首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The damping of standing slow waves in hot (T>6 MK) coronal loops of semicircular shape is revisited in both the linear and nonlinear regimes. Dissipation by thermal conduction, compressive viscosity, radiative cooling, and heating are examined for nonstratified and stratified loops. We find that for typical conditions of hot SUMER loops, thermal conduction increases the period of damped oscillations over the sound-crossing time, whereas the decay times are mostly shaped by compressive viscosity. Damping from optically thin radiation is negligible. We also find that thermal conduction alone results in slower damping of the density and velocity waves compared to the observations. Only when compressive viscosity is added do these waves damp out at the same rate as the observed rapidly decaying modes of hot SUMER loop oscillations, in contrast to most current work, which has pointed to thermal conduction as the dominant mechanism. We compare the linear predictions with numerical hydrodynamic calculations. Under the effects of gravity, nonlinear viscous dissipation leads to a reduction of the decay time compared to the homogeneous case. In contrast, the linear results predict that the damping rates are barely affected by gravity.  相似文献   

2.
We use linear analysis to simulate the evolution of a coronal loop in response to a localized impulsive event. The disturbance is modeled by injecting a narrow Gaussian velocity pulse near one footpoint of a loop in equilibrium. Three different damping mechanisms, namely viscosity, thermal conduction, and optically thin radiation, are included in the loop calculations. We consider homogeneous and gravitationally stratified, isothermal loops of varying length (50≤L≤400 Mm) and temperature (2≤T≤10 MK). We find that a localized pulse can effectively excite slow magnetoacoustic waves that propagate up along the loop. The amplitudes of the oscillations increase with decreasing loop temperature and increasing loop length and size of the pulse width. At T≥4 MK, the waves are dissipated by the combined effects of viscosity and thermal conduction, whereas at temperatures of 2 MK, or lower, wave dissipation is governed by radiative cooling. We predict periods in the range of 4.6?–?41.6 minutes. The wave periods remain unaltered by variations of the pulse size, decrease with the loop temperature, and increase almost linearly with the loop length. In addition, gravitational stratification results in a small reduction of the periods and amplification of the waves as they propagate up along the loop.  相似文献   

3.
The dispersion properties of the sausage eigenmodes of oscillations in a thin magnetic flux tube are numerically analyzed in terms of ideal magnetohydrodynamics (MHD). The period of the modes accompanied by the emission of MHD waves into the surrounding medium, which leads to acoustic damping of oscillations, is determined by the radius of the tube, not by its length. The dissipation of the sausage oscillations in comparatively high (?0.7R ) and tenuous (?6 × 108 cm?3) coronal loops is considered. Their Q factor has bound found to be determined by the acoustic damping mechanism. The ratio of the plasma densities outside and inside the loop and the characteristic height of the emission source have been estimated by assuming the quasi-periodic pulsations of meter-wavelength radio emission to be related to the sausage oscillations.  相似文献   

4.
We consider the modulation of nonthermal gyrosynchrotron emission from solar flares by the ballooning and radial oscillations of coronal loops. The damping mechanisms for fast magnetoacoustic modes are analyzed. We suggest a method for diagnosing the plasma of flare loops that allows their main parameters to be estimated from peculiarities of the microwave pulsations. Based on observational data obtained with the Nobeyama Radioheliograph (17 GHz) and using a technique developed for the event of May 8, 1998, we determined the particle density n≈3.7×1010 cm?3, the temperature T≈4×107 K, and the magnetic field strength B≈220 G in the region of flare energy release. A wavelet analysis for the solar flare of August 28, 1999, has revealed two main types of microwave oscillations with periods P1≈7, 14 s and P2≈2.4 s, which we attribute to the ballooning and radial oscillations of compact and extended flare loops, respectively. An analysis of the time profile for microwave emission shows evidence of coronal loop interaction. We determined flare plasma parameters for the compact (T≈5.3×107 K, n≈4.8≈1010 cm?3, B≈280 G) and extended (T≈2.1≈107 K, n≈1.2≈1010 cm?3, B≈160 G) loops. The results of the soft X-ray observations are consistent with the adopted model.  相似文献   

5.
We investigate the effect of a variable, i.e. time-dependent, background on the standing acoustic (i.e. longitudinal) modes generated in a hot coronal loop. A theoretical model of 1D geometry describing the coronal loop is applied. The background temperature is allowed to change as a function of time and undergoes an exponential decay with characteristic cooling times typical for coronal loops. The magnetic field is assumed to be uniform. Thermal conduction is assumed to be the dominant mechanism for damping hot coronal oscillations in the presence of a physically unspecified thermodynamic source that maintains the initial equilibrium. The influence of the rapidly cooling background plasma on the behaviour of standing acoustic (longitudinal) waves is investigated analytically. The temporally evolving dispersion relation and wave amplitude are derived by using the Wenzel–Kramers–Brillouin theory. An analytic solution for the time-dependent amplitude that describes the influence of thermal conduction on the standing longitudinal (acoustic) wave is obtained by exploiting the properties of Sturm–Liouville problems. Next, numerical evaluations further illustrate the behaviour of the standing acoustic waves in a system with a variable, time-dependent background. The results are applied to a number of detected loop oscillations. We find a remarkable agreement between the theoretical predictions and the observations. Despite the emergence of the cooling background plasma in the medium, thermal conduction is found to cause a strong damping for the slow standing magneto–acoustic waves in hot coronal loops in general. In addition to this, the increase in the value of thermal conductivity leads to a strong decay in the amplitude of the longitudinal standing slow MHD waves.  相似文献   

6.
Using simultaneous high spatial (1.3 arcsec) and temporal (5 and 10 s) resolution Hα observations from the 15 cm Solar Tower Telescope at Aryabhatta Research Institute of Observational Sciences (ARIES), we study the oscillations in the relative intensity to explore the possibility of sausage oscillations in the chromospheric cool post-flare loop. We use the standard wavelet tool, and find the oscillation period of ≈587 s near the loop apex, and ≈349 s near the footpoint. We suggest that the oscillations represent the fundamental and the first harmonics of the fast-sausage waves in the cool post-flare loop. Based on the period ratio   P 1/ P 2∼1.68  , we estimate the density scaleheight in the loop as ∼17 Mm. This value is much higher than the equilibrium scaleheight corresponding to Hα temperature, which probably indicates that the cool post-flare loop is not in hydrostatic equilibrium. Seismologically estimated Alfvén speed outside the loop is  ∼300–330  km s−1  . The observation of multiple oscillations may play a crucial role in understanding the dynamics of lower solar atmosphere, complementing such oscillations already reported in the upper solar atmosphere (e.g. hot flaring loops).  相似文献   

7.
The excitation and damping of the transversal coronal loop oscillations and quantitative relation between damping time, damping property (damping time per period), oscillation amplitude, dissipation mechanism and the wake phenomena are investigated. The observed time series data with the Atmospheric Imaging Assembly (AIA) telescope on NASA’s Solar Dynamics Observatory (SDO) satellite on 2015 March 2, consisting of 400 consecutive images with 12 s cadence in the 171 \(\mathring{\mathrm{A}}\) pass band is analyzed for evidence of transversal oscillations along the coronal loops by the Lomb–Scargle periodgram. In this analysis signatures of transversal coronal loop oscillations that are damped rapidly were found with dominant oscillation periods in the range of \(\mathrm{P}=12.25\,\text{--}\,15.80\) min. Also, damping times and damping properties of the transversal coronal loop oscillations at dominant oscillation periods are estimated in the range of \({\tau_{\mathrm{d}}=11.76}\,\text{--}\,{21.46}\) min and \({\tau_{\mathrm{d}}/\mathrm{P}=0.86}\,\text{--}\,{1.49}\), respectively. The observational results of this analysis show that damping properties decrease slowly with increasing amplitude of the oscillation, but the periods of the oscillations are not sensitive functions of the amplitude of the oscillations. The order of magnitude of the damping properties and damping times are in good agreement with previous findings and the theoretical prediction for damping of kink mode oscillations by the dissipation mechanism. Furthermore, oscillations of the loop segments attenuate with time roughly as \(t^{-\alpha}\) and the magnitude values of \(\alpha\) for 30 different segments change from 0.51 to 0.75.  相似文献   

8.
Based on an analogy between stellar and solar flares, we investigate the ten-second oscillations detected in the U and B bands on the star EV Lac. The emission pulsations are associated with fast magnetoacoustic oscillations in coronal loops. We have estimated the magnetic field, B ≈ 320 G; the temperature, T ≈ 3.7 × 107 K; and the plasma density, n ≈ 1.6 × 1011 cm?3, in the region of energy release. We provide evidence suggesting that the optical emission source is localized at the loop footpoints.  相似文献   

9.
I. Ballai 《Solar physics》2007,246(1):177-185
Following the observation and analysis of large-scale coronal-wave-like disturbances, we discuss the theoretical progress made in the field of global coronal seismology. Using simple mathematical techniques we determine average values for the magnetic field together with a magnetic map of the quiet Sun. The interaction between global coronal waves and coronal loops allows us to study loop oscillations in a much wider context, i.e. we connect global and local coronal oscillations.  相似文献   

10.
The role of leaky waves in the coronal loop oscillations observed by TRACE is not yet clearly understood. In this work, the excitation of fast waves in solar coronal loops modelled as dense plasma cylindrical tubes in a uniform straight magnetic field is investigated. We study the trapped and especially leaky modes (whose energy escapes from the tube) that result from an initial disturbance by solving the time-dependent problem numerically. We find that the stationary state of the tube motion is given by the trapped normal modes. By contrast, the transient behaviour between the initial and the stationary phase is dominated by wave leakage. The so-called trig leaky modes are clearly identified since the transient behaviour shows periods and damping times that are in agreement with the values calculated from the normal-mode analysis. Consequently, these radiating modes have physical significance. However, we have not found any evidence for the excitation of other types of modes, such as the principal leaky kink mode. J. Andries is postdoctoral Fellow of the National Fund for Scientific Research – Flanders (Belgium) (F.W.O.-Vlaanderen).  相似文献   

11.
Magnetohydrodynamic (MHD) waves in solar coronal loops, which were previously only predicted by theory have actually been detected with space‐borne instruments. These observations have given an important and novel tool to measure fundamental parameters in the magnetically embedded solar corona. This paper will illustrate how information about the magnetic and density structure along coronal loops can be determined by measuring the frequency or amplitude profiles of standing fast kink mode oscillations. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We consider a model of a coronal loop in the form of a cord surrounded by a coaxial shell. Two slow magnetosonic waves longitudinally propagate within a thin flux tube on the m=0 cylindrical mode with velocities close to the tube velocities in the cord and the shell. One wave propagates inside the cord, while the other propagates inside the shell. A peculiar feature of the second wave is that the plasma in the cord and the shell oscillates with opposite phases. There are two fast magnetosonic waves on each of the cylindrical modes with m>0. If the plasma density in the shell is lower than that in the surrounding corona, then one of the waves is radiated into the corona, which causes the loop oscillations to be damped, while the other wave is trapped by the cord, but can also be radiated out under certain conditions. If the plasma density in the shell is higher than that in the cord, then one of the waves is trapped by the shell, while the other wave can also be trapped by the shell under certain conditions. In the wave trapped by the shell and the wave radiated by the tube, the plasma in the cord and the shell oscillates with opposite phases.  相似文献   

13.
Propagating kink waves are ubiquitously observed in solar magnetic wave guides. We consider the possibility that these waves propagate without reflection although there is some inhomogeneity. We briefly describe the general theory of non-reflective, one-dimensional wave propagation in inhomogeneous media. This theory is then applied to kink-wave propagation in coronal loops. We consider a coronal loop of half-circle shape embedded in an isothermal atmosphere, and assume that the plasma temperature is the same inside and outside the loop. We show that non-reflective kink-wave propagation is possible for a particular dependence of the loop radius on the distance along the loop. A viable assumption that the loop radius increases from the loop footpoint to the apex imposes a lower limit on the loop expansion factor, which is the ratio of the loop radii at the apex and footpoints. This lower limit increases with the loop height; however, even for a loop that is twice as high as the atmospheric scale height, it is small enough to satisfy observational constraints. Hence, we conclude that non-reflective propagation of kink waves is possible in a fairly realistic model of coronal loops.  相似文献   

14.
The damping of fast kink oscillations of solar coronal loops attributable to the radiation of MHD waves into the surroundings is considered in the thin-tube approximation. The oscillation damping decrement is calculated both by using a new energy method and by solving the dispersion equation for magnetic-tube eigenmodes. The two approaches are in good agreement under appropriate assumptions. The damping is negligible if MHD waves are radiated perpendicular to the magnetic field. The low Q factor of the loop oscillations in active regions found with the TRACE space telescope is associated with the generation of running waves that propagate along magnetic field lines.  相似文献   

15.
The effect of temperature inhomogeneity on the periods, their ratios (fundamental versus first overtone), and the damping times of the standing slow modes in gravitationally stratified solar coronal loops are studied. The effects of optically thin radiation, compressive viscosity, and thermal conduction are considered. The linearized one-dimensional magnetohydrodynamic (MHD) equations (under low-?? condition) were reduced to a fourth-order ordinary differential equation for the perturbed velocity. The numerical results indicate that the periods of nonisothermal loops (i.e., temperature increases from the loop base to apex) are smaller compared to those of isothermal loops. In the presence of radiation, viscosity, and thermal conduction, an increase in the temperature gradient is followed by a monotonic decrease in the periods (compared with the isothermal case), while the period ratio turns out to be a sensitive function of the temperature gradient and the loop lengths. We verify that radiative dissipation is not a main cooling mechanism in both isothermal and nonisothermal hot coronal loops and has a small effect on the periods. Thermal conduction and compressive viscosity are primary mechanisms in the damping of slow modes of the hot coronal loops. The periods and damping times in the presence of compressive viscosity and/or thermal conduction dissipation are consistent with the observed data in specific cases. By tuning the dissipation parameters, the periods and the damping times could be made consistent with the observations in more general cases.  相似文献   

16.
We study the general X-ray and multiwavelength characteristics of microflares of GOES class A0.7 to B7.4 (background subtracted) detected by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) on 26 September 2003 comparing them with the properties of regular flares. All the events for which X-ray imaging was feasible originated in one active region and were accumulated in areas with intermixed magnetic polarities. During the events’ rise and peak phase, the RHESSI X-ray spectra show a steep nonthermal power-law component (4?γ?10) for energies ??10 keV. Further evidence for the presence of electron beams is provided by the association with radio type III bursts in 5 out of 11 events where AIP radio spectra were available. The strongest event in our sample shows radio signatures of a type II precursor. The thermally emitting flare plasma observed by RHESSI is found to be hot, 11?T?15 MK, with small emission measures, 1046?EM?1047 cm?3, concentrated in the flare loop. In the EUV (TRACE 171 Å), the UV (TRACE 1600 Å) and Kanzelhöhe Solar Observatory Hα, impulsive brightenings at both ends of the RHESSI 3?–?6 keV X-ray loop source are observed, situated in opposite magnetic polarity fields. During the decay phase, a postflare loop at the location of the RHESSI loop source is observed in the TRACE 171 Å? channel showing plasma that is cooled from ??10 MK to ≈?1 MK. Correlations between various thermal and nonthermal parameters derived from the RHESSI microflare spectra compared to the same correlations obtained for a set of small and large flares by Battaglia et al. (Astron. Astrophys. 439, 737, 2005) indicate that the RHESSI instrument gives us a spectrally biased view since it detects only hot (T?10 MK) microflares, and thus the correlations between RHESSI microflare parameters have to be interpreted with caution. The thermal and nonthermal energies derived for the RHESSI microflares are \(\bar{E}_{\mathrm{th}}=7\times 10^{27}\) ergs and \(\bar{E}_{\mathrm{nth}}=2\times 10^{29}\) ergs, respectively. Possible reasons for the order-of-magnitude difference between the thermal and nonthermal microflare energies, which was also found in previous studies, are discussed. The determined event rate of 3.7 h?1 together with the average microflare energies indicate that the total energy in the observed RHESSI microflares is far too small to account for the heating of the active region corona in which they occur.  相似文献   

17.
We continue studying the robustness of coronal seismology. We concentrate on two seismological applications: the estimate of coronal scale height using the ratio of periods of the fundamental harmonic and first overtone of kink oscillations, and the estimate of magnetic-field magnitude using the fundamental harmonic. Our analysis is based on the model of non-planar coronal loops suggested by Ruderman and Scott (Astron. Astrophys. 529, A33, 2011), which was formulated using the linearized MHD equations. We show that the loop non-planarity does not affect the ratio of periods of the fundamental harmonic and first overtone, and thus it is unimportant for the estimates of the coronal scale height. We also show that the density variation along the loop and the loop non-planarity only weakly affect the estimates of the magnetic-field magnitude. Hence, using the simplest model of coronal loops, which is a straight homogeneous magnetic cylinder, provides sufficiently accurate estimates for the magnetic-field magnitude.  相似文献   

18.
TRACE observations from 15 April 2001 of transverse oscillations in coronal loops of a post-flare loop arcade are investigated. They are considered to be standing fast kink oscillations. Oscillation signatures such as displacement amplitude, period, phase and damping time are deduced from 9 loops as a function of distance along the loop length. Multiple oscillation modes are found with different amplitude profile along the loop length, suggesting the presence of a second harmonic. The damping times are consistent with the hypothesis of phase mixing and resonant absorption, although there is a clear bias towards longer damping times compared with previous studies. The coronal magnetic field strength and coronal shear viscosity in the loop arcade are derived.  相似文献   

19.
TRACE observations from 15 April 2001 of transverse oscillations in coronal loops of a post-flare loop arcade are investigated. They are considered to be standing fast kink oscillations. Oscillation signatures such as displacement amplitude, period, phase and damping time are deduced from 9 loops as a function of distance along the loop length. Multiple oscillation modes are found with different amplitude profile along the loop length, suggesting the presence of a second harmonic. The damping times are consistent with the hypothesis of phase mixing and resonant absorption, although there is a clear bias towards longer damping times compared with previous studies. The coronal magnetic field strength and coronal shear viscosity in the loop arcade are derived.  相似文献   

20.
Based on observational data obtained with the RT-22 Crimean Astrophysical Observatory radio telescope at frequencies of 8.6 and 15.4 GHz, we investigate the quasi-periodic variations of microwave emission from solar active regions with periods Tp<10 min. As follows from our wavelet analysis, the oscillations with periods of 3–5 min and 10–40 s have the largest amplitudes in the dynamic power spectra, while there are virtually no oscillations with Tp<10 s. Our analysis shows that acoustic modes with Tp?1 min strongly dissipate in the lower solar corona due to thermal conduction losses. The oscillations with Tp=10–40 s are associated with Alfvén disturbances. We analyze the influence of acoustic and Alfvén oscillations on the thermal mechanisms of microwave emission in terms of the homogeneous model. We discuss the probable coronal heating sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号