, but also local fluid velocities under steady-state flow conditions in 3D and with high spatial resolution. In this paper, we present a 3D velocity field measured at sub-pore resolution (tens of micrometers) over a centimeter-scale 3D domain using MRI methods. We have utilized the measured pore geometry to perform 3D simulations of Navier–Stokes flow over the same domain using direct numerical simulation techniques. We present a comparison of the numerical simulation results with the measured velocity field. It is shown that the numerical results match the observed velocity patterns well overall except for a variance and small systematic scaling which can be attributed to the known experimental uncertainty in the MRI measurements. The comparisons presented here provide strong validation of the pore-scale simulation methods and new insights for interpretation of uncertainty in MRI measurements of pore-scale velocity. This study also provides a potential benchmark for future comparison of other pore-scale simulation methods. © 2012 Elsevier Science. All rights reserved.  相似文献   

18.
The study of formation and dissociation of CO 2 hydrate in porous media was characterized by magnetic resonance imaging (MRI) system in in situ conditions. This work simulated porous media by using glass beads of uniform size. The growth and dissociation habit of CO2 hydrate was observed under different temperature and pressure conditions. The induction time and the hydrate saturation during the growth and dissociation process in different sizes of porous media were obtained by using the MRI signal intensity. The results indicate that hydrate growth rate and the induction time are affected by the size of porous media, pressure, and degree of supercooling. There are three hydrate growth stages, i.e., initial growth stage, rapid growth stage and steady stage. In this study,the CO2 hydrate forms preferentially at the surface of vessel and then gradually grows inward. The hydrate tends to cement the glass beads together and occupies the pore gradually. As the hydrate decomposes gradually, the dissociation rate increases to the maximum and then decreases to zero.  相似文献   

19.
A new tool for two‐dimensional apparent‐resistivity data modelling and inversion is presented. The study is developed according to the idea that the best way to deal with ill‐posedness of geoelectrical inverse problems lies in constructing algorithms which allow a flexible control of the physical and mathematical elements involved in the resolution. The forward problem is solved through a finite‐difference algorithm, whose main features are a versatile user‐defined discretization of the domain and a new approach to the solution of the inverse Fourier transform. The inversion procedure is based on an iterative smoothness‐constrained least‐squares algorithm. As mentioned, the code is constructed to ensure flexibility in resolution. This is first achieved by starting the inversion from an arbitrarily defined model. In our approach, a Jacobian matrix is calculated at each iteration, using a generalization of Cohn's network sensitivity theorem. Another versatile feature is the issue of introducing a priori information about the solution. Regions of the domain can be constrained to vary between two limits (the lower and upper bounds) by using inequality constraints. A second possibility is to include the starting model in the objective function used to determine an improved estimate of the unknown parameters and to constrain the solution to the above model. Furthermore, the possibility either of defining a discretization of the domain that exactly fits the underground structures or of refining the mesh of the grid certainly leads to more accurate solutions. Control on the mathematical elements in the inversion algorithm is also allowed. The smoothness matrix can be modified in order to penalize roughness in any one direction. An empirical way of assigning the regularization parameter (damping) is defined, but the user can also decide to assign it manually at each iteration. An appropriate tool was constructed with the purpose of handling the inversion results, for example to correct reconstructed models and to check the effects of such changes on the calculated apparent resistivity. Tests on synthetic and real data, in particular in handling indeterminate cases, show that the flexible approach is a good way to build a detailed picture of the prospected area.  相似文献   

20.
A methodology to locate automatically limits or boundaries between different geological bodies in 2D electrical tomography is proposed, using a crest line extraction process in gradient images. This method is applied on several synthetic models and on field data set acquired on three experimental sites during the European project PALEOSIS where trenches were dug. The results presented in this work are valid for electrical tomographies data collected with a Wenner-alpha array and computed with an l1 norm (blocky inversion) as optimization method. For the synthetic cases, three geometric contexts are modelled: a vertical and a dipping fault juxtaposing two different geological formations and a step-like structure. A superficial layer can cover each geological structure. In these three situations, the method locates the synthetic faults and layer boundaries, and determines fault displacement but with several limitations. The estimated fault positions correlate exactly with the synthetic ones if a conductive (or no superficial) layer overlies the studied structure. When a resistive layer with a thickness of 6 m covers the model, faults are positioned with a maximum error of 1 m. Moreover, when a resistive and/or a thick top layer is present, the resolution significantly decreases for the fault displacement estimation (error up to 150%). The tests with the synthetic models for surveys using the Wenner-alpha array indicate that the proposed methodology is best suited to vertical and horizontal contacts. Application of the methodology to real data sets shows that a lateral resistivity contrast of 1:5–1:10 leads to exact faults location. A fault contact with a resistivity contrast of 1:0.75 and overlaid by a resistive layer with a thickness of 1 m gives an error location ranging from 1 to 3 m. Moreover, no result is obtained for a contact with very low contrasts (∼1:0.85) overlaid by a resistive soil. The method shows poor results when vertical gradients are greater than horizontal ones. This kind of image processing technique should be systematically used for improving the objectiveness of tomography interpretation when looking for limits between geological objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号