首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The high-K calc-alkaline volcanic rocks along the Neogene Volcanic Province of SE Spain represent crustal anatectic melts mixed with mantle components during the opening of the Alborán Sea. Partially melted metapelitic enclaves, along with the geochemical signature, provide evidence of their crustal source. U–Pb SHRIMP geochronology on monazite and zircon from enclaves and their hosting lavas in the localities of El Hoyazo, Mazarrón and Mar Menor reveals variable delays between the melting at depth and the eruption of the volcanics. These data indicate that: (1) the most important event of anatexis in the Neogene spanned at least the 3 m.y. interval between 12 and 9 Ma; (2) there is no trend in age of crustal melting; and (3) the delay between magma generation and extrusion varies from more than 3 m.y. at El Hoyazo to ~0.5 m.y. and possibly 2.5 m.y. at Mar Menor, with no significant delay measurable at Mazarrón. The variable time delay between anatexis and lava extrusion indicates that radiometric ages of volcanics may provide misleading information on the timing of magma genesis occurring at depth. This highlights the pitfall of basing detailed geodynamic models on volcanic extrusion ages alone. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
滇西凤庆三岔河地区火山岩岩性主要为英安岩,火山活动以宁静式喷溢为主。锆石LA ICP MS U Pb年代学结果表明,英安岩的形成时代为2097~2188 Ma,锆石中含有大量不同时期的继承锆石核,指示其具有丰富的物质来源。全岩主量、微量元素分析结果显示,英安岩具有富硅、富铝的高钾钙碱性—钙碱性系列岩石特征,中等负Eu异常,轻、重稀土均强烈分馏,轻稀土分馏较重稀土明显,亏损Ta、Ba、Nb、Sr,而富集Rb、Th。地球化学特征显示,该套英安岩可能由古老地壳物质(富含长石的碎屑岩为主)在温度较高的环境中重熔形成,是晚三叠世古特提斯洋盆闭合后的陆内应力调整阶段的岩浆记录。  相似文献   

3.
Caldear Volcanic Group (CVG), a stratigraphically well defined, calc-alkaline rock complex within Sa de Gata in the eastern part of the Alpine Betic mountain chain, S Spain, consists of three distinct formations: Hernández pyroxene andesites, Bujo hornblende-bearing pyroxene andesites and Viuda hornblende-bearing pyroxene dacites–rhyolites. The letter rock formation may have developed through crystal fractionation of mainly plagioclase and pyroxenes, however there is no direct relation between two formations. CVG has a domainal structure with a northeastern domain where Hernández formation is overlain by Bujo formation while Viuda formation is absent, and a southwestern domain where Viuda formation forms the only fractionate after Hernández formation. Hernández parent magma is thought generated through crustal anatexis by dehydration melting of a predominantly amphibolitic source rock complex which was formed by metamorphism from c. 500 Ma volcano-sedimentary parent material. The domainal structure of CVG is explained by compositional variation within this protogenetic complex. Single crystal U–Pb ages of c. 500 Ma to 1800 Ma for inherited zircon support the presence of clastic material of Proterozoic derivation within the original volcano-sedimentary complex. Regional study of syn-collisional rock formations (Alpine nappe complexes) indicate that the collisional tectonic stage in the Betic-Rif orogenic belt took place rather early (25–30 Ma?) and was followed by a stage of rapid regional rock uplift, fast cooling (c. 500°C/my) and extensional tectonics in the period 22–17 Ma. This later tectonic stage was set into motion by slab break-off which set the stage for a high temperature regime in the overlying lithosphere, providing the framework for the crustal melting and magma production responsible for the calc-alkaline rocks of Alborán volcanic province. Miocene zircon with ages ranging from c. 17 to 11 Ma indicate a rather protracted magmatic development prior to eruption at c. 11 Ma. Post-collisional character of Caldear Volcanic Group thus seems well established.  相似文献   

4.
Three metapelitic xenolith suites in the Neogene Volcanic Province (NVP) of SE Spain (from SW to NE: El Hoyazo, Mazarrón and Mar Menor) originated by partial melting at different crustal depths, decreasing from 20–25 km in the SW to 9–12 km in the NE. Peak temperatures reached c. 900 °C. The xenolith source level is equated with the base of a felsic upper crust of high melting potential (‘fertility’). At El Hoyazo, this matches a thin, intracrustal low‐velocity zone recently inferred from seismic studies. Isostatic calculations indicate that this zone increases in thickness from SW to NE. A model of increasing upper crustal thinning from SW to NE in the NVP, accompanied by mafic underplating, is consistent with the 9 Ma petrological data, with current heat flow, seismic data and gravimetry. It is concluded that significant crustal extension occurred in the NVP in the late Miocene, i.e. after the main phase of widespread extension, exhumation of high‐pressure rocks and formation of the Alborán Sea.  相似文献   

5.
In the eastern Himalayan syntaxis, the southern Lhasa terrane is dominated by middle- to high-grade metamorphic rocks (Nyingchi Complex), which are intruded by felsic melts. U-Pb zircon dating and zircon Hf isotopic composition of these metamorphic and magmatic rocks provide important constraints on the tectono-thermal evolution of the Lhasa terrane during convergent process between Indian and Asian continents. U-Pb zircon data for an orthogneiss intruding the Nyingchi Complex yield a protolith magma crystallization age of 83.4 ± 1.2 Ma, with metamorphic ages of 65-46 Ma. This orthogneiss is characterized by positive εHf (t) values of + 8.3 and young Hf model ages of ~ 0.6 Ga, indicating a derivation primarily from a depleted-mantle or juvenile crustal source. Zircons from a quartz diorite yield a magma crystallization age of 63.1 ± 0.6 Ma, with εHf (t) values of − 8.2 to − 2.7, suggesting that this magma was sourced from partial melting of older crustal materials. Zircon cores from a foliated biotite granite show ages ranging from 347 to 2690 Ma, with age peaks at 347-403 Ma, 461-648 Ma and 1013-1183 Ma; their zircon εHf (t) values range from − 30.6 to + 6.9. Both the U-Pb ages and Hf isotopic composition of the zircon cores are similar to those of detrital zircons from the Nyingchi Complex paragneiss, implying that the granite was derived from anatexis of the Nyingchi Complex metasediments. The zircon rims from the granite indicate crustal anatexis at 64.4 ± 0.7 Ma and subsequent metamorphism at 55.1 ± 1.3 and 41.4 ± 2.3 Ma. Our results suggest that the late Cretaceous magmatism in the southern Lhasa terrane resulted from Neo-Tethys oceanic slab subduction and we infer that Paleocene crustal anatexis and metamorphism were related to the thermal perturbation caused by rollback of the northward subducted Neo-Tethyan oceanic slab.  相似文献   

6.
U–Pb sensitive high resolution ion microprobe mass spectrometer (SHRIMP) ages of zircon, monazite and xenotime crystals from felsic intrusive rocks from the Rio Itapicuru greenstone belt show two development stages between 2,152 and 2,130 Ma, and between 2,130 and 2,080 Ma. The older intrusions yielded ages of 2,152±6 Ma in monazite crystals and 2,155±9 Ma in zircon crystals derived from the Trilhado granodiorite, and ages of 2,130±7 Ma and 2,128±8 Ma in zircon crystals derived from the Teofilândia tonalite. The emplacement age of the syntectonic Ambrósio dome as indicated by a 2,080±2-Ma xenotime age for a granite dyke probably marks the end of the felsic magmatism. This age shows good agreement with the Ar–Ar plateau age of 2,080±5 Ma obtained in hornblendes from an amphibolite and with a U–Pb SHRIMP age of 2,076±10 Ma in detrital zircon crystals from a quartzite, interpreted as the age of the peak of the metamorphism. The predominance of inherited zircons in the syntectonic Ambrósio dome suggests that the basement of the supracrustal rocks was composed of Archaean continental crust with components of 2,937±16, 3,111±13 and 3,162±13 Ma. Ar–Ar plateau ages of 2,050±4 Ma and 2,054±2 Ma on hydrothermal muscovite samples from the Fazenda Brasileiro gold deposit are interpreted as minimum ages for gold mineralisation and close to the true age of gold deposition. The Ar–Ar data indicate that the mineralisation must have occurred less than 30 million years after the peak of the metamorphism, or episodically between 2,080 Ma and 2,050 Ma, during uplift and exhumation of the orogen.Electronic supplementary material Supplementary material is available for this article at  相似文献   

7.
We use 369 individual U–Pb zircon ages from 14 granitoid samples collected on five islands in the Cyclades in the Aegean Sea, Greece, for constraining the crystallisation history of I- and S-type plutons above the retreating Hellenic subduction zone. Miocene magmatism in the Cyclades extended over a time span from 17 to 11 Ma. The ages for S-type granites are systematically ~2 million years older than those for I-type granites. Considering plutons individually, the zircon data define age spectra ranging from simple and unimodal to complex and multimodal. Seven of the 14 investigated samples yield more than one distinct zircon crystallisation age, with one I-type granodiorite sample from Mykonos Island representing the most complex case with three resolvable age peaks. Two samples from S-type granites on Ikaria appear to have crystallised zircon over 2–3 million years, whereas for the majority of individual samples with multiple zircon age populations the calculated ages deviate by 1–1.5 million years. We interpret our age data to reflect a protracted history involving initial partial melting at deeper lithospheric levels, followed by crystallisation and cooling at shallower crustal levels. Our study corroborates published research arguing that pluton construction is due to incremental emplacement of multiple magma pulses over a few million years. Assuming that multiple age peaks of our 14 samples can indeed serve to quantify time spans for magmatic emplacement, our data suggest that Aegean plutons were constructed over a few million years. Our tectonic interpretation of the U–Pb ages is that the S-type granites resulted from partial melting and migmatisation of the lower crust, possibly starting at ~23 Ma. The I-type granites and associated mafic melts are interpreted to reflect the magmatic arc stage in the Cyclades starting at ~15 Ma.  相似文献   

8.
U-Pb isotope analysis of zircon, titanite, monazite and rutile extracted from 15 different Grenville Province rocks in eastern Labrador reveals: 1) major crust formation through magmatism between 1,710 and 1,630 Ma ago; no evidence of older crustal material was found. 2) Pegmatite and gabbro intrusions between 1,500 and 1,400 Ma ago, probably related to incomplete rifting of the earlier formed crust. 3) Granite and syenite plutonism, presumably anorogenic, circa 1,300 Ma ago. 4) High grade metamorphism and anatexis during the Grenvillian Orogeny, causing Pb-loss in primary zircon and new growth of zircon, titanite and monazite at circa 1,030 Ma ago in the south (Lake Melville and Mealy Mountains terranes) and circa 970 Ma ago in the north (Groswater Bay Terrane and Trans-Labrador Batholith); geochronological distinction of these large-scale crustal segments substantiates their juxtaposition along deeply rooted, intracontinental ductile thrust zones during Grenvillian Orogeny. 5) Late Grenvillian growth of rutile in gabbros circa 925 Ma ago.  相似文献   

9.
喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩   总被引:12,自引:10,他引:2  
曾令森  高利娥 《岩石学报》2017,33(5):1420-1444
自从印度-欧亚大陆碰撞以来,伴随着构造演化和温度-压力-成分(P-T-X)的变化,喜马拉雅造山带中下地壳变质岩发生不同类型的部分熔融反应,形成性质各异的过铝质花岗岩。这些花岗岩在形成时代、矿物组成、全岩元素和放射性同位素地球化学特征上都表现出巨大的差异性。始新世构造岩浆作用形成高Sr/Y二云母花岗岩和演化程度较高的淡色花岗岩和淡色花岗玢岩,它们具有相似的Sr-Nd同位素组成,是碰撞早期增厚下地壳部分熔融的产物。渐新世淡色花岗岩主要为演化程度较高的淡色花岗岩,可能指示了喜马拉雅造山带的快速剥露作用起始于渐新世。早中新世以来的淡色花岗岩是喜马拉雅造山带淡色花岗岩的主体,是变泥质岩部分熔融的产物,包含两类部分熔融作用——水致白云母部分熔融作用(A类)和白云母脱水熔融作用(B类)。这两类部分熔融作用形成的花岗质熔体在元素和同位素地球化学特征上都表现出明显的差异性,主要受控于两类部分熔融作用过程中主要造岩矿物和副矿物的溶解行为。这些不同期次的地壳深熔作用都伴随着高分异淡色花岗岩,伴随着关键金属元素(Nb、Ta、Sn、Be等)的富集,是未来矿产勘探的重要靶区。新的观测结果表明:在碰撞造山带中,花岗岩岩石学和地球化学性质的变化是深部地壳物质对构造过程响应的结果,是深入理解碰撞造山带深部地壳物理和化学行为的重要岩石探针。  相似文献   

10.
In France, the Devonian–Carboniferous Variscan orogeny developed at the expense of continental crust belonging to the northern margin of Gondwana. A Visean–Serpukhovian crustal melting has been recently documented in several massifs. However, in the Montagne Noire of the Variscan French Massif Central, which is the largest area involved in this partial melting episode, the age of migmatization was not clearly settled. Eleven U–Th–Pbtot. ages on monazite and three U–Pb ages on associated zircon are reported from migmatites (La Salvetat, Ourtigas), anatectic granitoids (Laouzas, Montalet) and post-migmatitic granites (Anglès, Vialais, Soulié) from the Montagne Noire Axial Zone are presented here for the first time. Migmatization and emplacement of anatectic granitoids took place around 333–326 Ma (Visean) and late granitoids emplaced around 325–318 Ma (Serpukhovian). Inherited zircons and monazite date the orthogneiss source rock of the Late Visean melts between 560 Ma and 480 Ma. In migmatites and anatectic granites, inherited crystals dominate the zircon populations. The migmatitization is the middle crust expression of a pervasive Visean crustal melting event also represented by the “Tufs anthracifères” volcanism in the northern Massif Central. This crustal melting is widespread in the French Variscan belt, though it is restricted to the upper plate of the collision belt. A mantle input appears as a likely mechanism to release the heat necessary to trigger the melting of the Variscan middle crust at a continental scale.  相似文献   

11.
冀北张家口-宣化地区(张-宣地区)分布着中生代后城组和张家口组火山岩.锆石的LA-ICPMS U-Pb年龄和LA-MC-ICPMS Hf同位素分析结果表明, 后城组英安岩的结晶年龄为(130±1)Ma, 为早白垩世, 而不是前人所认为的晚侏罗世.张家口组流纹岩的结晶年龄为(126±1)Ma, 也为早白垩世.后城组英安岩中锆石Hf同位素组成为εHf(t)=-18.8~-25.5, Hf平均地壳模式年龄为TDMC=2.78~2.37 Ga, 平均2.54 Ga, 与冀北分布的基底岩石Nd、Hf模式年龄相同, 考虑到华北克拉通东部地壳生长的主要时期为晚太古代, 我们初步认为后城组粗安岩可能主要来源于晚太古代地壳物质的重熔作用; 而张家口组流纹岩中锆石Hf同位素组成为εHf(t)=-15.1~-18.5, Hf平均地壳模式年龄为TDMC=2.34~2.13 Ga, 明显比后城组火山岩年轻.张家口火山岩来源于太古代的地壳物质和部分幔源物质混合.这些年代学数据和锆石Hf同位素表明张-宣地区大面积的后城组和张家口组火山岩是华北克拉通东部晚中生代岩石圈强烈减薄作用的结果.   相似文献   

12.
The Neogene Volcanic Province (NVP) within the Betic Cordillera (SE Spain) consists of three main metapelitic enclave suites (from SW to NE: El Hoyazo, Mazarrón and Mar Menor). Since the NVP represents a singular place in the world where crustal enclaves were immediately quenched after melting, their microstructures provide a “photograph” of the conditions at depth just after the moment of the melting.

The thermobarometric information provided by the different microstructural assemblages has been integrated with the geophysical and geodynamical published data into a model of the petrologic evolution of the Mar Menor enclaves. They were equilibrated at 2–3 kbar, 850–900 °C, and followed a sequence of heating melt producing reactions. A local cooling event evidenced by minor melt crystallization preceded the eruption.

The lower crustal studies presented in this work contribute to the knowledge of: (i) the partial melting event beneath the Mar Menor volcanic suite through a petrologic detailed study of the enclaves; (ii) how the microstructures of fast cooled anatectic rocks play an important role in tracing the magma evolution in a chamber up to the eruption, and how they can be used as pseudothermobarometers; (iii) the past and current evolution of the Alborán Domain (Betic Cordillera) and Mediterranean Sea, and how the base of a metapelitic crust has melted within an active geodynamic setting.  相似文献   


13.
Sulawesi has generally been interpreted as the product of convergence in the Cretaceous and Cenozoic, and high mountains in west Central Sulawesi have been considered the product of magmatism and metamorphism related to Neogene collision. New SHRIMP and LA-ICP-MS U-Pb zircon dating of metamorphic and granitoid rocks has identified protoliths and sources of melts, and indicates an important role for extension. Schists, gneisses and granitoids have inherited Proterozoic, Paleozoic, Mesozoic and Paleogene zircons. Mesoproterozoic and Triassic age populations are similar to those from the Bird’s Head region. Their protoliths included sediments and granitoids interpreted as part of an Australian-origin block. We suggest this rifted from the Australian margin of Gondwana in the Jurassic and accreted to Sundaland to form NW Sulawesi in the Late Cretaceous. Some metamorphic rocks have Cretaceous and/or Late Eocene magmatic zircons indicating metamorphism cannot be older than Late Eocene, and were not Australian-origin basement. Instead, they were metamorphosed in the Neogene after Sula Spur collision and subsequent major extension. Associated magmatism in west Central Sulawesi produced a K-rich shoshonitic (HK) suite in the Middle Miocene to Early Pliocene. A later episode of magmatism in the Late Miocene to Pliocene formed mainly shoshonitic to high-K calc-alkaline (CAK) rocks. I-type and silica-rich I-type granitoids and diorites of the CAK suite record a widespread short interval of magmatism between 8.5 and 4 Ma. Inherited zircon ages indicate the I-type CAK rocks were the product of partial melting of the HK suite. S-type CAK magmatism between c. 5 and 2.5 Ma and zircon rim ages from gneisses record contemporaneous metamorphism that accompanied extension. Despite its position in a convergent setting in Indonesia, NW Sulawesi illustrates the importance of melting and metamorphism in an extensional setting during the early stages of mountain building.  相似文献   

14.
The high-temperature–low-pressure Wongwibinda Metamorphic Complex of the southern New England Orogen is bound by S-type granite plutons of the Hillgrove Supersuite to the north, east and south. New U–Pb geochronology of five samples of the Hillgrove Supersuite demonstrates that plutonism in the complex involved two pulses: ca 300 Ma and ca 292 Ma. This indicates that plutonism partially overlaps the age of high-T–low-P metamorphism (296.8 ± 1.5 Ma), but also postdates it. Zircon grains identified as xenocrysts based on age (≥310 Ma) have U–Pb–Hf isotopic character that largely overlaps detrital grains in the host Girrakool Beds, indicating that accretionary complex crust is the likely source of these xenocrysts. The 176Hf/177Hf initial character for zircon for the ca 300 Ma plutons (three samples) is less radiogenic than those in the ca 292 Ma plutons (two samples). The progression in 176Hf/177Hf initial character for zircon infers an increasing mantle component in the Hillgrove Supersuite with time. These data are evidence of a rift tectonic setting, where mantle-derived magmas are predicted to more readily migrate to shallower crustal levels as the crust thins and becomes hotter. Additionally, early episodes of partial melting in the system melt-depleted the metasedimentary sources, thus reducing the S-type component as anatexis progressed. The evolution of the Hillgrove Supersuite coincides with a period of early Permian slab roll back and extension accompanied by crustal rifting and thinning, leading to high-T–low-P metamorphism, anatexis and S-type granite production and the development of rift basins such as the Sydney–Gunnedah–Bowen system.  相似文献   

15.
In the Everest region of the Nepalese Himalaya, 40Ar/39Ar and U-Pb geochronology provide evidence for a complex thermal history marked by multiple episodes of granite intrusion. The oldest mobilized melt formed syn-deformational granitic sills that have U-Pb crystallization ages of 21.33±0.03 and 21.80±0.05 Ma. Preserved in these same granites is a record of earlier magmatic crystallization of xenotime, zircon and monazite between ca. 26 Ma and ca. 23 Ma. This pattern of accessory phase crystallization is interpreted to reflect incremental melting and crystallization in the source region of the sills before ultimate melt migration, and provides the earliest evidence for anatexis in the Everest region. The beginning of crustal melting in the Everest region predates the earliest known movement on both the Main Central Thrust and the South Tibetan fault systems, but is temporally associated with the implied pressure decrease between Eohimalayan and Neohimalayan metamorphism.  相似文献   

16.
Partial melting of ultrahigh‐pressure (UHP) metamorphic rocks is common during collisional orogenesis and post‐collisional reworking, indicating that determining the timing and processes involved in this partial melting can provide insights into the tectonic evolution of collisional orogens. This study presents the results of a combined whole‐rock geochemical and zirconological study of migmatites from the Sulu orogen in eastern China. These data provide evidence of multiple episodes of crustal anatexis and geochemical differentiation within the UHP metamorphic rocks. The leucosomes contain higher concentrations of Ba and K and lower concentrations of the rare earth elements (REE), Th and Y, than associated melanosomes and granitic gneisses. The leucosomes also have homogenous Sr–Nd–O isotopic compositions that are similar to proximal (i.e. within the same outcrop) melanosomes, suggesting that the anatectic melts were generated by the partial melting of source rocks that are located within individual outcrops. The migmatites contain zircons with six different types of domains that can be categorized using differences in structures, trace element compositions, and U–Pb ages. Group I domains are relict magmatic zircons that yield middle Neoproterozoic U–Pb ages and contain high REE concentrations. Group II domains represent newly grown metamorphic zircons that formed at 230 ± 1 Ma during the collisional orogenesis. Groups III, IV, V, and VI zircons are newly grown anatectic zircons that formed at 222 ± 2 Ma, 215 ± 1 Ma, 177 ± 2 Ma, and 152 ± 2 Ma, respectively. The metamorphic zircons have higher Th/U and lower (Yb/Gd)N values, flat heavy REE (HREE) patterns with no significantly negative Eu anomalies relative to the anatectic zircons, which are characterized by low Th/U ratios, steep HREE patterns, and negative Eu anomalies. The first two episodes of crustal anatexis occurred during the Late Triassic at c. 222 Ma and c. 215 Ma as a result of phengite breakdown. The other two episodes of anatexis occurred during the Jurassic period at c. 177 Ma and c. 152 Ma and were associated with extensional collapse of the collision‐thickened orogen. The majority of Triassic anatectic zircons and all of the Jurassic zircons are located within the leucosomes, whereas the melanosomes are dominated by Triassic metamorphic zircons, suggesting that the leucosomes within the migmatites record more episodes of crustal anatexis. Both metamorphic and anatectic zircons have elevated εHf(t) values compared with relict magmatic zircon cores, suggesting that these zircons contain non‐zircon Hf derived from material with more radiogenic Hf isotope compositions. Therefore, the Sulu and Dabie orogens experienced different episodes of reworking during the exhumation and post‐collisional stages.  相似文献   

17.
The Miocene Kofu Granitic Complex (KGC) occurs in the Izu CollisionZone where the Izu–Bonin–Mariana (IBM) arc has beencolliding with the Honshu arc since the middle Miocene. TheKGC includes rocks ranging in compositions from biotite-bearinggranite (the Shosenkyo and Mizugaki plutons), and hornblende–biotite-bearinggranodiorite, tonalite, quartz-diorite, and granite (the Shiodaira,Sanpo, Hirose and Sasago plutons), to hornblende-bearing tonaliteand trondhjemite (the Ashigawa–Tonogi pluton), indicatingthat it was constructed from multiple intrusions of magma withdifferent bulk chemistry. The Sr-isotopic compositions correctedto sensitive high-resolution ion microprobe (SHRIMP) zirconages (SrI) suggest that the primary magmas of each pluton wereformed by anatexis of mixed lower crustal sources involvingboth juvenile basalt of the IBM arc and Shimanto sedimentaryrocks of the Honshu arc. After the primary magmas had formed,the individual plutons evolved by crystal fractionation processeswithout significant crustal assimilation or additional mantlecontribution. SHRIMP zircon U–Pb ages in the KGC rangefrom 16·8 to 10·6 Ma and overlap the resumptionof magmatic activity in the IBM and Honshu arcs at c. 17 Maand the onset of IBM arc–Honshu arc collision at c. 15Ma. The age of the granite plutons is closely related to theepisodic activity of arc magmatism and distinct granitic magmabatches could be formed by lower crustal anatexis induced byintrusion of underplated mantle-derived arc magmas. Based onpressures determined with the Al-in-hornblende geobarometer,the KGC magmas intruded into the middle crust. Thus, the KGCcould represent an example of the middle-crust layer indicatedthroughout the IBM arc by 6·0–6·5 km/s seismicvelocities. This granitic middle-crust layer acted buoyantlyduring the IBM arc–Honshu arc collision, leading to accretionof buoyant IBM arc middle crust to the Honshu arc. KEY WORDS: arc–arc collision; crustal anatexis; granite; Izu–Bonin–Mariana (IBM) arc; Izu Collision Zone  相似文献   

18.
Combined U-Pb zircon and 40Ar/39Ar sanidine data from volcanic rocks within or adjacent to the Geysers geothermal reservoir constrain the timing of episodic eruption events and the pre-eruptive magma history. Zircon U-Pb concordia intercept model ages (corrected for initial 230Th disequilibrium) decrease as predicted from stratigraphic and regional geological relationships (1σ analytical error): 2.47 ± 0.04 Ma (rhyolite of Pine Mountain), 1.38 ± 0.01 Ma (rhyolite of Alder Creek), 1.33 ± 0.04 Ma (rhyodacite of Cobb Mountain), 1.27 ± 0.03 Ma (dacite of Cobb Valley), and 0.94 ± 0.01 Ma (dacite of Tyler Valley). A significant (∼0.2-0.3 Ma) difference between these ages and sanidine 40Ar/39Ar ages measured for the same samples demonstrates that zircon crystallized well before eruption. Zircons U-Pb ages from the underlying main-phase Geysers Plutonic Complex (GPC) are indistinguishable from those of the Cobb Mountain volcanics. While this is in line with compositional evidence that the GPC fed the Cobb Mountain eruptions, the volcanic units conspicuously lack older (∼1.8 Ma) zircons from the shallowest part of the GPC. Discontinuous zircon age populations and compositional relationships in the volcanic and plutonic samples are incompatible with zircon residing in a single long-lived upper crustal magma chamber. Instead we favor a model in which zircons were recycled by remelting of just-solidified rocks during episodic injection of more mafic magmas. This is consistent with thermochronologic evidence that the GPC cooled below 350° C at the time the Cobb Mountain volcanics were erupted.  相似文献   

19.
Zircon from a lower crustal metapelitic granulite (Val Malenco, N‐Italy) display inherited cores, and three metamorphic overgrowths with ages of 281 ± 2, 269 ± 3 and 258 ± 4 Ma. Using mineral inclusions in zircon and garnet and their rare earth element characteristics it is possible to relate the ages to distinct stages of granulite facies metamorphism. The first zircon overgrowth formed during prograde fluid‐absent partial melting of muscovite and biotite apparently caused by the intrusion of a Permian gabbro complex. The second metamorphic zircon grew after formation of peak garnet, during cooling from 850 °C to c. 700 °C. It crystallized from partial melts that were depleted in heavy rare earth elements because of previous, extensive garnet crystallization. A second stage of partial melting is documented in new growth of garnet and produced the third metamorphic zircon. The ages obtained indicate that the granulite facies metamorphism lasted for about 20 Myr and was related to two phases of partial melting producing strongly restitic metapelites. Monazite records three metamorphic stages at 279 ± 5, 270 ± 5 and 257 ± 4 Ma, indicating that formation ages can be obtained in monazite that underwent even granulite facies conditions. However, monazite displays less clear relationships between growth zones and mineral inclusions than zircon, hampering the correlation of age to metamorphism. To overcome this problem garnet–monazite trace element partitioning was determined for the first time, which can be used in future studies to relate monazite formation to garnet growth.  相似文献   

20.
Initiation of crustal shortening in the Himalaya   总被引:2,自引:0,他引:2       下载免费PDF全文
New monazite U/Th‐Pb petrochronological data from the Annapurna region of central Nepal outline a protracted thermal history spanning ~ 30 Ma from the early Eocene (c. 48 Ma) to the early Miocene (c. 18 Ma). Rare earth element data collected concomitant with the isotopic analyses are consistent with prograde metamorphism and crustal thickening between ~ 48 and 30 Ma and anatexis between ~ 28 and 18 Ma. The timing of metamorphism recorded in these rocks is consistent with records of crustal shortening derived from ultrahigh‐pressure rocks in the western Himalaya and exhumed metamorphic rocks in southern Tibet. Although previous records of early shortening/metamorphism related to the initial collision of India with Asia are spatially associated with the northern margin of the Indian plate, the ages presented in this study extend that early record south into the main Himalayan range. These new data provide important geological constraints on this early, poorly documented history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号