首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the tectono‐stratigraphic development of a major, segmented rift border fault (Thal Fault) during ca. 6 Myr of initial rifting in the Suez Rift, Egypt. The Thal Fault is interpreted to have evolved by the progressive linkage of at least four fault segments. We focus on two contrasting structural settings in its hangingwall: Gushea, towards the northern tip of the fault, and Musaba Salaama, ca. 20 km along‐strike to the south, towards the centre of the fault. The early syn‐rift stratigraphic succession passes upwards from continental facies, through a condensed marginal marine shell‐rich facies, into fully marine shoreface sandstone and offshore mudstone. Regionally correlatable stratal surfaces within this succession define time‐equivalent stratal units that exhibit considerable along‐strike variability in thickness and facies architecture. During the initial ca. 6 Myr of rifting, the thickest stratigraphy developed towards the centre of the array of fault segments that subsequently hard linked to form the Thal Fault. Thus, a displacement gradient existed between fault segments at the centre and tip of the fault array, suggesting that the fault segments interacted, and a fixed length was established for the fault array, at an early stage in rifting. Towards the centre of the Thal Fault the early syn‐rift succession shows pronounced thickening away from the fault and towards a series of intra‐block antithetic faults that were active for up to ca. 6 Myr. This indicates that a large proportion of fault‐controlled subsidence during the initial ca. 6 Myr of rifting occurred in the hangingwalls of antithetic intra‐block faults, and not the present‐day Thal Fault. The antithetic faults progressively switched off during rifting such that after ca. 6 Myr of rifting, fault‐activity had localised on the Thal Fault enabling it to accrue to the present‐day high level of displacement. Aspects of the development of the Thal Fault appear to be in contrast to many models of fault evolution that predict large‐displacement rift‐climax faults to have always had the greatest displacement during fault population evolution. This study has implications for tectono‐stratigraphic development during early rift basin evolution. In particular, we stress that caution must be taken when relating final rift‐climax fault structure to the early tectono‐stratigraphy, as these may differ considerably.  相似文献   

2.
Field data from onshore exposures of the Oligo-Miocene Gulf of Suez Rift in the Sinai document the passive rotation of early formed mesoscale synthetic and antithetic faults and associated half-graben due to long-lived activity on large displacement (2–5 km) block-bounding faults. Early formed small-displacement (<350 m) mesoscale antithetic faults and half-graben within regional-scale fault blocks underwent progressive steepening due to footwall uplift, rotational faulting and footwall flexing on large-displacement, block-bounding faults. In contrast, mesoscale synthetic faults were progressively rotated to shallower angles. Analysis of palaeohorizontal surfaces within synrift sediments deposited in half-graben adjacent to the mesoscale faults indicate passive rotations of up to 25° about horizontal axes since deposition. Passive burial and in-filling of early formed mesoscale faults and half-graben by synrift sediments is consistent with extension being transferred from numerous mesoscale faults to few block-bounding macroscale faults as extension preceded. Furthermore, this transfer of extension appears to be associated with a marked change in basin configuration, synrift sediment dispersal patterns and facies development. Identification of early formed, passively rotated normal faults and half-graben is important for correctly reconstructing the early stages of basin palaeogeography and sediment dispersal, and for addressing models of rift basin evolution.  相似文献   

3.
Although fault growth is an important control on drainage development in modern rifts, such links are difficult to establish in ancient basins. To understand how the growth and interaction of normal fault segments controls stratigraphic patterns, we investigate the response of a coarse-grained delta system to evolution of a fault array in a Miocene half-graben basin, Suez rift. The early Miocene Alaqa delta complex comprises a vertically stacked set of footwall-sourced Gilbert deltas located in the immediate hangingwall of the rift border fault, adjacent to a major intrabasinal relay zone. Sedimentological and stratigraphic studies, in combination with structural analysis of the basin-bounding fault system, permit reconstruction of the architecture, dispersal patterns and evolution of proximal Gilbert delta systems in relation to the growth and interaction of normal fault segments. Structural geometries demonstrate that fault-related folds developed along the basin margin above upward and laterally propagating normal faults during the early stages of extension. Palaeocurrent data indicate that the delta complex formed a point-sourced depositional system developed at the intersection of two normal fault segments. Gilbert deltas prograded transverse into the basin and laterally parallel to faults. Development of the transverse delta complex is proposed to be a function of its location adjacent to an evolving zone of fault overlap, together with focusing of dispersal between adjacent fault segments growing towards each other. Growth strata onlap and converge onto the monoclinal fold limbs indicating that these structures formed evolving structural topography. During fold growth, Gilbert deltas prograded across the deforming fold surface, became progressively rotated and incorporated into fold limbs. Spatial variability of facies architecture is linked to along-strike variation in the style of fault/fold growth, and in particular variation in rates of crestal uplift and fold limb rotation. Our results clearly show that the growth and linkage of fault segments during fault array evolution has a fundamental control on patterns of sediment dispersal in rift basins.  相似文献   

4.
In this work, we explore by means of analogue models how different basin-bounding fault geometries and thickness of a viscous layer within the otherwise brittle pre-rift sequence influence the deformation and sedimentary patterns of basins related to extension. The experimental device consists of a rigid wooden basement in the footwall to simulate a listric fault. The hangingwall consists of a sequence of pre-rift deposits, including the shallow interlayered viscous layer, and a syn-rift sequence deposited at constant intervals during extension. Two different geometries exist of listric normal faults, dip at 30 and 60° at surface. This imposes different geometries in the hangingwall anticlines and their associated sedimentary basins. A strong contrast exists between models with and without a viscous layer. With a viscous décollement, areas near the main basement fault show a wide normal drag and the hangingwall basin is gently synclinal, with dips in the fault side progressively shallowing upwards. A secondary roll-over structure appears in some of the models. Other structures are: (1) reverse faults dipping steeply towards the main fault, (2) antithetic faults in the footwall, appearing only in models with the 30° dipping fault and silicone-level thicknesses of 1 and 1.5 cm and (3) listric normal faults linked to the termination of the detachment level opposite to the main fault, with significant thickness changes in the syn-tectonic units. The experiments demonstrate the importance of detachment level in conditioning the geometry of extensional sedimentary basins and the possibility of syncline basin geometries associated with a main basement fault. Comparison with several basins with half-graben geometries containing a mid-level décollement supports the experimental results and constrains their interpretation.  相似文献   

5.
Extensional faults and folds exert a fundamental control on the location, thickness and partitioning of sedimentary deposits on rift basins. The connection between the mode of extensional fault reactivation, resulting fault shape and extensional fold growth is well‐established. The impact of folding on accommodation evolution and growth package architecture, however, has received little attention; particularly the role‐played by fault‐perpendicular (transverse) folding. We study a multiphase rift basin with km‐scale fault displacements using a large high‐quality 3D seismic data set from the Fingerdjupet Subbasin in the southwestern Barents Sea. We link growth package architecture to timing and mode of fault reactivation. Dip linkage of deep and shallow fault segments resulted in ramp‐flat‐ramp fault geometry, above which fault‐parallel fault‐bend folds developed. The folds limited the accommodation near their causal faults, leading to deposition within a fault‐bend synclinal growth basin further into the hangingwall. Continued fold growth led to truncation of strata near the crest of the fault‐bend anticline before shortcut faulting bypassed the ramp‐flat‐ramp structure and ended folding. Accommodation along the fault‐parallel axis is controlled by the transverse folds, the location and size of which depends on the degree of linkage in the fault network and the accumulated displacement on causal faults. We construct transverse fold trajectories by tracing transverse fold hinges through space and time to highlight the positions of maximum and minimum accommodation and potential sediment entry points to hangingwall growth basins. The length and shape of the constructed trajectories relate to the displacement on their parent faults, duration of fault activity, timing of transverse basin infill, fault linkage and strain localization. We emphasize that the considerable wavelength, amplitudes and potential periclinal geometry of extensional folds make them viable targets for CO2 storage or hydrocarbon exploration in rift basins.  相似文献   

6.
ABSTRACT This paper investigates syn‐rift stratigraphic architecture and facies relationships along a 7 km long strike section towards the tip of a major, basin‐bounding normal fault segment (Thal Fault) in the Suez Rift, Egypt. In this location, the fault is composed of two precursor fault strands, Gushea and Abu Ideimat, linked by a jog or transfer fault. We document a Miocene syn‐rift succession, deposited more than c. 5.5 Myr after rift initiation, that is composed of a range of carbonate‐clastic facies associated with coarse‐grained deltaic, shoreface and offshore depositional systems. Key regionally correlatable stratal surfaces within this succession define time equivalent stratal units that exhibit variability in thickness and architecture, related to the interplay of both regional and local controls, in particular, the evolution of two, small‐scale (<6 km long) precursor fault strands (Gushea and Abu Ideimat). Integration of structural and stratigraphic data indicates that the boundary (relay ramp) between these two fault strands was a relative high during much of the rift event, with hard‐linkage and considerable displacement accumulation not occurring until at least c. 7.5 Myr after rift initiation. This is because: (i) the preserved stratigraphy is thinner in the hanging wall of the strand boundary; (ii) a eustatic sea‐level fall with an amplitude of 100 m generated more than 25 m of incision at the strand boundary, a region that has a final fault displacement of c. 600 m; and (iii) the fault strand boundary persisted as a footwall low and transport pathway for coarse‐grained deltas entering the basin. This study indicates that variability in stratal thickness and stratigraphic architecture towards the tip of the Thal Fault was related to the linkage history of two small‐scale (c. 6 km long) precursor fault segments. We suggest that similar, small‐scale stratal variability may occur repeatedly along the entire length of major basin‐bounding fault segments due to the process of fault growth by the linkage of smaller scale precursor strands.  相似文献   

7.
Rift basin tectono‐stratigraphic models indicate that normal fault growth controls the sedimentology and stratigraphic architecture of syn‐rift deposits. However, such models have rarely been tested by observations from natural examples and thus remain largely conceptual. In this study we integrate 3D seismic reflection, and biostratigraphically constrained core and wireline log data from the Vingleia Fault Complex, Halten Terrace, offshore Mid‐Norway to test rift basin tectono‐stratigraphic models. The geometry of the basin‐bounding fault and its hangingwall, and the syn‐rift stratal architecture, vary along strike. The fault is planar along a much of its length, bounding a half‐graben containing a faultward‐thickening syn‐rift wedge. Locally, however, the fault has a ramp‐flat‐ramp geometry, with the hangingwall defined by a fault‐parallel anticline‐syncline pair. Here, an unusual bipartite syn‐rift architecture is observed, comprising a lower faultward‐expanding and an upper faultward‐thinning wedge. Fine‐grained basinfloor deposits dominate the syn‐rift succession, although isolated coarse clastics occur. The spatial and temporal distribution of these coarse clastics is complex due to syn‐depositional movement on the Vingleia Fault Complex. High rates of accommodation generation in the fault hangingwall led to aggradational stacking of fan deltas that rapidly (<5 km) pinch out basinward into offshore mudstone. In the south of the basin, rapid strain localization meant that relay ramps were short‐lived and did not represent major, long‐lived sediment entry points. In contrast, in the north, strain localization occurred later in the rift event, thus progradational shorefaces developed and persisted for a relatively long time in relay ramps developed between unlinked fault segments. The footwall of the Vingleia Fault Complex was characterized by relatively low rates of accommodation generation, with relatively thin, progradational hangingwall shorelines developed downdip of the fault block apex, sometime after the onset of sediment supply to the hangingwall. We show that rift basin tectono‐stratigraphic models need modifying to take into account along‐strike variability in fault structure and basin physiography, and the timing and style of syn‐rift sediment dispersal and facies, in both hangingwall and footwall locations.  相似文献   

8.
Well‐calibrated seismic interpretation in the Halten Terrace of Mid‐Norway demonstrates the important role that structural feedback between normal fault growth and evaporite mobility has for depocentre development during syn‐rift deposition of the Jurassic–Early Cretaceous Viking and Fangst Groups. While the main rift phase reactivated pre‐existing structural trends, and initiated new extensional structures, a Triassic evaporite interval decouples the supra‐salt cover strata from the underlying basement, causing the development of two separate fault populations, one in the cover and the other confined to the pre‐salt basement. Detailed displacement–length analyses of both cover and basement fault arrays, combined with mapping of the component parts of the syn‐rift interval, have been used to reveal the spatial and temporal evolution of normal fault segments and sediment depocentres within the Halten Terrace area. Significantly, the results highlight important differences with traditional models of normal fault‐controlled subsidence, including those from parts of the North Sea where salt is absent. It can now be shown that evaporite mobility is intimately linked to the along‐strike displacement variations of these cover and basement faults. The evaporites passively move beneath the cover in response to the extension, such that the evaporite thickness becomes greatest adjacent to regions of high fault displacement. The consequent evaporite swells can become large enough to have pronounced palaeobathymetric relief in hangingwall locations, associated with fault displacement maxima– the exact opposite situation to that predicted by traditional models of normal fault growth. Evaporite movement from previous extension also affects the displacement–length relationships of subsequently nucleated or reactivated faults. Evaporite withdrawal, on the other hand, tends to be a later‐stage feature associated with the high stress regions around the propagating tips of normal faults or their coeval hangingwall release faults. The results indicate the important effect of, and structural feedback caused by, syn‐rift evaporite mobility in heavily modifying subsidence patterns produced by normal fault array evolution. Despite their departure from published models, the results provide a new, generic framework within which to interpret extensional fault and depocentre development and evolution in areas in which mobile evaporites exist.  相似文献   

9.
ABSTRACT This study addresses the complex relationship between an evolving fault population and patterns of synrift sedimentation during the earliest stages of extension. We have used 3D seismic and well data to examine the early synrift Tarbert Formation from the Middle–Late Jurassic northern North Sea rift basin. The Tarbert Formation is of variable thickness across the study area, and thickness variations define a number of 1- to 5-km-wide depocentres bounded by normal faults. Seismic reflections diverge towards the bounding faults indicating that the faults were active contemporaneous with the deposition of the formation. Many of these faults became inactive during later Heather Formation times. The preservation of the Tarbert Formation in both footwall and hangingwall locations demonstrates that, during the earliest synrift, the rate of deposition balanced the rate of tectonic subsidence. Local space generated by hangingwall subsidence was superimposed upon accommodation generated due to a regional rise in relative sea-level. In basal Tarbert Formation times, transgression across the prerift coastal plain produced lagoons and bays, which became increasingly marine. During continued transgression, barrier islands moved landward across the drowned bays. In the southern part of our study area, shallow marine sediments are erosionally truncated by fluvial deposition. These fluvial systems were constrained by fault growth monoclines, and flowed parallel to the main faults. We illustrate that stratal architecture and facies distribution of early sedimentation is strongly influenced by the active short-lived faults. Local depocentres adjacent to fault displacement maxima focused channel stacking and allowed the aggradation of thick shoreface successions. These depocentres formed early in the rift phase are not necessarily related to Late Jurassic – Early Cretaceous depocentres developed along the major linked normal fault systems.  相似文献   

10.
The evolution of depositional systems in multiphase rifts is influenced by the selective reactivation of faults between subsequent rift phases. The Middle Jurassic to Palaeocene tectonic history of the Lofoten margin, a segment of the North Atlantic rift system, is characterised by three distinct rift phases separated by long (>20 Myr) inter‐rift periods. The initial rift phase comprised a distinct fault initiation and linkage stage, whereas the later rift phases were characterised by selective reactivation of previously linked through‐going faults which resulted in immediate rift climax. Using 2‐D and 3‐D seismic reflection data in conjunction with shallow core data we present a 100 Myr record of shallow to deep marine depositional environments that includes deltaic clinoform packages, slope aprons and turbidite fans. The rapid re‐establishment of major faults during the later rift phases impacts on drainage systems and sediment supply. Firstly, the immediate localisation of strain and accumulation of displacement on few faults results in pronounced footwall uplift and possible fault block rotation along those faults, which makes it more likely for any antecedent fault‐transverse depositional systems to become reversed. Secondly, any antecedent axially‐sourced depositional systems that are inherited from the foregoing rift phase(s) are likely to be sustained after reactivation because such axial systems have already been directed around fault tips. Hence, the immediate localisation of strain through selective reactivation in the later rift phases restricts fault‐transverse sediment supply more than axial sediment supply, which is likely to be a key aspect of the tectono‐sedimentary evolution of multiphase rifts.  相似文献   

11.
Established models indicate that, before being breached, relay zones along rift borders can evolve either by lengthening and rotating during progressive overlap of growing fault segments (isolated fault model), or, by simply rotating without lengthening before breaching (coherent fault model). The spatio‐temporal distribution of vertical motions in a relay zone can thus be used to distinguish fault growth mechanisms. Depositional relay zones that develop at sea level and accommodate both deposition on the ramp itself as well as transfer of sediments from the uplifting footwall into the hangingwall depocentres and provide the most complete record of vertical motions. We examine the development of a depositional relay ramp on the border of the active Corinth rift, Greece to reconstruct fault interaction in time and space using both onshore and offshore (2D seismic lines) data. The Akrata relay zone developed over a period of ca. 0.5 Myr since the Middle Pleistocene between the newly forming East Helike Fault (EHF) that propagated towards the older, more established Derveni Fault (DF). The relay zone captured the Krathis River, which deposited prograding Gilbert‐type deltas on the sub‐horizontal ramp. Successive oblique faults record progressive linkage and basinward migration of accommodation along the ramp axis, whereas marine terraces record diachronous uplift in their footwalls. Although early linkage of the relay zone occurs, continuous propagation and linkage of the EHF onto the static DF is recorded before final beaching. Rotation on forced folds above the upward and laterally propagating normal faults at the borders of the relay zone represents the ramp hinges. The Akrata relay zone cannot be compared directly to a simple fault growth model because (1) the relay zone connects two fault segments of different generations; (2) multiple linkages during propagation was facilitated by the presence of pre‐existing crustal structures, inherited from the Hellenide fold and thrust belt. The linkage of the EHF to the DF contributed to the westward and northward propagation of the southern rift border.  相似文献   

12.
Along‐strike structural linkage and interaction between faults is common in various compressional settings worldwide. Understanding the kinematic history of fault interaction processes can provide important constraints on the geometry and evolution of the lateral growth of segmented faults in the fold‐and‐thrust belts, which are important to seismic hazard assessment and hydrocarbon trap development. In this study, we study lateral structural geometry (fault displacement and horizon shortening) of thrust fault linkages and interactions along the Qiongxi anticline in the western Sichuan foreland basin, China, using a high‐resolution 3D seismic reflection dataset. Seismic interpretation suggests that the Qiongxi anticline can be related to three west‐dipping, hard‐linked thrust fault segments that sole onto a regional shallow detachment. Results reveal that the lateral linkage of fault segments limited their development, affecting the along‐strike fault displacement distributions. A deficit between shortening and displacement is observed to increase in linkage zones where complex structural processes occur, such as fault surface bifurcation and secondary faulting, demonstrating the effect of fault linkage process on structural deformation within a thrust array. The distribution of the geometrical characteristics shows that thrust fault development in the area can be described by both the isolated fault model and the coherent fault model. Our measurements show that new fault surfaces bifurcate from the main thrust ramp, which influences both strain distribution in the relay zone and along‐strike fault slip distribution. This work fully describes the geometric and kinematic characteristics of lateral thrust fault linkage, and may provide insights into seismic interpretation strategies in other complex fault transfer zones.  相似文献   

13.
《Basin Research》2018,30(Z1):363-381
Inversion of pre‐existing extensional fault systems is common in rift systems, back‐arc basins and passive margins. It can significantly influence the development of structural traps in hydrocarbon basins. The analogue models of domino‐style basement fault systems shown in this paper produced, on extension, characteristic hangingwall growth stratal wedges that, when contracted and inverted, formed classic inversion harpoon geometries and asymmetric hangingwall contractional fault‐propagation folds. Segmented footwall shortcut faults formed as the basement faults were progressively back‐rotated and steepened. The pre‐existing extensional fault architectures, basement fault geometries and the relative hangingwall and footwall block rotations exerted fundamental controls on the inversion styles. Digital image correlation (DIC) strain monitoring illustrated complex vertical fault segmentation and linkage during inversion as the major faults were reactivated and strain was progressively transferred onto footwall shortcut faults. Hangingwall deformation during inversion was dominated by significant back‐rotation as the inversion progressed. The mechanical stratigraphy of the cover sequences strongly influenced the fold and fault evolution of the reactivated fault systems. The implications of the experimental results for the interpretation and analysis of inversion structures are discussed and are compared with natural examples of inverted basement‐involved extensional faults observed in seismic datasets.  相似文献   

14.
The Central Graben in the Danish North Sea sector consists of a series of N–S to NW–SE trending, eastward‐tilted half‐grabens, bound to the east by the Coffee Soil Fault zone. This fault zone has a complex Jurassic history that encompasses at least two fault populations; N–S to NNW–SSE striking faults active in the Late Aalenian–Early Oxfordian, and NNW–SSE to WNW–ESE striking faults forming in Late Kimmeridgian time (sensu gallico), following a short period of tectonic quiescence. Sediment transport across the Coffee Soil Fault zone was controlled by fault array evolution, and in particular the development of relay ramps that formed potential entry points for antecedent drainage systems from the Ringkøbing–Fyn High east of the rift. Fault and isochore trends of the Upper Kimmeridgian–Lower Volgian succession in the northeast Danish Central Graben show that accommodation space was initially generated close to several minor, isolated or overlapping faults. Subsidence became focused along a few master faults in the Early Volgian through progressive linkage of selected faults. Seismic time isochore geometries, seismic facies, amplitude trends and well ties indicate the presence of coarse clastic lithologies locally along the fault zone. The deposits probably represent submarine mass flow deposits supplied from footwall degradation and possibly also from the graben hinterland via a relay ramp. The latter source appears to have been cut off as the relay ramp was breached and the footwall block are uplifted. Fault growth and linkage processes thus controlled the spatial and temporal trends of accommodation space generation and sediment supply to the rift basin.  相似文献   

15.
The Oligo-Miocene Most Basin is the largest preserved sedimentary basin within the Eger Graben, the easternmost part of the European Cenozoic Rift System (ECRIS). The basin is interpreted as a part of an incipient rift system that underwent two distinct phases of extension. The first phase, characterised by NNE–SSW- to N–S-oriented horizontal extension between the end of Eocene and early Miocene, was oblique to the rift axis and caused evolution of a fault system characterised by en-échelon-arranged E–W (ENE–WSW) faults. These faults defined a number of small, shallow initial depocentres of very small subsidence rates that gradually merged during the growth and linkage of the normal fault segments. The youngest part of the basin fill indicates accelerated subsidence caused probably by the concentration of displacement at several major bounding faults. Major post-depositional faulting and forced folding were related to a change in the extension vector to an orthogonal position with respect to the rift axis and overprinting of the E–W faults by an NE–SW normal fault system. The origin of the palaeostress field of the earlier, oblique, extensional phase remains controversial and can be attributed either to the effects of the Alpine lithospheric root or (perhaps more likely because of the dominant volcanism at the onset of Eger Graben formation) to doming due to thermal perturbation of the lithosphere. The later, orthogonal, extensional phase is explained by stretching along the crest of a growing regional-scale anticlinal feature, which supports the recent hypothesis of lithospheric folding in the Alpine–Carpathian foreland.  相似文献   

16.
A number of recent papers have stressed the importance of lateral and vertical fault propagation on sediment geometries in active rift settings. However, the majority of these studies have been based on outcrop data. This contribution addresses the evolution of a single, major normal fault and its interaction with adjacent active faults using high-resolution 3D seismic data from the Smørbukk and Smørbukk South hydrocarbon fields, Halten Terrace, Mid-Norway. The major fault dividing the two fields, the Trestakk–Smørbukk fault, evolves from a southern segment with a well-defined set of rift wedges in its hangingwall to a northern segment where the fault tip is buried and a fault-tip fold is developed. Isochore maps of three Jurassic intervals illustrate a south to north evolution where, initially, Early Jurassic fault activity is limited to the southern part of the study area. Middle to Upper Jurassic intervals display a northwards migration in activity and linkage with two other major faults in the study area. This northwards migration had a profound effect on sediment geometries and depocentres in an area where previously only Late Jurassic rift activity has been recognized.  相似文献   

17.
The style of extension and strain distribution during the early stages of intra-continental rifting is important for understanding rift-margin development and can provide constraints for lithospheric deformation mechanisms. The Corinth rift in central Greece is one of the few rifts to have experienced a short extensional history without subsequent overprinting. We synthesise existing seismic reflection data throughout the active offshore Gulf of Corinth Basin to investigate fault activity history and the spatio-temporal evolution of the basin, producing for the first time basement depth and syn-rift sediment isopachs throughout the offshore rift. A major basin-wide unconformity surface with an age estimated from sea-level cycles at ca . 0.4 Ma separates distinct seismic stratigraphic units. Assuming that sedimentation rates are on average consistent, the present rift formed at 1–2 Ma, with no clear evidence for along-strike propagation of the rift axis. The rift has undergone major changes in relative fault activity and basin geometry during its short history. The basement depth is greatest in the central rift (maximum ∼3 km) and decreases to the east and west. In detail however, two separated depocentres 20–50 km long were created controlled by N- and S-dipping faults before 0.4 Ma, while since ca . 0.4 Ma a single depocentre (80 km long) has been controlled by several connected N-dipping faults, with maximum subsidence focused between the two older depocentres. Thus isolated but nearby faults can persist for timescales ca . 1 Ma and form major basins before becoming linked. There is a general evolution towards a dominance of N-dipping faults; however, in the western Gulf strain is distributed across several active N- and S-dipping faults throughout rift history, producing a more complex basin geometry.  相似文献   

18.
Studies of salt‐influenced rift basins have focused on individual or basin‐scale fault system and/or salt‐related structure. In contrast, the large‐scale rift structure, namely rift segments and rift accommodation zones and the role of pre‐rift tectonics in controlling structural style and syn‐rift basin evolution have received less attention. The Norwegian Central Graben, comprises a complex network of sub‐salt normal faults and pre‐rift salt‐related structures that together influenced the structural style and evolution of the Late Jurassic rift. Beneath the halite‐rich, Permian Zechstein Supergroup, the rift can be divided into two major rift segments, each comprising rift margin and rift axis domains, separated by a rift‐wide accommodation zone – the Steinbit Accommodation Zone. Sub‐salt normal faults in the rift segments are generally larger, in terms of fault throw, length and spacing, than those in the accommodation zone. The pre‐rift structure varies laterally from sheet‐like units, with limited salt tectonics, through domains characterised by isolated salt diapirs, to a network of elongate salt walls with intervening minibasins. Analysis of the interactions between the sub‐salt normal fault network and the pre‐rift salt‐related structures reveals six types of syn‐rift depocentres. Increasing the throw and spacing of sub‐salt normal faults from rift segment to rift accommodation zone generally leads to simpler half‐graben geometries and an increase in the size and thickness of syn‐rift depocentres. In contrast, more complex pre‐rift salt tectonics increases the mechanical heterogeneity of the pre‐rift, leading to increased complexity of structural style. Along the rift margin, syn‐rift depocentres occur as interpods above salt walls and are generally unrelated to the relatively minor sub‐salt normal faults in this structural domain. Along the rift axis, deformation associated with large sub‐salt normal faults created coupled and decoupled supra‐salt faults. Tilting of the hanging wall associated with growth of the large normal faults along the rift axis also promoted a thin‐skinned, gravity‐driven deformation leading to a range of extensional and compressional structures affecting the syn‐rift interval. The Steinbit Accommodation Zone contains rift‐related structural styles that encompass elements seen along both the rift margin and axis. The wide variability in structural style and evolution of syn‐rift depocentres recognised in this study has implications for the geomorphological evolution of rifts, sediment routing systems and stratigraphic evolution in rifts that contain pre‐rift salt units.  相似文献   

19.
Because salt can decouple sub‐ and supra‐salt deformation, the structural style and evolution of salt‐influenced rifts differs from those developed in megoscopically homogenous and brittle crust. Our understanding of the structural style and evolution of salt‐influenced rifts comes from scaled physical models, or subsurface‐based studies that have utilised moderate‐quality 2D seismic reflection data. Relatively few studies have used high‐quality 3D seismic reflection data, constrained by borehole data, to explicitly focus on the role that along‐strike displacement variations on sub‐salt fault systems, or changes in salt composition and thickness, play in controlling the four‐dimensional evolution of supra‐salt structural styles. In this study, we use 3D seismic reflection and borehole data from the Sele High Fault System (SHFS), offshore Norway to determine how rift‐related relief controlled the thickness and lithology of an Upper Permian salt‐bearing layer (Zechstein Supergroup), and how the associated variations in the mechanical properties of this unit influenced the degree of coupling between sub‐ and supra‐salt deformation during subsequent extension. Seismic and borehole data indicate that the Zechstein Supergroup is thin, carbonate‐dominated and immobile at the footwall apex, but thick, halite‐dominated and relatively mobile in high accommodation areas, such as near the lateral fault tips and in the immediate hangingwall of the fault system. We infer that these variations reflect bathymetric changes related to either syn‐depositional (i.e. Late Permian) growth of the SHFS or underfilled, fault scarp‐related relief inherited from a preceding (i.e. Early Permian) rift phase. After a period of tectonic quiescence in the Early Triassic, regional extension during the Late Triassic triggered halokinesis and growth of a fault‐parallel salt wall, which was followed by mild extension in the Jurassic and forced folding of Triassic overburden above the fault systems upper tip. During the Early Cretaceous, basement‐involved extension resulted in noncoaxial tilting of the footwall, and the development of an supra‐salt normal fault array, which was restricted to footwall areas underlain by relatively thick mobile salt; in contrast, at the footwall apex, no deformation occurred because salt was thin and immobile. The results of our study demonstrate close coupling between tectonics, salt deposition and the style of overburden deformation for >180 Myr of the rift history. Furthermore, we show that rift basin tectono‐stratigraphic models based on relatively megascopically homogeneous and brittle crust do not appropriately describe the range of structural styles that occur in salt‐influenced rifts.  相似文献   

20.
A detailed geophysical survey of the Ghoubbet Al Kharab (Djibouti) clarifies the small-scale morphology of the last submerged rift segment of the propagating Aden ridge before it enters the Afar depression. The bathymetry reveals a system of antithetic normal faults striking N130°E, roughly aligned with those active along the Asal rift. The 3.5 kHz sub-bottom profiler shows how the faults cut distinct layers within the recent, up to 60 m thick, sediment cover on the floor of the basin. A large volcanic structure, in the centre of the basin, the 'Ghoubbet' volcano, separates two sedimentary flats. The organization of volcanism and the planform of faulting, with en echelon subrifts along the entire Asal–Ghoubbet rift, appear to confirm the westward propagation of this segment of the plate boundary. Faults throughout the rift have been active continuously for the last 8400 yr, but certain sediment layers show different offsets. The varying offsets of these layers, dated from cores previously retrieved in the southern basin, imply Holocene vertical slip rates of 0.3–1.4 mm yr−1 and indicate a major decrease in sedimentation rate after about 6000 yr BP, and a redistribution of sediments in the deepest troughs during the period that preceded that change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号