首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The accuracy of temperature and precipitation forecasts for Toronto was studied for the 20‐year period 1960–1979. Since any archive of official forecasts extends for only a small part of this period, it was necessary to retrieve the forecasts from newspaper records. The possible errors involved in such a data source were examined through a comparison of newspaper reported observations and the official record. On only a few occasions were significant differences observed.

For temperature forecasts, the record indicates a significant loss of skill over the 20‐year periodin the prediction of maximum temperature for the first day. This was observed not only for the Bloor Street observing station for which the entire 20‐year record was analysed, but also for observing stations at Toronto Island, Downsview and Malton. The loss of skill over the years is greatest in winter when temperature is consistently predicted too low at all stations.

For the entire period under study, precipitation forecasts consisted only of words and no quantitative information (such as probability of precipitation forecasts) was issued. Word choice is intended to carry information on the duration and expected spatial coverage of precipitation, but substantial inconsistencies between word choice and subsequent precipitation occurrence were found. Consequently, the verification procedure for these forecasts was very simple and ignored any differences implied in word choice. With this technique precipitation forecasts were shown to have improved over the 20‐year period.  相似文献   

2.
Seasonal forecasts have potential value as tools for the management of risks due to inter-annual climate variability and iterative adaptation to climate change. Despite their potential, forecasts are not widely used, in part due to poor performance and lack of relevance to specific users’ decision problems, and in part due to a variety of economic and behavioural factors. In this paper a theoretical model of perceived forecast value is proposed and applied to a stylized portfolio-type decision problem with wide applicability to actual forecast users, with a view to obtaining a more complete picture of the determinants of perceived value. The effects of user wealth, risk aversion, and perceived forecast trustworthiness, and presentational parameters, such as the position of forecast parameter categories, and the size of probability categories, on perceived value is investigated. Analysis of the model provides several strong qualitative predictions of how perceived forecast value depends on these factors. These predictions may be used to generate empirical hypotheses which offer the chance of evaluating the model's assumptions, and suggest several means of improving understanding of perceived value based on qualitative features of the results.  相似文献   

3.
An understanding of the relative impacts of the changes in climate variables on crop yield can help develop effective adaptation strategies to cope with climate change. This study was conducted to investigate the effects of the interannual variability and trends in temperature, solar radiation and precipitation during 1961–2003 on wheat and maize yields in a double cropping system at Beijing and Zhengzhou in the North China Plain (NCP), and to examine the relative contributions of each climate variable in isolation. 129 climate scenarios consisting of all the combinations of these climate variables were constructed. Each scenario contained 43 years of observed values of one variable, combined with values of the other two variables from each individual year repeated 43 times. The Agricultural Production Systems Simulator (APSIM) was used to simulate crop yields using the ensemble of generated climate scenarios. The results showed that the warming trend during the study period did not have significant impact on wheat yield potential at both sites, and only had significant negative impact on maize yield potential at Beijing. This is in contrast with previous results on effect of warming. The decreasing trend in solar radiation had a much greater impact on simulated yields of both wheat and maize crops, causing a significant reduction in potential yield of wheat and maize at Beijing. Although decreasing trends in rainfed yield of both simulated wheat and maize were found, the substantial interannual variability of precipitation made the trends less prominent.  相似文献   

4.
A diagnostic study of the impact of El Niño on the precipitation in China   总被引:20,自引:0,他引:20  
The impact of El Niño on the precipitation in China for different seasons are investigated diagnostically. It is found that El Niño can influence the precipitation in China significantly during its mature phase. In the Northern winter, spring and autumn, the positive precipitation anomalies are found in the southern part of China during the El Niño mature phase. In the Northern summer, the patterns of the precipitation anomalies in the El Niño mature phase are different from those in the other seasons. The negative precipitation anomalies appear in both southern and northern parts of China, while in between around the lower reaches of the Yangtze River and the Huaihe River valleys the precipitation anomalies tend to be positive. In the Northern winter, spring and autumn, the physical process by which El Niño affects the precipitation in the southern part of China can be explained by the features of the circulation anomalies over East Asia during the El Niño mature phase (Zhang et al., 1996). The appearance of an anticyclonic anomaly to the north of the maritime continent in the lower troposphere during the El Niño mature phase intensifies the subtropical high in the western Pacific and makes it shift westward. The associated southwesterly flow is responsible for the positive precipitation anomalies in the southern part of China. In the Northern summer, the intensified western Pacific subtropical high covers the southeastern periphery of China so that the precipitation there becomes less. In addition, the weakening of the Indian monsoon provides less moisture inflow to the northern part of China.  相似文献   

5.
Long-term variations of monthly average maximum and minimum temperature (TMAX and TMIN) and precipitation records in southern Brazil are investigated for the 1913–2006 period. These variations are carefully analyzed for seasonal and annual indices, taken as regional averages. For this purpose, the serial correlation and trend of the indices are investigated using the run and Mann–Kendall tests. The significant trends are obtained from linear least-square fits. The annual and seasonal TMIN indices show significant warming trends with magnitudes (1.7°C per 100 years for annual index) comparable to those reported by the Intergovernmental Panel on Climate Change, but lower than those found for the southern Brazil in another previous work. Regarding the two other variables, the indices show significant trends only for summer, being a cooling trend of 0.6°C per 100 years for the TMAX and an increasing trend of 93 mm per 100 years over an average summer precipitation of 367 mm. Concerning the decadal analysis, the 1920s present the lowest annual, autumn, and spring TMIN and the 1990s, the highest ones. The 1970s is the decade with the lowest summer TMAX, and the 1940s the decade with the highest one. The driest decade is the 1940s and the wettest, the 1980s.  相似文献   

6.
7.
This paper presents the analysis of mean daily temperature and precipitation from 1950 to 2010 in an area with Mediterranean climate of NE Spain including some coastal areas near Barcelona and the Penedès and Camp de Tarragona Depressions located between the Coastal Mountain Range and the Mediterranean Sea. Their variability, with especial attention to the frequency of extreme events, was analysed by using 18 indexes: seven for temperature and 11 for precipitation were analysed for four meteorological observatories. A multivariate analysis was performed in order to analyse the temperature and precipitation trends. During the analysed period, an increase in mean annual maximum temperature was observed in all observatories ranging between 1.5 and 2.2°C associated with an increase in the number of days with high extreme temperatures. Minimum temperature only increased significantly in the coast observatories (about 1.4°C). By seasons, temperature trends were greater at Vilafranca del Penedès and Barcelona observatories and lower at Reus airport. Maximum spring temperature increased between 1.5 and 2.5°C, summer temperature increased between 1.6 and 2.5°C and autumn temperature increased by up to 2.2°C. Precipitation presented a high variability from year to year, without significant trends. The most significant results were related to the dry conditions observed in spring 2000s, the wet conditions recorded in summer 2000s and 1980s and the longer dry periods in autumn 2000s. The increase of temperatures determined the increase of evapotranspiration, and due to the higher irregular distribution, water deficits for crop development were recorded. An advance of phenological dates and a reduction of grape yield are associated to climate trends.  相似文献   

8.
Abstract

Surveys in the Middle Estuary of the St Lawrence have yielded a data base consisting of more than 15,000 T‐S pairs distributed over 62 13‐h profiling stations. Although the T‐S curves at each station are remarkably linear, the variability of the slopes and intercepts of the lines is considerable. The means and standard deviations of the temperature and salinity at each individual station are not explicable in terms of linear combinations of the parameters for location in the Estuary, the upstream water properties, the phase of the spring‐neap cycle and the tidal energies.

It is shown that the tidally‐averaged density structure is separable into horizontal and vertical components and that its vertical variation over the whole Estuary may be explained by any one of three different functional forms. However, its horizontal variation is not explicable in terms of linear combinations of the parameters mentioned in the paragraph above.

Plots of the horizontal variations in temperature, salinity or density may only be meaningful if the data are collected synoptically, and even then cannot be considered to be accurate over time‐scales longer than one tidal cycle.  相似文献   

9.
The following study investigates temperature and precipitation trends in instrumental time series between 1960 and 2006 at 88 meteorological stations located in the Upper Danube Basin. Time series were tested for inhomogeneities with several common homogeneity tests, trend magnitudes of annual and seasonal time series were calculated by least square fitting and the significance of trend values was checked and quantified by the Mann-Kendall test. The results confirm a particularly strong recent Climate Change in the investigation area. Increasing temperature trends show remarkably high trend values up to 0.8°C/decade in the summer season. The trends are highly significant for all investigated summer, spring and annual time series. Winter and spring temperature trends show consistently positive trend values as well even though some time series show no significance at all and the calculated trend values are smaller. Autumn temperature trends are mostly non-significant with low values (up to 0.3°C/decade) and several negative trends. Most of the highest trend values can be found in lower altitudes whereas stations situated in alpine regions tend to show low trend magnitudes and often exhibit non-significant results. Precipitation time series show positive as well as negative trends in the annual and seasonal analysis. At most stations a precipitation decrease in summer and autumn and an increase in winter was observed during the last 47?years whereas the spring and mean annual precipitation exhibits no change at all. But most time series are not conclusive since they show predominantly no significance and they often exhibit only low trend values.  相似文献   

10.
11.
12.
《Atmospheric Research》2010,95(4):652-662
The article presents an analysis of heavy short-term precipitation for the warm part of the year in the Czech Republic (CR). Precipitation data are prepared for the years 2002–2007 with a horizontal resolution of 1 km and a temporal resolution of 1 h. A method merging radar and daily rain gauge measurements is applied to calculate basic hourly precipitation. Two types of 1-, 2-, 3-, and 6-h precipitation data, derived from the basic hourly precipitation, are investigated from the viewpoint of precipitation–altitude relationships and areal distributions of heavy precipitation. The first type of data consists of sums of hourly precipitation, where the summation is performed for all data regardless of whether the summed hourly precipitation is a part of a longer precipitation event or if some hours are without precipitation. The second type of data contains temporally bounded precipitation events. This type predominantly includes convective precipitation. The results show that for both types of data, 1-h precipitation with high rain rates is without apparent dependence on altitude. For the first type of data and for precipitation durations of 2 and 3 h, the impact of altitude on precipitation maps can be identified for low and high rain rates. The impact of mountains is evident for the 6-h precipitation because it includes large scale precipitation events. However, the second type of data does not depend on altitude for heavy precipitation. Heavy precipitation of the second type shows, especially for 6-h, an increased frequency of occurrence in the south to central CR.  相似文献   

13.
14.
Abstract

This paper describes a 1‐D agroclimatic model of the atmosphere/crop‐soil interface. Vertical profiles of wind, potential temperature and water vapour are constructed twice daily for the overnight‐low and maximum temperature times by combining 1200 and 0000 UTC upper‐air standard‐level grid‐point data with climatological observations. The vertical structure of the atmospheric boundary layer has a surface constant‐flux layer that is usually topped by a mixed layer by day but not at night. The crop‐soil boundary layer consists of a shallow top‐zone and a growing root‐zone. Vegetation cover and root depth depend upon crop type and phenological stage. Water‐balance accounting tracks the moisture contents of both the top‐ and root‐zones. Evapotranspiration or the vertical flux of water vapour in the atmospheric boundary layer is tied to the evolution of the crop‐soil boundary layer.

The model was calibrated using field data from the Regional Evaporation Study's primary site in an agricultural area of central Saskatchewan. The evolution of 1991's wheat‐soil boundary layer from the crop's heading to ripe stages was then successfully simulated at two additional sites in the same geographical area.  相似文献   

15.
Abstract

The analysis compares the observed field of run‐off (assumed correct) with adjusted precipitation over North America (as amended by den Hartog and LeDrew over Canada) and derives the principal hydroclimatological ratios for each five‐degree latitude‐longitude square. The amended precipitation field yields values of the Budyko dry ness index close to values suggested by the vegetation distribution. The Priestley‐Taylor parameter, α, lies between unity (equilibrium) and potential (1.26) values over much of humid North America, but exceeds these values in the northwest Pacific squares, where advective heating may be the cause. Other regions of strong seasonal advective heating (e.g. the Great Plains) do not appear to influence the distribution strongly. A weighted convective forcing temperature is derived, varying from 298 K in the extreme south to below 285 K in the north. This function (and the Bowen ratio) achieve improbable values in northern Labrador‐ Ungava. The precipitation, run‐off and net radiation régimes appear still to be out of balance in these squares. An adjustment of either precipitation or net radiation by about a tenth corrects the imbalance, but the method is not capable of deciding which field (or both) is in error. Over the rest of the continent the adjusted precipitation field now appears to be in balance with observed run‐off and temperature distributions.  相似文献   

16.
Abstract

Sea surface temperature (SST) variability in the shelf‐slope region of the northwest Atlantic is described and then explained in terms of latent and sensible heat exchange with the atmosphere. The basic data are primarily engine‐intake temperature measurements made by merchant ships over the period 1946–80. The data have been grouped by month and area and an empirical orthogonal function analysis has been performed to determine the dominant modes of variation. The first two modes account for 44% of the total variance. The first mode corresponds to in‐phase changes of SST from the Grand Banks to Mid‐Atlantic Bight; the second mode corresponds to opposite changes of SST on the Grand Banks and Mid‐Atlantic Bight. The time‐dependent amplitudes of these large‐scale modes have pronounced low‐frequency components; the associated changes in SST are typically 3°C. It is also shown that winter anomalies last longer than summer anomalies; their typical decay scales are 6 and 3 months, respectively.

The onshore component of geostrophic wind is significantly correlated with the amplitude of the first mode in winter. We note the strong land‐sea contrast of temperature and humidity in this region during winter and explain the wind‐SST correlation in terms of latent and sensible heat exchanges. The second mode (i.e. the difference in SST between the Grand Banks and Mid‐Atlantic Bight) also appears to be related to changes in atmospheric circulation during the winter. A stochastic model for mixed layer temperature is finally used to model the SST autocorrelation functions. Following Ruiz de Elvira and Lemke (1982), it includes a seasonally‐varying feedback coefficient. The model successfully reproduces the extended persistence of winter anomalies with physically realistic parameter values but it cannot account for the summer reinforcement of winter anomalies on the Scotian Shelf. We speculate that this is due to the occasional entrainment of water, cooled the previous winter, into the shallow summer mixed layer.  相似文献   

17.
This study presents the characterization of regional means and variability of temperature and precipitation in 1961–2000 for Thailand using regional climate model RegCM3. Two fine-resolution (20 km) simulations forced by ERA-40 reanalysis data were performed, with the default land covers and with a land-cover modification strategy suggested by a previous work. The strategy was shown to substantially alleviate the problem of systematic underestimation of temperature given by the default simulation, for most part of Thailand in both dry and wet seasons. The degree of bias in precipitation tends to vary differently in every sub-region and season considered. The patterns of seasonal variation of both climatic variables are acceptably reproduced. Simulated 850-hPa winds have general agreement with those of ERA-40, but wind speed is overestimated over the Gulf of Thailand during the dry months, potentially bringing excessive moisture to and causing more rain than actual in the south. Long-term trends in temperature are reasonably predicted by the model while those in observed and simulated precipitations for upper Thailand are in the opposite directions. Apart from the conventional methods used in characterization, spectral decomposition using Kolmogorov–Zurbenko filters was applied to inspect the model’s capability of accounting for variability (here, in terms of variance) in both climatic variables on three temporal scales (short term, seasonal, and long term). The model was found to closely estimate the total variances in the original time series and fairly predict the relative variance contributions on all temporal scales. The latter finding is in line with the results from an additional spectral coherence analysis. Overall, the model was shown to be acceptably adequate for use in support of further climate studies for Thailand, and its evident strength is the capability of reproducing seasonal characteristics and, to a lesser degree, trends.  相似文献   

18.
A mean meridional circulation model of the stratosphere, incorporating radiative heating and photochemistry of the oxygen‐hydrogen‐nitrogen atmosphere, is used to simulate the meridional distributions of O3, HOX, N2O,NOX, temperature and the three components of mean motion for the summer and winter seasons under steady‐state conditions. The results are generally in good agreement with the available observations in the normal stratosphere. The model has been applied to assess the effects of water vapour and nitrogen oxide perturbations resulting from aircraft emissions in the stratosphere. It is found that a fleet of 500 Boeing‐type sst's, flying at 20 km and 45°N in the summer hemisphere and inserting NOx at a rate of 1.8 megatons per year, has the effect of reducing the global total ozone by 14.7%. Similar calculations for 342 Concorde/TU‐114's, cruising at 17 km and injecting NOx at a rate of 0.35 megatons per year, show a global‐average total‐ozone reduction of 1.85%. Although water vapour is considered important, because of its ability to convert NO2 into HNO3, the direct effect on global‐average total‐ozone reduction resulting from the 100% increase in the stratospheric water content is less than 1%. The changes in the chemical structure (HO^NO^), temperature, and mean motions associated with the ozone reduction are also investigated in the case of the 1.8‐megaton‐per‐year NOX perturbation. It is shown that the reduced meridional temperature gradient in the middle and upper stratosphere resulting from the NOx perturbation leads to the weakening of the tropical easterly jet in the summer hemisphere and mid‐latitude westerlies in the winter season.

The sensitivity of the model solutions to an alternate choice of input parameters (diffusion coefficients and solar photodissociation data) is tested and the main deficiency of the model is pointed out.  相似文献   

19.
Zhang  Han  Zhao  Junhu  Huang  Bicheng  Zang  Naihui  Yang  Jie  Feng  Guolin 《Theoretical and Applied Climatology》2022,148(3-4):1529-1543
Theoretical and Applied Climatology - In this paper, the spatial and temporal characteristics of convective precipitation (CP) and large-scale precipitation (LSP) in southern China during...  相似文献   

20.
In the summers of 1998 and 2010, severe floods occurred in the middle and lower reaches of the Yangtze River. Although an El Niño event took place preceding each of the summer floods, significant differences between the two summer floods and the two El Niño events were identified. The 1997/98 El Niño is a conventional one with strongest warming in the central-eastern Pacific, whereas the 2009/10 event is an El Niño Modoki with strongest warming in the central Pacific. In this study, summer rainfall anomalies (SRA) in the two years were first compared based on the rainfall data at 160 stations in mainland China, and a significant difference in SRA was found. To understand the underlying mechanism for the difference, the atmospheric circulation systems, particularly the western North Pacific anticyclone (WNPAC), the western Pacific subtropical high (WPSH), and the low-level air flows, were compared in the two years by using the NCEP/NCAR reanalysis data. The results display that the WNPAC was stronger in 2010 than in 1998, along with a northwestward shift, causing weakened southwesterly from the Bay of Bengal to the South China Sea but intensified southerly in eastern China. This resulted in less water vapor transport from the tropical Indian Ocean and the South China Sea but more from the subtropical western Pacific to East Asia. Subsequently, the rainband in 2010 shifted northward. The difference in the WNPAC was caused by the anomalous ascending motion associated with the warming location in the two El Niño events. Furthermore, the role of tropical sea surface temperature (SST) in modulating these differences was investigated by conducting sensitivity experiments using GFDL AM2.1 (Geophysical Fluid Dynamics Laboratory Atmospheric Model). Two experiments were performed, one with the observed monthly SST and the other with June SST persisting through the whole summer. The results suggest that the model well reproduced the primary differences in the atmospheric circulation systems in the two years. It is found that the difference in El Niño events has shaped the rainfall patterns in the two years of 1998 and 2010. At last, the case of 2010 was compared with the composite of historical El Niño Modoki events, and the results indicate that the impact of El Niño Modoki varies from case to case and is more complicated than previously revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号