首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

In this study, a 24‐h high‐resolution numerical prediction of a prefrontal squall line associated with the 14 July 1987 Montreal flood is employed to investigate the origin and role of mesoscale gravity waves in the development of the squall system. The 24‐h integration using an improved mesoscale version of the Canadian regional finite‐element model is first validated against available observations; then non‐observable features are diagnosed to reveal the relationship between deep convection and gravity wave events. It is shown that the model reproduces well many aspects of the squall line, such as the propagation and organization of the convective system, as well as its associated precipitation. It is found that gravity waves are first excited near Lake Erie, following the initiation of early convective activity. Then, these waves propagate eastward and northeastward at speeds of 20 and 35 m s‐1, respectively. As the waves propagate downstream, deep convection radiates rapidly behind the wave trough axis, forming a long line of squall convection. Because the squall line moves with the gravity waves in a “phase‐locked” manner, deep convection has a significant influence on the structure and amplitude of the gravity waves. The sensitivity of the wave‐squall prediction to various parameters in convective parameterization is also examined.  相似文献   

2.
Numerical simulation of meso-β-scale convective cloud systems associated with a PRE-STORM MCC case has been carried out using a 2-D version of the CSU Regional Atmospheric Modeling System (RAMS) nonhydrostatic model with parameterized microphysics. It is found that the predicted meso-γ-scale convective phenomena are basically unsteady under the situation of strong shear at low-levels, white the meso-β-scale convective system is maintained up to 3 hours or more. The meso-β-scale cloud system exhibits characteristics of a multi-celled convective storm in which the meso-γ-scale convective cells have lifetime of about 30 min. Pressure perturbation depicts a meso-low after a half hour in the low levels. As the cloud system evolves, the meso-low inten-sifies and extends to the upshear side and covers the entire domain in the mid-lower levels with the peak values of 5-8 hPa. Temperature perturbation depicts a warm region in the middle levels through the entire simulation period. The meso-γ-scale warm cores with peak values of 4-8oC are associated with strong convective cells. The cloud top evapo-ration causes a stronger cold layer around the cloud top levels.Simulation of microphysics exhibits that graupel is primarily concentrated in the strong convective cells forming the main source of convective rainfall after one hour of simulation time. Aggregates are mainly located in the stratiform region and decaying convective cells which produce the stratiform rainfall. Riming of the ice crystals is the predominant precipitation formation mechanism in the convection region, whereas aggregation of ice crystals is the predominant one in the stratiform region, which is consistent with observations. Sensitivity experiments of ice-phase microphysical processes show that the microphysical structures of the convective cloud system can be simulated better with the diagnosed aggregation collection efficiencies.  相似文献   

3.
The interdecadal change in seasonal predictability and numerical models’ seasonal forecast skill in the Northern Hemisphere are examined using both observations and the seasonal hindcast from six coupled atmosphere-ocean climate models from the 21 period of 1960–1980 (P1) to that of 1981–2001 (P2). It is shown that the one-month lead seasonal forecast skill of the six models’ multi-model ensemble is significantly increased from P1 to P2 for all four seasons. We identify four possible reasons accounting for the interdecadal change of the seasonal forecast skill. Firstly, the numerical model’s ability to simulate the mean state, the time variability and the spatial structures of the sea surface temperature and precipitation over the tropical Pacific is improved in P2 compared to P1. Secondly, an examination of the potential predictability of the atmosphere, estimated by the ratio of the total variance to the variance due to the internal dynamics of the model atmosphere, reveals that the atmospheric potential predictability is significantly increased after 1980s which is mainly due to an increased influence of El Niño-Southern Oscillation signal over the North Pacific and North American regions. Thirdly, the long-term climate trends in the atmosphere are found to contribute, to some extent, to the increased seasonal forecast skill especially over the Eurasian regions. Finally, the improved ocean observations in P2 may provide better initial conditions for the coupled models’ seasonal forecast.  相似文献   

4.
2007年济南“7.18”大暴雨的持续拉长状对流系统研究   总被引:3,自引:0,他引:3  
卓鸿  赵平  任健  刘爱梅  杨芙蓉 《气象学报》2011,69(2):263-276
利用常规观测、中尺度自动站、卫星和雷达等资料,分析了2007年7月18-19日造成华北南部强降水的持续拉长状对流系统(Permanent elongated convective system,简称PECS)的发生和发展过程.结果表明:持续拉长状对流系统的发生发展与低层来自东北方向冷空气和正在减弱的中尺度对流复合体尾部的向外气流有关.云图分析表明:这次持续拉长状对流系统先后南10个对流单体复合而成,其中2个α中尺度的对流单体复合时造成了济南市北部的商河县强降水,并且强降水发生在持续拉长状对流系统发展阶段,位于持续拉长状对流系统的后部,与低于201 K的冷云盖相对应;当对流单体复合时,在可见光云图上出现云线(即飑锋).并且在窄小的云线中又包含4个γ中尺度的对流单体,其中一个产生高达13 km的降水回波;当云线出现时,地面冷锋后部出现γ中尺度雷暴高压,随后逐渐发展成为α中尺度的雷暴群,降水产生在雷暴高压前和冷锋后.济南市强降水过程则是由合并后的对流单体内部的2个强度不同的上冲云顶合并成一个更强的上冲云顶时造成的.雷达同波分析进一步显示,这次持续拉长状对流系统降水回波表现出后部扩建类和同波交叉类的特征,其中商河县的降水由主冷空气涌产生,而济南市强降水可能与主冷空气涌与次冷空气涌合并所形成的2个β中尺度和1个γ中尺度的多单体雷暴有关.  相似文献   

5.
A higher order closure mesoscale model is used to study the influence of different surface properties on stratiform boundary-layer clouds. The model is hydrostatic, has a terrain-following coordinate system and a sub-grid scale condensation scheme. It also has a radiation parameterisation for shortwave and longwave radiation in order to calculate radiative cooling/heating. The simulations show the effects on a cloud field when cool or cold air is advected over warm water, the possible influence of local circulation systems on cloud fields in situations with weak synoptic forcing and the influence on a cloud field by growing internal boundary layers. Some of the results are compared with simpler physical models, and limitations in those are demonstrated.  相似文献   

6.
The merger of convective clouds in severe precipitation associated with the Meiyu front occurred near Nanjing during 4–5 July 2003 is investigated using satellite observational analyses and numerical simulations with the Weather Research and Forecast version 3.2. It is found that the merger of convective clouds plays a crucial role in the excessive storm. The severe rainfall event experiences a multi-scale organized process ranging from triggered convective bulbs, growing convective cells, to the formation of the convective complex. The development of convections causes the large-scale dynamic and thermodynamic environment change, which in turn favors the organized processes of convective systems and promotes multi-scale coupling of the nonlinear interaction between convections and its large-scale environment.  相似文献   

7.
A higher order closure mesoscale model is used to study the influence of terrain height differences on the meso--scale on stratiform boundary-layer clouds. The model is hydrostatic, has a terrain-following coordinate system and a sub-grid scale condensation scheme. It also has a radiation parameterisation for shortwave and longwave radiation in order to calculate radiative cooling/heating. The simulations show that the cloud base height variations induced by the terrain can be much larger than motivated by terrain height variations alone. It is also shown how this behavior is dependent on upstream boundary-layer conditions and/or changes in the turbulence field. Other features studied include the wave in the lee of a ridge/hill and the associated lifting of the cloud base. The results are compared with some simpler physical models, and limitations in those models are demonstrated.  相似文献   

8.
9.
Summary The numerical simulation of a long-lived, stationary mesoscale convective system (MCS) already described in a previous paper (Fernández et al., 1995) is analyzed in greater detail. The influence of various external forcings, such as sea surface temperature, local orography or terrain roughness, upon the characteristics of the system is studied. This analysis makes it possible not only to identify the most important factors, but also to deduce the importance of some other internal forcings and to propose explanations for some dynamic features of the system that were difficult to understand. Hence, the sensitivity test methodology applied seems to be a useful tool to clarify the complex dynamics of some moist convective events. In the modelled MCS, sea surface temperature and orography are identified as key factors. The results also indicate that the upstream triggering of convection provoked by an orographic blocking effect is the main cause of the development of the system, while upslope triggering plays a secondary role.With 18 Figures  相似文献   

10.
We assess the ability of the Predictive Ocean Atmosphere Model for Australia (POAMA) to simulate and predict weekly rainfall associated with the MJO using a 27-year hindcast dataset. After an initial 2-week atmospheric adjustment, the POAMA model is shown to simulate well, both in pattern and in intensity, the weekly-mean rainfall variation associated with the evolution of the MJO over the tropical Indo-Pacific. The simulation is most realistic in December?CFebruary (austral summer) and least realistic in March?CMay (austral autumn). Regionally, the most problematic area is the Maritime Continent, which is a common problem area in other models. Coupled with our previous demonstration of the ability of POAMA to predict the evolution of the large-scale structure of the MJO for up to about 3?weeks, this ability to simulate the regional rainfall evolution associated with the MJO translates to enhanced predictability of rainfall regionally throughout much of the tropical Indo-Pacific when the MJO is present in the initial conditions during October?CMarch. We also demonstrate enhanced prediction skill of rainfall at up to 3?weeks lead time over the north-east Pacific and north Atlantic, which are areas of pronounced teleconnections excited by the MJO-modulation of tropical Indo-Pacific rainfall. Failure to simulate and predict the modulation of rainfall in such places as the Maritime Continent and tropical Australia by the MJO indicates, however, there is still much room for improvement of the prediction of the MJO and its teleconnections.  相似文献   

11.
Extensive turbulence measurements from the Limagne and Beauce experiments were used to compute a characteristic time scale of the turbulence field (Τ = second moment/dissipation rate) for turbulent kinetic energy, temperature and humidity variances, and temperature-humidity covariance. The height variations of these time scales were analysed. The characteristic half-time scale Τ/2 of the turbulent velocity field was found, as expected, to be of the same order of magnitude as the large-eddy time scale Τ L = Zi/w*, showing that the turbulence structure is controlled by large eddies in the bulk of the mixed layer. The increase of Τ/2 above z/Z i ~- 0.7 implies, however, that this time scale is no longer relevant to destruction of turbulent kinetic energy in the statically stable region with negative heat fluxes. An effective time scale Τeff, introduced by Zeman (1975), has been computed and its behaviour discussed. The scales for θ′ 2, q′2, and θ′q′ were found to be much shorter than Τ. Furthermore, a significant difference in behaviour was also revealed between the characteristic time scales of temperature and humidity fields in the stable layer. By using these experimental estimates, we tested some of the models for molecular dissipations, which are currently in use in higher order closure atmospheric boundary-layer models. The parameterized dissipation rates for θ′ 2, and q′ 2 agree well qualitatively with experimental estimates in the bulk of the mixed layer. In the stable layer, however, the parameterized dissipation rate ε θ tends to become larger than the experimental ones although the parameterized dissipation rate ε q still agrees with the experimental ones. For the molecular dissipation of θ′q′, this current model becomes physically inconsistent in the middle part of the mixed layer, because this term may become a production term for temperature-humidity covariance.  相似文献   

12.
基于雷达资料快速刷新四维变分同化(RR4DVar)初始化的三维数值云模式,利用京津冀6部新一代多普勒天气雷达和区域自动气象站观测资料,针对2013年7月4日出现在京津冀平原地区的中尺度对流系统(MCS),开展了数值临近预报试验。研究结果表明,充分考虑雷达观测信息的对流尺度数值临近预报具有很大的优势,但也存在不足:(1)模式能够较好地把握中尺度对流系统的组织发展和移动演变特征,对风暴回波带的走向和尺度特征有较好的预报,但对强回波的强度和位置预报存在一定偏差;(2)模式预报可以反映风暴系统的中小尺度扰动特征,对风暴冷池和出流边界(阵风锋)的发展变化均有较为合理的预报;(3)模式对强降水中心和雨带位置的预报有很大优势,能较好地预报弱降水雨带的分布形势和雨量,但对强降水落区的预报偏大;(4)模式对风暴造成的对流性强降水的预报准确率较高,对0.5—10 mm阈值的降水范围预报偏差比较合理,对10 mm以上降水范围的预报偏大,但是对弱降水风暴的弱回波较强回波的预报性能要好;(5)由于三维数值云模式对京津冀复杂地形的处理不够完善,对山前风场预报偏差较大,造成对山前风暴的发展演变和山前降水的预报偏差较大。  相似文献   

13.
针对2005年7月22日的发生于华北的暴雨中尺度对流系统,在用中尺度ARPS模式数值模拟和分析云场、动力场以及微物理过程释放的潜热垂直分布和作用特征的基础上,通过改变主要微物理过程潜热做敏感性数值试验,研究和分析了潜热对云系发展演变、云系宏观动力场、水汽场、云场和降水的影响,总结出云暖区潜热的影响途径。结果表明,在对流云团中,5000 m以上微物理过程起加热作用,以下起冷却作用。不同物理过程潜热加热的云层高度不同:高层起加热作用的主要为水汽凝结、云冰初生和雪凝华增长、霰撞冻云水过程;中层起加热/冷却作用的主要为水汽凝结、霰/雹融化过程;低层雨水的蒸发过程起冷却作用。微物理过程潜热通过影响云系和降水发展过程、云系动力场,进而影响水汽场、云场和降水。忽略霰/雹融化潜热,相当于增加云系暖区潜热,促进了低层气旋性环流的形成,增强了低层动力场的辐合,使得低层辐合区增多、增强;中低层水汽通量辐合区增多、面积扩大,明显地促进了对流云系的发展,增大了含水量和覆盖范围,云系的降水量显著增加,强降水区覆盖范围扩大。即使减少20%的凝结潜热,云系的发展也受到极大抑制,没有气旋性环流生成,低层辐合区缩小、强度降低,水汽通量辐合区也同样缩小、强度降低,云系对流发展减弱、含水量降低,因此,降水量大为减小,降水范围也显著缩小。此外,微物理过程潜热还影响到此次中尺度对流系统发展演变过程,改变了云系的形态、影响到系统的移动和系统中对流云团的发展强度和分布情况。  相似文献   

14.
An analysis of the forecasts of severe squalls observed on June 13 and July 29, 2010 based on the WRF-ARW and COSMO-RU numerical models and actual mesosynoptic conditions demonstrated the significant use of the joint application of these tools along with the more detailed taking account of specific geographic conditions, especially in the evening and at night.  相似文献   

15.
Summary Two-dimensional simulations of plume advection over a hill are presented. The calculations are carried out in two steps. In a first step the flow is calculated by a mesoscale-model. This model solves the equations of motions in a cartesian grid. In a second step, the transport equation is solved using the calculated flow-parameters of the mesoscale model. The numerical formulation of the transport-equation was presented in Part I. This calculation is performed in a coordinatetransformed grid. The merit of this combination is discussed in the paper.With 11 Figures  相似文献   

16.
长江中下游汛期降水数值预报业务模式误差场预报研究   总被引:3,自引:1,他引:3  
根据中国国家气候中心(NCC)数值预报业务模式(ONPM)预报结果,利用气候因子对业务模式的误差场进行预报试验。文中所用114项逐月气候因子在历年汛期前期总会出现部分因子异常的状况,在此基础上对因子异常的相似阈值进行数值试验,提出利用交叉检验平均距平相关系数(ACC)的大小来确定相似阈值的方法。依此选择影响该区域的前期关键异常因子,根据该部分因子的相似程度选取相似年,同时对模式误差场利用经验正交函数压缩维度,用前3个主分量对模式误差制作预报,针对业务模式的预报误差场,提出了根据因子异常挑选相似和压缩维度的一个预报方法。2005—2009年独立样本回报结果表明,该方法可以将5a平均距平相关系数由系统误差订正的0.22提高到0.47,具有较好的业务应用价值。  相似文献   

17.
Abstract

This paper presents the seasonal dependence of the stationary and transient eddies of the GLAS/UMD GCM from a two‐year annual cycle integration.

The simulated Northern Hemisphere stationary waves are realistic in winter (below 250 mb) and in spring and fall; in winter a large anomalous ridge over the date‐line is noted above 250 mb. The model does not simulate the winter barotropic trough over eastern Canada. In summer the mid‐latitude stationary waves are poorly simulated (possibly owing to anomalous summer rainfall), but the monsoonal structure in the tropics is captured.

The stationary wave field at 500 mb in the Southern Hemisphere is not well simulated, with the range of season‐to‐season variability being much larger than observed. The zonally averaged stationary wave rms is realistic below 200 mb in winter and spring, but is less so in summer and autumn, possibly due to erroneous summertime precipitation.

The geographical distributions of 500‐mb transient and band‐pass height rms, of transient 850‐mb heat flux and of 200‐mb momentum flux in the Northern Hemisphere are well simulated except for summer. The latitude‐height dependence of height rms and low‐level transient heat flux is realistic in both summer and winter, but the transient momentum flux is not well simulated in summer. The mid‐level transient heat flux is too strong.

The overall pattern of transient activity at 500 mb in the Southern Hemisphere is reasonable in the GCM, although there is too much variability in the eastern Pacific, while the observed peak in rms in the New Zealand sector is displaced eastwards in the GCM. The latitude‐height dependence of transient height rms and transient fluxes of heat and momentum looks quite realistic, and is similar in accuracy to the Northern Hemispheric results.  相似文献   

18.
This paper is Part II of a two-part series in which the risks associated with unrestrained greenhouse-gas emissions, and with measures to limit emissions, are reviewed. A sustained limitation of global CO2 emissions requires global population stabilization, a reduction in per capita emissions in the developed world, and a limitation of the increase in per capita emissions in the developing world. Reducing or limiting per capita emissions requires a major effort to improve the efficiency with which energy is transformed and used; urban development which minimizes the need for the private automobile and facilitates district heating, cooling, and cogeneration systems; and accelerated development of renewable energy. The following risks associated with these efforts to limit CO2 emissions are reviewed here: (i) resources might be diverted from other urgent needs; (ii) economic growth might be reduced; (iii) reduction measures might cost more than expected; (iv) early action might cost more than later action; (v) reduction measures might have undesired side effects; (vi) reduction measures might require heavy-handed government intervention; and (vii) reduction measures might not work. With gradual implementation of a diversified portfolio of measures, these risks can be greatly reduced. Net risk is further reduced by the fact that a number of non-climatic benefits would result from measures to limit CO2 emissions. Based on the review of risks associated with measures to limit emissions here, and the review of the risks associated with unrestrained emissions presented in Part I, it is concluded that a reasonable near-term (20–30 year) risk hedging strategy is one which seeks to stabilize global fossil CO2 emissions at the present (early 1990's) level. This in turn implies an emission reduction of 26% for industrialized countries as a whole and 40–50% for Canada and the USA if developing country emissions are to increase by no more than 60%, which in itself would require major assistance from the industrialized countries. The effectiveness of global CO2-emission stabilization in slowing down the buildup of atmospheric CO2 is enhanced by the fact that the airborne fraction (ratio of annual atmospheric CO2 increase to total annual anthropogenic emissions) decreases if emissions are stabilized, whereas it increases if emissions continue to grow exponentially. The framework and conclusions presented here are critically compared with so-called optimization frameworks.  相似文献   

19.
In this paper, we report a series of observing system simulation experiments that we conducted to assess the potential impact of Global Positioning System/meteorology (GPS/MET) refractivity data on short-range numerical weather prediction. We first conducted a control experiment using the Penn State/NCAR mesoscale model MM5 at 90-km resolution on an extratropical cyclone known as the ERICA (Experiment on Rapidly Intensifying Cyclones over the Atlantic) IOP 4 storm. The results from the control experiment were then used to simulate GPS/MET refractivity observations with different spatial resolution and measurement characteristics. The simulated refractivity observations were assimilated into an 180-km model during a 6-h period, which was followed by a 48-h forecast integration. Key findings can be summarized as follows:
• The assimilation of refractivity data at the 180-km resolution can recover important atmospheric structures in temperature and moisture fields both in the upper and lower troposphere, and, through the internal model dynamical processes, also the wind fields. The assimilation of refractivity data led to a considerably more accurate prediction of the cyclone.
• Distributing the refractivity randomly in space and applying a line averaging did not alter the results significantly, while reducing the spatial resolution from 180 km to 360 km produced a moderately degraded result. Even at the 360-km resolution, the GPS-type refractivity data still have a notable positive impact on cyclone prediction.
• Restricting the refractivity data to altitude 3 km and above considerably degraded its impact on cyclone prediction. This degradation was greater than the combined effects of distributing the refractivity data randomly, performing line averaging, and reducing the resolution to 360 km.
These results showed that the GPS/MET refractivity data is likely to have a significant impact on short-range operational numerical weather prediction. The random distribution and line averaging associated with the inherent GPS occultation do not pose a problem for effective assimilation. On the other hand, these results also argue that we need to improve the GPS/MET retrieval algorithm in order to recover useful data in the lower troposphere, and to increase the number of low-earth-orbiting satellites carrying GPS receivers in order to increase the density of GPS soundings, so that the potential impact of GPS/MET refractivity data on numerical weather prediction can be fully realized.  相似文献   

20.
一个高空槽前中尺度对流系统发生发展过程和机制研究   总被引:1,自引:0,他引:1  
2008年7月6日20时—7日14时,高空低槽前云系产生了一条从广西南宁市到环江县东西宽约80km、南北长达350km的暴雨带,槽前云系南段一个中尺度对流系统在上林县产生了降雨量达265.0mm的特大暴雨。使用常规资料和FY-2C卫星云图、多普勒天气雷达和自动气象站等非常规观测资料进行分析。当高空槽移过青藏高原后,从卫星云图和等熵面分析图上可以检测到槽后有干空气东南下,干空气经云贵高原下沉到桂西和越南北部后,在槽底附近转折向东侵入到桂中,在上林县附近形成一个中尺度涡旋和中尺度负变压中心,中尺度对流系统在中尺度涡旋及中尺度负变压中心上空发生、发展并产生了强降雨,而中尺度涡旋和中尺度负变压中心的出现超前于强降雨约2h。研究表明,中尺度对流系统发生、发展的有利条件是:(1)槽前偏南暖湿气流向桂中暴雨区输送充足的水汽并形成了位势不稳定,为中尺度对流系统的发生发展提供了环境条件;(2)在上林县附近形成的中尺度涡旋辐合上升运动抬升暖湿气流触发对流而形成了中尺度对流系统;(3)对流单体沿低空切变线传播发展并入中尺度对流系统,使中尺度对流系统得以发展和维持。给出了中尺度对流系统发生发展机制的二维概念模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号