首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M. D. Ding  C. Fang 《Solar physics》1993,147(2):305-321
The H line profile in a flare atmospheric model superposed by a spatially correlated velocity field is studied in detail in this paper. The computations are carried out with the assumption that the velocity field is represented by a Kubo-Anderson process. It is found that the shape and the intensity of the H line profile depend greatly on the parameters of the velocity field. The variation of the profile and its relative deviation with respect to different correlation lengths is more complex than in the case of absorption lines. It is also shown that such a profile cannot be matched by those produced in the usually-used micro- and macro-turbulent approaches, especially for the velocity field with an intermediate correlation length. The results imply that the flare atmosphere should be highly turbulent in order to explain the observed H line profile with only weak central reversal in the flare spectra. Particularly, the effects of meso-turbulent fields should be taken into account in order to improve the spectral diagnostics and modelling of the flare atmosphere.  相似文献   

2.
The evolutional characteristics of the red asymmetry of H flare line profiles were studied by means of a quantitative analysis of H flare spectra obtained with the Domeless Solar Telescope at Hida Observatory. Red-shifted emission streaks of H line are found at the initial phase of almost all flares which occur near the disk center, and are considered to be substantial features of the red asymmetry. It is found that a downward motion in the flare chromospheric region is the cause of the red-shifted emission streak. The downward motion abruptly increases at the onset of a flare, attains its maximum velocity of about 40 to 100 km s-1 shortly before the impulsive peak of the microwave burst, and rapidly decreases before the intensity of H line reaches its maximum. Referring to the numerical simulations made by Livshits et al. (1981) and Somov et al. (1982), we conclude that the conspicuous red-asymmetry or the red-shifted emission streak of H line is due to the downward motion of the compressed chromospheric flare region produced by the impulsive heating by energetic electron beam or thermal conduction.Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 258.  相似文献   

3.
We present the results of studying the impact linear polarization of 32 solar flares of X-ray classes C, M, and X (two flares) observed with the Large Solar Vacuum Telescope. It has turned out that there is evidence for impact polarization only in 13 of them. The newly obtained data have confirmed that the linear Stokes parameters are predominantly 2–7%, while the spatial sizes of flaring points with nonzero Stokes parameters are small (1″-2″). Two features of the manifestation of impact polarization in flares revealed by these studies are of greatest interest: (1) at the two foot points of a single flare loop or an arcade of loops, both the Hα intensity profiles and the Stokes profiles differ in behavior; (2) based on the Hα line, we have found for the first time that the sign of the Stokes parameters changes not only across the flare ribbon but also with depth of the chromosphere.  相似文献   

4.
J.- P. Wülser 《Solar physics》1988,114(1):115-126
H line profile observations of solar flares with high temporal resolution are an important tool for the analysis of the energy transport mechanism from the site of the flare energy release to the chromosphere. A specially designed instrument (imaging spectrograph) allows two-dimensional imaging of an active region simultaneously in 15 spectral channels along the H line profile with a temporal resolution of 5.4 s. Two flares have been observed in November 1982. The first one shows H signatures which one would typically expect in the case of explosive chromospheric evaporation produced by massive injection of non-thermal electrons. The observations of the other flare indicate that the heating of the upper chromosphere is dominated by thermal conduction, although during the impulsive hard X-ray burst there are also signatures of heating by non-thermal electrons.  相似文献   

5.
This investigation shows that statistically there are significant time delays between H and hard X-ray (HXR) emissions during solar flares; most impulsive flares produce HXR emissions up to 1 min before and up to 2 min after the onset of H emission. HXR emissions are also found to be peaked up to 2 min before the H emissions.  相似文献   

6.
Vector magnetogram, H, and hard X-ray observations of flares are reviewed which show that nonthermal electron signatures in H are never cospatial with regions of maximum current density for the small number of flares analyzed, but lie to the sides of these regions. By considering electron acceleration and transport requirements, four conditions are found that must be fulfilled to observe nonthermal electron signatures in H: (1) The plasma beta 0.3 in the acceleration region. (2) The energy flux of electrons above 20 keV is greater than 1010 erg cm–2 s–1. (3) The column densityN 1020 cm–2 between the electron source and the chromosphere. (4) The coronal pressure in the flux tube connecting to the H layerp 100 dyne cm–2. Condition 2 can be most easily met in the initial stages of flares. In contrast, the only condition for a high-pressure H signature isp 1000 dyne cm–2, which is most easily met in a region of maximum current density or heating and far enough into the flare for significant heating to have occurred. Thus, high-pressure signatures should be expected to occur more frequently than nonthermal electron signatures and to occur generally later in time.Also Guest Worker at NOAA Space Environment Laboratory Boulder Colorado U.S.A.  相似文献   

7.
Lepreti  F.  Fanello  P.C.  Zaccaro  F.  Carbone  V. 《Solar physics》2000,197(1):149-156
We calculated the Hurst exponent H for the daily averaged intensity Q of optical flares, an index which describes the solar activity. We found that H0.74±0.02 in the range of scales from about 20 days up to 450 days. This value is well beyond H= , expected for a stochastic Brownian process, thus indicating that the solar cycle could show persistence on small scales, in agreement with what has been found using other indices of the solar cycle.  相似文献   

8.
We studied the evolutional characteristics of fine structures in H flare emitting regions and their relation to X-ray and microwave emissions for selected events observed with the 60 cm Domeless Solar Telescope at Hida Observatory, University of Kyoto. The principal conclusions of this investigation are: (1) H kernel consists of some finer bright points or Hflare points whose individual size is less than 1 arc sec. (2) Impulsive brightnenings of H flare points occurred simultaneously with the spikes of the hard X-ray and microwave bursts within the time resolution of our H observations which varied from 1 to 10 s. (3) It is concluded that fast electron beams must be the principal mechanism of heating H flares during the impulsive phase of a flare.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984. Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 265.  相似文献   

9.
We reinvestigate the problem of Hα intensity oscillations in large flares, particularly those classified as X-class flares. We have used high spatial and temporal resolution digital observations obtained from Udaipur Solar Observatory during the period 1998–2006 and selected several events. Normalized Lomb-Scargle periodogram method for spectral analysis was used to study the oscillatory power in quiet and active chromospheric locations, including the flare ribbons.  相似文献   

10.
We have measured the ratio of H to H central intensities in the peak kernels of 14 flares, using simultaneous filtergrams. The ratio is typically one with some scatter. By contrast, in stellar flares the ratio is about 0.8.  相似文献   

11.
We evaluate the relationship between the hard X-ray photon spectrum and the flux of iron K emission in a thick-target electron bombardment model. Results are presented for various power-law hard X-ray spectra. We then apply these results to two events observed with the Hard X-Ray Burst Spectrometer and the K channel of the X-Ray Polychromator Bent Crystal Spectrometer on the Solar Maximum Mission satellite. For one of the events, on 29 March, 1980, at 09:18 UT, the K flux predicted for a thick-target non-thermal process is significant compared to the background fluorescent component, and the data are indeed consistent with an enhancement of the predicted amount. For the other event, on 14 October, 1980 at 06:09 UT, the hard X-ray spectrum is so steep that no significant Ka flux is predicted for this process, and no enhancement is seen. We conclude that the agreement between the predicted K flux and the observed magnitude of the K enhancement above the fluorescent background at the time of the large hard X-ray bursts lends support to a thick-target non-thermal interpretation of impulsive hard X-ray emission in solar flares.  相似文献   

12.
In the present paper, H-evolutive curves of chromospheric events are compared with flux evolutive curves of X-ray events observed at the same time in different spectral regions. A correspondence between the emissions E(I H/I chr)'s at higher and higher H-intensity levels, and the X-ray fluxes F()'s in harder and harder -ranges is shown. Further, the present observations seem to indicate the existence of a single triggering mechanism during the flash-phase of a flare. It is also shown that these results may be in agreement with Brown's model for chromospheric flares.  相似文献   

13.
P. Maltby 《Solar physics》1976,46(1):149-157
The wavelength dependence of filament features is studied, using high-resolution filtergrams taken at seven wavelengths in H. The observed contrast profiles are compared with profiles calculated on the basis of Beckers' (1964) cloud model. The deviation between observed and calculated profiles is used to suggest a progression among the observed profiles that depends on the height of the filament feature.Both upward and downward velocities are detected. The fine scale features in the filament and the corresponding velocity field vary with a time constant of a few minutes.  相似文献   

14.
Morphological features of two-ribbon flares have been studied, using simultaneous ISEE-3 hard X-ray records and high-resolution Big Bear H movies for more than 20 events. Long-lasting and complex hard X-ray bursts are almost invariably found associated with flares of the two-ribbon type. We find at least three events, namely March 31, 1979, April 10, 1980, and July 1, 1980, where the occurrence of individual spikes in hard X-ray radiation coincides with suddenly enhanced H emission covering the sunspot penumbra. There definitely exist important ( 1B) two-ribbon H flares without significant hard X-ray emission.  相似文献   

15.
Hugh S. Hudson 《Solar physics》1985,100(1-2):515-535
Solar flares emit line and continuum -radiation as well as neutrons and charged particles. These high-energy emissions require the presence of energetic ions within the magnetic structures of the flare proper. We have already learned a great deal about the location and mode of particle acceleration. The observations have now become extensive enough so that we can begin to study the dynamics of the energetic ions within the flare structures themselves. This paper reviews the -ray and neutron observations and the theory of their emission, and discusses on this basis the presence of energetic ions deep within the flaring atmosphere.  相似文献   

16.
We present a catalog including 11 204 spectra of 10 436 early-type emission-line stars from LAMOST DR2, among which 9752 early-type emission-line spectra are newly discovered. For these earlytype emission-line stars, we discuss the morphological and physical properties of their low-resolution spectra. In this spectral sample, the Hα emission profiles display a wide variety of shapes. Based on the Hα line profiles, these spectra are categorized into five distinct classes: single-peak emission, single-peak emission in absorption, double-peak emission, double-peak emission in absorption, and P-Cygni profiles. To better understand what causes the Hα line profiles, we divide these objects into four types from the perspective of physical classification, which include classical Be stars, Herbig Ae/Be stars, close binaries and spectra contaminated by H II regions. The majority of Herbig Ae/Be stars and classical Be stars are identified and separated using a(H-K, K-W1) color-color diagram. We also discuss 31 binary systems that are listed in the SIMBAD on-line catalog and identify 3600 spectra contaminated by H II regions after cross-matching with positions in the Dubout-Crillon catalog. A statistical analysis of line profiles versus classifications is then conducted in order to understand the distribution of Hα profiles for each type in our sample. Finally, we also provide a table of 172 spectra with Fe II emission lines and roughly calculate stellar wind velocities for seven spectra with P-Cygni profiles.  相似文献   

17.
The time dependence of Doppler shift and line-center intensity is simultaneously observed for the H emission of three solar prominences, each one during about two hours. Doppler oscillations with periods near one hour and amplitudes between 1 and 2 km s–1 are conspicuously visible in the recordings of all three prominences. Fourier analysis yields periods of 50, 60, and 64 min, as well as slight indications of short periods near 3 and 5 min. No oscillations are found in the line-center brightness.  相似文献   

18.
In this paper, we analyze the relationship between photospheric magnetic fields and chromospheric velocity fields in a solar active region, especially evolving features of the chromospheric velocity field at preflare sites. It seems that flares are related to unusually distributed velocity field structures, and initial bright kernels and ribbons of the flares appear in the red-shifted areas (i.e., downward flow areas) close to the inversion line of H Dopplergrams with steep gradients of the velocity fields, no matter whether the areas have simple magnetic structure or a weak magnetic field, or strong magnetic shear and complex structure of the magnetic fields. The data show that during several hours prior to the flares, while the velocity field evolves, the sites of the flare kernels (or ribbons) with red-shifted features come close to the inversion line of the velocity field. This result holds regardless of whether or not the flare sites are wholly located in blue-shifted areas (i.e., upward flow areas), or are far from the inversion line of the Doppler velocity field (V = 0 line), or are partly within red-shifted areas. There are two cases favourable for the occurrence of flares, one is that the gulf-like neutral lines of the magnetic field (B = 0 line) occur in the H red-shifted areas, the other is that the gulf-like inversion lines of the H Doppler velocity field (V = 0 line) occur in the unipolar magnetic areas. These observational facts indicate that the velocity field and magnetic field have the same effect on the process of flare energy accumulation and release.  相似文献   

19.
During 1967–1970, the greatness of 90 large flares (H importance 2) was influenced by the orientation of the large-scale ( 100 000 km) magnetic field structure over the flare site. Although the average X-ray and optical emissions are only slightly larger for flares with their overlying fields directed southward, as opposed to northward, the meter-wave-length prompt flux maxima are, on average, an order of magnitude greater for the flares with southward oriented magnetic fields. There is a comparable, but possibly smaller difference in the 10 cm- fluxes. We therefore conclude that, during this period, the orientation of the overlying magnetic field affects the amount of electromagnetic flare energy radiated promptly in the corona (10 cm- and m-), relative to that radiated in the chromosphere (X-ray and optical). We demonstrate that this statistical effect shows some variability in degree during the period, although the trend is consistent throughout.  相似文献   

20.
The influence of the chromospheric condensation on H line profiles for the thermal model of a solar flare has been empirically studied in this paper. The so-called thermal model here means that there is no temperature increase relative to the quiet-Sun chromosphere but with a chromospheric condensation in the lower part of its transition region, which case is assumed to represent the early stage of the impulsive phase. The main results include: when the temperature within the condensation region is assumed to be equal to that in front of it, the influence is to create an additional absorption profile overlapping on the original one; by increasing the condensation strength, the H line profile changes from a little line-center increase to broadened red asymmetry, then to the reversed red asymmetry, and finally to two independent absorption profiles; the thickness of the condensation determines the absorption of the additional profile; descending the transition region has no obvious effect on the basic characteristic of the H line profile except a little increase in the line center. Assuming that the temperature within the condensation is higher than that ahead of the condensation, the calculated H line profiles may be strong enough to be comparable with the observations. This means that if the condensation in the purely thermal model can reach a higher temperature, we may also use only thermal origin to explain a chromospheric flare.Alexander von Humboldt Research Fellow, on leave from Purple Mountain Observatory, Nanjing, China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号