首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 5-level spectral AGCM (ImPKU-5LAGCM) is used to examine the sensitivity of the simulated results of the summer monsoon rainfall and circulation in East Asia to different cumulus parameterization schemes in the climatological-mean case and in the cases of weak and strong Asian summer monsoons,respectively. The results simulated with the Arakawa-Schubert's(hereafter A-S's), Kuo's and Manabe's cumulus parameterization schemes show that these simulated distributions of the summer monsoon rainfall and circulation in East Asia depend strongly on the cumulus parameterization schemes either in the climatological-mean case or in the cases of weak and strong Asian summer monsoons. From the simulated results, it might be shown that the Kuo scheme appears to be more suitable for the simulation of the summer monsoon rainfall and circulation in East Asia than the A-S scheme or the Manabe scheme, although the A-S scheme is somewhat better in the simulations of the tropical rainfall. This might be due to that the Kuo's cumulus parameterization scheme is able to reflect well the characteristics of rainfall cloud system in the East Asian summer monsoon region, where the rainfall system used to be a mixing of cumulus and stratus.  相似文献   

2.
Abstract

We use eddy life‐cycle simulations to evaluate the response of atmospheric transient eddies to a global warming caused by CO2 doubling in the CCC general circulation model. In simulations using Northern Hemisphere winter conditions, transient waves attain larger kinetic energy and encompass a wider range of latitudes in the warmer climate. This behaviour contrasts with a previous investigation that used output from the NCAR and GFDL models. Our analysis indicates two primary factors for the difference between model responses: (1) a smaller change in the mid‐latitude temperature gradient in the CCC model, which allows (2) increased atmospheric water vapour in mid‐latitudes to catalyze a more rapidly evolving life‐cycle.  相似文献   

3.
4.
The regional climate model (RegCM3) from the Abdus Salam International Centre for Theoretical Physics has been used to simulate the Indian summer monsoon for three different monsoon seasons such as deficit (1987), excess (1988) and normal (1989). Sensitivity to various cumulus parameterization and closure schemes of RegCM3 driven by the National Centre for Medium Range Weather Forecasting global spectral model products has been tested. The model integration of the nested RegCM3 is conducted using 90 and 30-km horizontal resolutions for outer and inner domains, respectively. The India Meteorological Department gridded rainfall (1° × 1°) and National Centre for Environment Prediction (NCEP)–Department of Energy (DOE) reanalysis-2 of 2.5° × 2.5° horizontal resolution data has been used for verification. The RegCM3 forced by NCEP–DOE reanalysis-2 data simulates monsoon seasons of 1987 and 1988 reasonably well, but the monsoon season of 1989 is not represented well in the model simulations. The RegCM3 runs driven by the global model are able to bring out seasonal mean rainfall and circulations well with the use of the Grell and Anthes–Kuo cumulus scheme at 90-km resolution. While the rainfall intensity and distribution is brought out well with the Anthes–Kuo scheme, upper air circulation features are brought out better by the Grell scheme. The simulated rainfall distribution is better with RegCM3 using the MIT-Emanuel cumulus scheme for 30-km resolution. Several statistical analyses, such as correlation coefficient, root mean square error, equitable threat score, confirm that the performance of MIT-Emanuel scheme at 30-km resolution is better in simulating all-India summer monsoon rainfall. The RegCM3 simulated rainfall amount is more and closer to observations than that from the global model. The RegCM3 has corrected its driven GCM in terms of rainfall distribution and magnitude over some parts of India during extreme years. This study brings out several weaknesses of the RegCM model which are documented in this paper.  相似文献   

5.
Abstract

In order to assess the ability of a GCM to simulate regional to synoptic scale atmospheric structures, a correlation‐based computer‐assisted gridded map typing procedure is used to compare daily pressure (MSL) and geopotential height fields (500 hPa) from a GCM simulation of the present climate to a decade of NMC analyses. The model is able to reproduce the entire range of synoptic circulation types. However, statistically significant differences in the seasonal frequencies and variances of the main circulation types are evident. These differences, which are most pronounced in the winter (at 500 hPa) and in spring and autumn in the MSL fields, are consistent with subtle errors in the predicted fields at the hemispheric scale. The lack of agreement between the NMC climatology and the “control” simulation precludes extension of this approach to investigation of climate change impacts in western north America, and to more meteorologically dynamic extra‐tropical regions. The map‐typing procedure is shown to be an appropriate GCM synoptic‐scale validation tool that permits direct comparison of GCM output and observed fields. As such, it has the potential to elucidate the regional‐scale impacts of global climatic change through established synoptic circulation environment relationships.  相似文献   

6.
In this paper, a comparison study of three cumulus parameterization schemes (CPSs), Kain-Fritsch2 (KF2), Grell (GR) and Anthes-Kuo (AK), is carried out using the Pennsylvania State University-National Center for Atmospheric Research mesoscale model (i.e., MM5). The performances of three CPSs are examined in simulations of the long-term heavy Meiyu-frontal rainfall events over the middle to lower reaches of the Yangtze River Basin (YRB-ML) during the summer of 1998. The initial and lateral boundary atmosphere conditions are taken from the National Centers for Environmental Prediction/Department of Energy Reanalysis-2 (R-2) data. The experiment with KF2 scheme (EX_KF2) reproduces reasonably well the major rainfall events, especially the heavy rainfall over YRB-ML during the later stage, and the middle and lower troposphere circulation patterns. In contrast, the experiments with both GR and AK schemes (EX_GR and EX_AK) only simulate the heavy rainfall during the first Meiyu rainy phase with weak intensity, and almost miss the rainfall along YRB-ML during the second phase. The analyses show that the location of 500?hPa western Pacific subtropical high during the first rainy phase, the northward advance during the transition period and the retreat during the second rainy phase, observed from the R-2 data, are successfully captured by EX_KF2, compared to the poor performance of EX_GR and EX_AK. A reasonable proportion of the subgrid-scale rainfall and smaller biases of temperature and moisture from lower to middle troposphere in EX_KF2 decide its good rainfall simulations, in contrast with the absolutely high proportions and the cold and dry biases caused by the decreased vertically convective transportation and the weak southwesterly wind in EX_GR and EX_AK. Overall, the three CPSs show substantial intersimulation differences in rainfall as well as in three-dimensional atmospheric structures, and KF2 shows superior performances. The results suggest that the realistic subgrid-scale CPS is still highly required for the high-resolution regional climate models to simulate the heavy rainfall events.  相似文献   

7.
 We test the climate effects of changes in the tropical ocean by imposing three different patterns of tropical SSTs in ice age general circulation model simulations that include water source tracers and water isotope tracers. The continental air temperature and hydrological cycle response in these simulations is substantial and should be directly comparable to the paleoclimatic record. With tropical cooling imposed, there is a strong temperature response in mid- to high-latitudes resulting from changes in sea ice and disturbance of the planetary waves; the results suggest that tropical/subtropical ocean cooling leads to significant dynamical and radiative feedbacks that might amplify ice age cycles. The isotopes in precipitation generally follow the temperature response at higher latitudes, but regional δ18O/air temperature scaling factors differ greatly among the experiments. In low-latitudes, continental surface temperatures decrease congruently with the adjacent SSTs in the cooling experiments. Assuming CLIMAP SSTs, 18O/16O ratios in low-latitude precipitation show no change from modern values. However, the experiments with additional cooling of SSTs produce much lower tropical continental δ18O values, and these low values result primarily from an enhanced recycling of continental moisture (as marine evaporation is reduced). The water isotopes are especially sensitive to continental aridity, suggesting that they represent an effective tracer of the extent of tropical cooling and drying. Only one of the tropical cooling simulations produces generalized low-latitude aridity. These results demonstrate that the geographic pattern of cooling is most critical for promoting much drier continents, and they underscore the need for accurate reconstructions of SST gradients in the ice age ocean. Received: 26 July 1999 / Accepted: 10 July 2000  相似文献   

8.
Mediterranean Outflow Water (MOW) is thought to be a key contributor to the strength and stability of Atlantic Meridional Overturning Circulation (AMOC), but the future of Mediterranean-Atlantic water exchange is uncertain. It is chiefly dependent on the difference between Mediterranean and Atlantic temperature and salinity characteristics, and as a semi-enclosed basin, the Mediterranean is particularly vulnerable to future changes in climate and water usage. Certainly, there is strong geologic evidence that the Mediterranean underwent dramatic salinity and sea-level fluctuations in the past. Here, we use a fully coupled atmosphere–ocean General Circulation Model to examine the impact of changes in Mediterranean-Atlantic exchange on global ocean circulation and climate. Our results suggest that MOW strengthens and possibly stabilises the AMOC not through any contribution towards NADW formation, but by delivering relatively warm, saline water to southbound Atlantic currents below 800 m. However, we find almost no climate signal associated with changes in Mediterranean-Atlantic flow strength. Mediterranean salinity, on the other hand, controls MOW buoyancy in the Atlantic and therefore affects its interaction with the shallow-intermediate circulation patterns that govern surface climate. Changing Mediterranean salinity by a factor of two reorganises shallow North Atlantic circulation, resulting in regional climate anomalies in the North Atlantic, Labrador and Greenland-Iceland-Norwegian Seas of ±4 °C or more. Although such major variations in salinity are believed to have occurred in the past, they are unlikely to occur in the near future. However, our work does suggest that changes in the Mediterranean’s hydrological balance can impact global-scale climate.  相似文献   

9.
10.
The horizontal coordinate systems commonly used in most global ocean models are the spherical latitude–longitude grid and displaced poles, such as a tripolar grid. The effect of the horizontal coordinate system on Atlantic meridional overturning circulation (AMOC) is evaluated by using an OGCM (ocean general circulation model). Two experiments are conducted with the model—one using a latitude–longitude grid (referred to as Lat_1) and the other using a tripolar grid (referred to as Tri). The results show that Tri simulates a stronger North Atlantic deep water (NADW) than Lat_1, as more saline water masses enter the Greenland–Iceland–Norwegian (GIN) seas in Tri. The stronger NADW can be attributed to two factors. One is the removal of the zonal filter in Tri, which leads to an increasing of the zonal gradient of temperature and salinity, thus strengthening the north geostrophic flow. In turn, it decreases the positive subsurface temperature and salinity biases in the subtropical regions. The other may be associated with topography at the North Pole, because realistic topography is applied in the tripolar grid while the latitude–longitude grid employs an artificial island around the North Pole. In order to evaluate the effect of the filter on AMOC, three enhanced filter experiments are carried out. Compared to Lat_1, an enhanced filter can also augment NADW formation, since more saline water is suppressed in the GIN seas, but accumulated in the Labrador Sea, especially in experiment Lat_2_S, which is the experiment with an enhanced filter on salinity.  相似文献   

11.
By assuming that cumulus clouds grow from patches of air that extend from the well-mixed layer bear the surface, a model of fair-weather cumulus convection is developed. The model predicts the structure of the well-mixed layer and the cloud layer; in particular, cloud cover is estimated as a function of time. The model results are compared with laboratory and field observations.  相似文献   

12.
Large ensembles of coupled atmosphere–ocean general circulation model (AOGCM) simulations are required to explore modelling uncertainty and make probabilistic predictions of future transient climate change at regional scales. These are not yet computationally feasible so we have developed a technique to emulate the response of such an ensemble by scaling equilibrium patterns of climate change derived from much cheaper “slab” model ensembles in which the atmospheric component of an AOGCM is coupled to a mixed-layer ocean. Climate feedback parameters are diagnosed for each member of a slab model ensemble and used to drive an energy balance model (EBM) to predict the time-dependent response of global surface temperature expected for different combinations of uncertain AOGCM parameters affecting atmospheric, land and sea-ice processes. The EBM projections are then used to scale normalised patterns of change derived for each slab member, and hence emulate the response of the relevant atmospheric model version when coupled to a dynamic ocean, in response to a 1% per annum increase in CO2. The emulated responses are validated by comparison with predictions from a 17 member ensemble of AOGCM simulations, constructed from variants of HadCM3 using the same parameter combinations as 17 members of the slab model ensemble. Cross-validation permits estimation of the spatial and temporal dependence of emulation error, and also allows estimation of a correction field to correct discrepancies between the scaled equilibrium patterns and the transient response, reducing the emulation error. Emulated transient responses and their associated errors are obtained from the slab ensemble for 129 pseudo-HadCM3 versions containing multiple atmospheric parameter perturbations. These are combined to produce regional frequency distributions for the transient response of annual surface temperature change and boreal winter precipitation change. The technique can be extended to any surface climate variable demonstrating a scaleable, approximately linear response to forcing.  相似文献   

13.
In this study, the improved high-resolution regional climate model of the China National Climate Center (RegCM_NCC) is used to examine the sensitivity of the simulated circulation and rainfall during the South China Sea summer monsoon (SCSSM) period during 1998 in an effort to compare to other cumulus param- eterization schemes. The investigation has indicated that the model is capable of simulating the seasonal march of the SCSSM and that the results were very sensitive to the choice of cumulus parameterization schemes. It seems that the Kuo cumulus parameterization scheme simulates the process of the SCSSM onset reasonably well, which can reproduce the onset timing and dramatic changes before and after the onset, especially the upper- and lower-level wind-fields. However, there are still some discrepancies between the simulations and observations. For example, the model can not completely simulate the intensity of the rainfall or the location of the western Pacific subtropical high as well as the feature of the rapid northward propagation of seasonal rain belt.  相似文献   

14.
15.
The LMDZ4 general circulation model is the atmospheric component of the IPSL–CM4 coupled model which has been used to perform climate change simulations for the 4th IPCC assessment report. The main aspects of the model climatology (forced by observed sea surface temperature) are documented here, as well as the major improvements with respect to the previous versions, which mainly come form the parametrization of tropical convection. A methodology is proposed to help analyse the sensitivity of the tropical Hadley–Walker circulation to the parametrization of cumulus convection and clouds. The tropical circulation is characterized using scalar potentials associated with the horizontal wind and horizontal transport of geopotential (the Laplacian of which is proportional to the total vertical momentum in the atmospheric column). The effect of parametrized physics is analysed in a regime sorted framework using the vertical velocity at 500 hPa as a proxy for large scale vertical motion. Compared to Tiedtke’s convection scheme, used in previous versions, the Emanuel’s scheme improves the representation of the Hadley–Walker circulation, with a relatively stronger and deeper large scale vertical ascent over tropical continents, and suppresses the marked patterns of concentrated rainfall over oceans. Thanks to the regime sorted analyses, these differences are attributed to intrinsic differences in the vertical distribution of convective heating, and to the lack of self-inhibition by precipitating downdraughts in Tiedtke’s parametrization. Both the convection and cloud schemes are shown to control the relative importance of large scale convection over land and ocean, an important point for the behaviour of the coupled model.  相似文献   

16.
The Madden-Julian oscillation (MJO) simulated by the Canadian Climate Centre general circulation model (CCC GCM) is identified by a principal oscillation pattern (POP) analysis and compared with that observed in the real atmosphere. The results are based upon two integrations of the CCC GCM, one with a parameterization of penetrative cumulus convection (EXP1) and the other with a moist convective adjustment scheme (EXP2). The signal of MJO can be detected in both integrations as the first POP of the 200 hPa velocity potential along the equator. The disturbances show a distinctive wave number one structure with the strongest local amplitude found in the longitudes corresponding to the region of the Asian monsoon. The phase speed of the eastward wave propagation is higher in the eastern Pacific and lower in the monsoon region where the convective activities are strongest. These features are in good agreement with the observations. The energy spectrum of the velocity potential peaks at the frequency corresponding to a period of about 38 days for EXP1, which is somewhat shorter compared to the observed periods of 40–50 days. On the other hand, two spectral peaks can be clearly identified for EXP2, one with a period of 24 days and the other with a much longer period, somewhere near 112 days. Both peaks appear statistically significant at 95% level. Long term data of the observed atmosphere show little indication of such spectral separation. The horizontal patterns identified by the POP analysis resemble to some extent the baroclinic response of tropical flow to a heat source travelling with the speed of MJO. At the upper level, Rossby wave energy propagates westward with winds generally following the height contours, whereas Kelvin wave energy propagates to the east from the heat source with strong cross-contour flow near the equator. At the lower level, the patterns are essentially reversed. The model-generated precipitation and diabatic heating are examined by compositing against the moving MJO. It is found in EXP2 that the composite heating distribution is coherent with the flow pattern only in a certain sector of the equator, depending on whether the fast or slow mode is used to determine the reference point. The composite vertical heating profile of a slower mode tends to have a maximum found at a lower level. The sensitivity of simulated MJO to the cumulus convection scheme in the model is discussed. Received: 19 December 1994 / Accepted: 11 July 1995  相似文献   

17.
 A new simple, coupled climate model is presented and used to investigate the sensitivity of the thermohaline circulation and climate to ocean vertical and horizontal exchange. As formulated, the model highlights the role of thin, ocean surface layers in the communication between the atmosphere and the subsurface ocean. Model vertical exchange is considered to be an analogue to small-scale, diapycnal mixing and convection (when present) in the ocean. Model horizontal exchange is considered to be an analogue to the effects of the wind-driven circulation. For small vertical exchange in the ocean, the model exhibits only one steady-state solution: a relatively cold, mid-high-latitude climate associated with a weak, salinity-driven circulation (“off ” mode). For large vertical and horizontal exchange in the ocean, the model also exhibits only one steady-state solution: a relatively warm, mid-high-latitude climate associated with a strong, thermally-driven circulation (“on” mode). For sufficiently weak horizontal exchange but large enough vertical exchange, both modes are possible stable, steady-state solutions. When model parameters are calibrated to fit tracer distributions of the modern ocean-atmosphere system, only the “on” mode is possible in this standard case. This suggests that the wind-driven circulation in consort with diapycnal mixing suppresses the “off ” mode in the modern ocean-atmosphere system. Since both diapycnal mixing and the wind-driven circulation would be expected to increase in a cold climate with greater meridional temperature gradients and enhanced winds, vertical and horizontal exchange in the ocean are probably associated with strong negative feedbacks which tend to stabilize climate. These results point to the need to resolve ocean wind-driven circulation and to greatly improve the treatment of ocean diapycnal mixing in more complete models of the climate system. Received: 16 November 1999 / Accepted: 19 June 2000  相似文献   

18.
The issue of Regional Climate Model (RCM) domain size is studied here by using a perfect-model approach, also known as the Big-Brother experiment. It is known that the control exerted by the lateral boundary conditions (LBC) on nested simulations increases when reducing the domain size. The large-scale component of the simulation that is forced by the LBC influences the small-scale features that develop along the large-scale flow. Small-scale transient eddies need space and time to develop sufficiently however, and small domains can impede their development. Our tests performed over eastern North America in summer reveal that the small-scale features are systematically underestimated over the entire domain, even for domain as large as 140 by 140 grid points. This result differs from that obtained in winter where the small scales were mainly underestimated on the west (inflow) side of the domain. This difference is due to the circulation regime over Eastern Canada, which is characterized by weak and variable flow in summer, but strong and westerly flow in winter. For both seasons, the small-scale transient-eddy amplitudes are systematically underestimated at higher levels, but this problem is less severe in summer. Overall the model is more skilful in regenerating the small scales in summer than in winter for comparable domain sizes, which can be related to the weaker summer flow and stronger physical processes occurring in this season.  相似文献   

19.
A 1000 year integration of the CSIRO coupled ocean-atmosphere general circulation model is used to study low frequency (decadal to centennial) climate variability in precipitation and temperature. The model is shown to exhibit sizeable decadal variability for these fields, generally accounting for approximately 20 to 40% of the variability (greater than one year) in precipitation and up to 80% for temperature. An empirical orthogonal function (EOF) analysis is applied to the model output to show some of the major statistical modes of low frequency variability. The first EOF spatial pattern looks very much like that of the interannual ENSO pattern. It bears considerable resemblance to observational estimates and is centred in the Pacific extending into both hemispheres. It modulates both precipitation and temperature globally. The EOF has a time evolution that appears to be more than just red noise. Finally, the link between SST in the Pacific with Australian rainfall variability seen in observations is also evident in the model. Received: 29 August 1998 / Accepted: 31 July 1999  相似文献   

20.
 A method is described for evaluating the ‘partial derivatives’ of globally averaged top-of-atmosphere (TOA) radiation changes with respect to basic climate model physical parameters. This method is used to analyse feedbacks in the Australian Bureau of Meteorology Research Centre general circulation model. The parameters considered are surface temperature, water vapour, lapse rate and cloud cover. The climate forcing which produces the changes is a globally uniform sea surface temperature (SST) perturbation. The first and second order differentials of model parameters with respect to the forcing (i.e. SST changes) are estimated from quadratic least square fitting. Except for total cloud cover, variables are found to be strong functions of global SST. Strongly non-linear variations of lapse rate and high cloud amount and height appear to relate to the non-linear response in penetrative convection. Globally averaged TOA radiation differentials with respect to model parameters are also evaluated. With the exception of total cloud contributions, a high correlation is generally found to exist, on the global mean level, between TOA radiation and the respective parameter perturbations. The largest non-linear terms contributing to radiative changes are those due to lapse rate and high cloud. The contributions of linear and non-linear terms to the overall radiative response from a 4 K SST perturbation are assessed. Significant non-linear responses are found to be associated with lapse rate, water vapour and cloud changes. Although the exact magnitude of these responses is likely to be a function of the particular model as well as the imposed SST perturbation pattern, the present experiments flag these as processes which cannot properly be understood from linear theory in the evaluation of climate change sensitivity. Received: 16 January 1997/Accepted: 9 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号