首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Madden and Julian Oscillation (MJO) is the most prominent mode of intraseasonal variations in the tropical region. It plays an important role in climate variability and has a significant influence on medium-to-extended ranges weather forecasting in the tropics. This study examines the forecast skill of the oscillation in a set of recent dynamical extended range forecasts (DERF) experiments performed by the National Centers for Environmental Prediction (NCEP). The present DERF experiments were done with the reanalysis version of the medium range forecast (MRF) model and include 50-day forecasts, initialized once-a-day (0Z) with reanalyses fields, for the period between 1 January, 1985, and 31 December, 1989. The MRF model shows large mean errors in representing intraseasonal variations of the large-scale circulation, especially over the equatorial eastern Pacific Ocean. A diagnostic analysis has considered the different phases of the MJO and the associated forecast skill of the MRF model. Anomaly correlations on the order of 0.3 to 0.4 indicate that skillful forecasts extend out to 5 to 7 days lead-time. Furthermore, the results show a slight increase in the forecast skill for periods when convective anomalies associated with the MJO are intense. By removing the mean errors, the analysis shows systematic errors in the representation of the MJO with weaker than observed upper level zonal circulations. The examination of the climate run of the MRF model shows the existence of an intraseasonal oscillation, although less intense (50–70%) and with faster (nearly twice as fast) eastward propagation than the observed MJO. The results indicate that the MRF model likely has difficulty maintaining the MJO, which impacts its forecast. A discussion of future work to improve the representation of the MJO in dynamical models and assess its prediction is presented. Received: 28 December 1998 / Accepted: 27 September 1999  相似文献   

2.
A suite of decadal predictions has been conducted with the NASA Global Modeling and Assimilation Office’s (GMAO’s) GEOS-5 Atmosphere–Ocean general circulation model. The hind casts are initialized every December 1st from 1959 to 2010, following the CMIP5 experimental protocol for decadal predictions. The initial conditions are from a multi-variate ensemble optimal interpolation ocean and sea-ice reanalysis, and from GMAO’s atmospheric reanalysis, the modern-era retrospective analysis for research and applications. The mean forecast skill of a three-member-ensemble is compared to that of an experiment without initialization but also forced with observed greenhouse gases. The results show that initialization increases the forecast skill of North Atlantic sea surface temperature compared to the uninitialized runs, with the increase in skill maintained for almost a decade over the subtropical and mid-latitude Atlantic. On the other hand, the initialization reduces the skill in predicting the warming trend over some regions outside the Atlantic. The annual-mean atlantic meridional overturning circulation index, which is defined here as the maximum of the zonally-integrated overturning stream function at mid-latitude, is predictable up to a 4-year lead time, consistent with the predictable signal in upper ocean heat content over the North Atlantic. While the 6- to 9-year forecast skill measured by mean squared skill score shows 50 % improvement in the upper ocean heat content over the subtropical and mid-latitude Atlantic, prediction skill is relatively low in the subpolar gyre. This low skill is due in part to features in the spatial pattern of the dominant simulated decadal mode in upper ocean heat content over this region that differ from observations. An analysis of the large-scale temperature budget shows that this is the result of a model bias, implying that realistic simulation of the climatological fields is crucial for skillful decadal forecasts.  相似文献   

3.
While organized tropical convection is a well-known source of extratropical planetary waves, state-of-the-art climate models still show serious deficiencies in simulating accurately the atmospheric response to tropical sea surface temperature (SST) anomalies and the associated teleconnections. In the present study, the remote influence of the tropical atmospheric circulation is evaluated in ensembles of global boreal summer simulations in which the Arpege-Climat atmospheric General Circulation Model (GCM) is nudged towards 6-h reanalyses. The nudging is applied either in the whole tropical band or in a regional summer monsoon domain. Sensitivity tests to the experimental design are first conducted using prescribed climatological SST. They show that the tropical relaxation does not improve the zonal mean extratropical climatology but does lead to a significantly improved representation of the mid-latitude stationary waves in both hemispheres. Low-pass filtering of the relaxation fields has no major effect on the model response, suggesting that high-frequency tropical variability is not responsible for extratropical biases. Dividing the nudging strength by a factor 10 only decreases the magnitude of the response. Model errors in each monsoon domain contribute to deficiencies in the model??s mid-latitude climatology, although an exaggerated large-scale subsidence in the central equatorial Pacific appears as the main source of errors for the representation of stationary waves in the Arpege-Climat model. Case studies are then conducted using either climatological or observed SST. The focus is first on summer 2003 characterized by a strong and persistent anticyclonic anomaly over western Europe. This pattern is more realistic in nudging experiments than in simulations only driven by observed SST, especially when the nudging domain is centred over Central America. Other case studies also show a significant tropical forcing of the summer mid-latitude stationary waves and suggest a weak influence of prescribed observed SST in the northern extratropics. Results therefore indicate that improving the tropical divergent circulation and its response to tropical SST anomalies remains a key issue for increasing the skill of extratropical seasonal predictions, not only in the winter hemisphere but also in the boreal summer hemisphere where the prediction of heatwave and drought likelihood is expected to become an important challenge with increasing concentrations of greenhouse gases.  相似文献   

4.
Observational evidence suggests a link between the summer Madden Julian Oscillation (MJO) and anomalous convection over West Africa. This link is further studied with the help of the LMDZ atmospheric general circulation model. The approach is based on nudging the model towards the reanalysis in the Asian monsoon region. The simulation successfully captures the convection associated with the summer MJO in the nudging region. Outside this region the model is free to evolve. Over West Africa it simulates convection anomalies that are similar in magnitude, structure, and timing to the observed ones. In accordance with the observations, the simulation shows that 15–20?days after the maximum increase (decrease) of convection in the Indian Ocean there is a significant reduction (increase) in West African convection. The simulation strongly suggests that in addition to the eastward-moving MJO signal, the westward propagation of a convectively coupled equatorial Rossby wave is needed to explain the overall impact of the MJO on convection over West Africa. These results highlight the use of MJO events to potentially predict regional-scale anomalous convection and rainfall spells over West Africa with a time lag of approximately 15–20?days.  相似文献   

5.
Possible relationships between MJO and the severe rain-snow weather in Eastern China during November of 2009 are analyzed and results show that a strong MJO process is one of the strong impact factors.MJO is very active over the Indian Ocean in November 2009.Especially,it maintains 9 days in MJO phase 3,just corresponding to the two strongest rain-snow processes.Composites of MJO events show that when the MJO convective center is located over the Indian Ocean,the probability of rainfall is significantly increased and the temperature is lower than normal in eastern China,which is consistent with the situation in November of 2009.Atmospheric circulation anomalies of mid-and higher-latitudes can be influenced by the tropical MJO convection forcing and this influence could be realized by teleconnection.When the MJO is over the Indian Ocean,it is favorable for the maintenance of a circulation pattern of two ridges versus one trough at mid-and higher-latitudes.Meanwhile,the western Pacific subtropical high is stronger and more westward than normal,and a significant convective belt appears over eastern East Asia.All these circulation anomalies shown in the composite result also appeared in the observations in November 2009,which indicates the general features of relationships between the MJO and the circulation anomalies over the extratropics.Besides the zonal circulation anomalies,the MJO convection can also lead to meridional circulation anomalies.When the MJO convection is located over the Indian Ocean,the western Pacific is dominated by anomalous descending motion,and the eastern East Asia is controlled by strong convergence and ascending motion.Therefore,an anomalous meridional circulation is formed between the tropics and middle latitudes,enhancing the northward transportation of low-level moisture.It is potentially helpful to understanding and even forecasting such kind of rain-snow weather anomalies as that in November 2009 using MJO.  相似文献   

6.
Arctic sea ice responds to atmospheric forcing in primarily a top-down manner, whereby near-surface air circulation and temperature govern motion, formation, melting, and accretion. As a result, concentrations of sea ice vary with phases of many of the major modes of atmospheric variability, including the North Atlantic Oscillation, the Arctic Oscillation, and the El Niño-Southern Oscillation. However, until this present study, variability of sea ice by phase of the leading mode of atmospheric intraseasonal variability, the Madden–Julian Oscillation (MJO), which has been found to modify Arctic circulation and temperature, remained largely unstudied. Anomalies in daily change in sea ice concentration were isolated for all phases of the real-time multivariate MJO index during both summer (May–July) and winter (November–January) months. The three principal findings of the current study were as follows. (1) The MJO projects onto the Arctic atmosphere, as evidenced by statistically significant wavy patterns and consistent anomaly sign changes in composites of surface and mid-tropospheric atmospheric fields. (2) The MJO modulates Arctic sea ice in both summer and winter seasons, with the region of greatest variability shifting with the migration of the ice margin poleward (equatorward) during the summer (winter) period. Active regions of coherent ice concentration variability were identified in the Atlantic sector on days when the MJO was in phases 4 and 7 and the Pacific sector on days when the MJO was in phases 2 and 6, all supported by corresponding anomalies in surface wind and temperature. During July, similar variability in sea ice concentration was found in the North Atlantic sector during MJO phases 2 and 6 and Siberian sector during MJO phases 1 and 5, also supported by corresponding anomalies in surface wind. (3) The MJO modulates Arctic sea ice regionally, often resulting in dipole-shaped patterns of variability between anomaly centers. These results provide an important first look at intraseasonal variability of sea ice in the Arctic.  相似文献   

7.
This study examines the forecast performance of tropical intraseasonal oscillation (ISO) in recent dynamical extended range forecast (DERF) experiments conducted with the National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) model. The present study extends earlier work by comparing prediction skill of the northern winter ISO (Madden-Julian Oscillation) between the current and earlier experiments. Prediction skill for the northern summer ISO is also investigated. Since the boreal summer ISO exhibits northward propagation as well as eastward propagation along the equator, forecast skill for both components is computed. For the 5-year period from 1 January, 1998 through 31 December, 2002, 30-day forecasts were made once a day. Compared to the previous DERF experiment, the current model has shown some improvements in forecasting the ISO during winter season so that the skillful forecasts (anomaly correlation>0.6) for upper-level zonal wind anomaly extend from the previous shorter-than 5 days out to 7 days lead-time. A similar level of skill is seen for both northward and eastward propagation components during the summer season as in the winter case. Results also show that forecasts from extreme initial states are more skillful than those from null phases for both seasons, extending the skillful range by 3–6 days. For strong ISO convection phases, the GFS model performs better during the summer season than during the winter season. In summer forecasts, large-scale circulation and convection anomalies exhibit northward propagation during the peak phase. In contrast, the GFS model still has difficulties in sustaining ISO variability during the northern winter as in the previous DERF run. That is, the forecast does not maintain the observed eastward propagating signals associated with large-scale circulation; rather the forecast anomalies appear to be stationary at their initial location and decay with time. The NCEP Coupled Forecast System produces daily operational forecasts and its predication skill of the MJO will be reported in the future.  相似文献   

8.
国家气候中心MJO监测预测业务产品研发及应用   总被引:2,自引:1,他引:1       下载免费PDF全文
热带大气低频振荡 (MJO) 和北半球夏季季节内振荡 (BSISO) 对全球范围天气气候事件有重要影响,是次季节-季节 (S2S) 预报最主要的可预报性来源之一。国家气候中心 (BCC) 基于我国完全自主的T639全球分析场数据、风云三号气象卫星射出长波辐射 (OLR) 资料以及BCC第2代大气环流模式系统的实时预报,发展了MJO实时监测预测一体化业务技术,建立了ISV/MJO监测预测业务系统 (IMPRESS1.0),已投入实时业务运行,在全国气象业务系统得到应用。该文着重介绍该系统提供的MJO和BSISO指数监测预测数据和图形产品,并描述了这些业务产品在2015年对MJO典型个例的实时监测预测应用情况。监测分析和预报检验表明,基于我国自主资料的监测结果能够较为准确地表征MJO和BSISO指数的振荡和演变过程,该系统对MJO和BSISO事件分别至少具备16 d和10 d左右的预报技巧。因此,基于IMPRESS1.0的MJO/BSISO监测预测一体化业务产品可为制作延伸期预报提供重要的参考依据。  相似文献   

9.
Recent studies have shown that the Madden–Julian Oscillation (MJO) impacts the leading modes of intraseasonal variability in the northern hemisphere extratropics, providing a possible source of predictive skill over North America at intraseasonal timescales. We find that a k-means cluster analysis of mid-level geopotential height anomalies over the North American region identifies several wintertime cluster patterns whose probabilities are strongly modulated during and after MJO events, particularly during certain phases of the El Niño-Southern Oscillation (ENSO). We use a simple new optimization method for determining the number of clusters, k, and show that it results in a set of clusters which are robust to changes in the domain or time period examined. Several of the resulting cluster patterns resemble linear combinations of the Arctic Oscillation (AO) and the Pacific/North American (PNA) teleconnection pattern, but show even stronger responses to the MJO and ENSO than clusters based on the AO and PNA alone. A cluster resembling the positive (negative) PNA has elevated probabilities approximately 8–14 days following phase 6 (phase 3) of the MJO, while a negative AO-like cluster has elevated probabilities 10–20 days following phase 7 of the MJO. The observed relationships are relatively well reproduced in the 11-year daily reforecast dataset from the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2). This study statistically links MJO activity in the tropics to common intraseasonal circulation anomalies over the North American sector, establishing a framework that may be useful for improving extended range forecasts over this region.  相似文献   

10.
The change in Madden–Julian oscillation (MJO) amplitude and variance in response to anthropogenic climate change is assessed in the 1° nominal resolution community climate system model, version 4 (CCSM4), which has a reasonable representation of the MJO characteristics both dynamically and statistically. The twentieth century CCSM4 run is compared with the warmest twenty-first century projection (representative concentration pathway 8.5, or RCP8.5). The last 20 years of each simulation are compared in their MJO characteristics, including spatial variance distributions of winds, precipitation and outgoing longwave radiation, histograms of event amplitude, phase and duration, and composite maps of phases. The RCP8.5 run exhibits increased variance in intraseasonal precipitation, larger-amplitude MJO events, stronger MJO rainfall in the central and eastern tropical Pacific, and a greater frequency of MJO occurrence for phases corresponding to enhanced rainfall in the Indian Ocean sector. These features are consistent with the concept of an increased magnitude for the hydrological cycle under greenhouse warming conditions. Conversely, the number of active MJO days decreases and fewer weak MJO events occur in the future climate state. These results motivate further study of these changes since tropical rainfall variability plays such an important role in the region’s socio-economic well being.  相似文献   

11.
王国民 《气象科学》2020,40(5):679-685
利用再分析资料分析了MJO(Madden-Julian Oscillation)不同位相对春季中国东部降水的影响。结果表明:MJO处于位相3时对应长江及其以南地区降水增多,处于位相7时该区域降水减小。当热带MJO对流从位相1东传至位相4,与其相伴的北向辐散辐合流会在印度东北部—长江及副热带西北太平洋地区的对流层中低层产生明显的辐合异常,且在MJO位相3时中国东部的辐合异常达到最大。从Rossby波源角度分析,这种辐合异常会增强对流层中低层气旋性环流,导致MJO处于位相3时长江流域及其以南地区降水增多。同时,利用现代次季节和季节预报业务系统探讨了MJO与降水的关系对降水预报技巧的影响,发现预报降水和再分析产品的相关系数在MJO处于位相3和7时有所增加。  相似文献   

12.
The Madden-Julian oscillation (MJO) dominates tropical variability on timescales of 30–70 days. During the boreal winter/spring, it is manifested as an eastward propagating disturbance, with a strong convective signature over the eastern hemisphere. The space–time structure of the MJO is analyzed using simulations with the ECHAM4 atmospheric general circulation model run with observed monthly mean sea-surface temperatures (SSTs), and coupled to three different ocean models. The coherence of the eastward propagation of MJO convection is sensitive to the ocean model to which ECHAM4 is coupled. For ECHAM4/OPYC and ECHO-G, models for which ~100 years of daily data is available, Monte Carlo sampling indicates that their metrics of eastward propagation are different at the 1% significance level. The flux-adjusted coupled simulations, ECHAM4/OPYC and ECHO-G, maintain a more realistic mean-state, and have a more realistic MJO simulation than the nonadjusted scale interaction experiment (SINTEX) coupled runs. The SINTEX model exhibits a cold bias in Indian Ocean and tropical West Pacific Ocean sea-surface temperature of ~0.5°C. This cold bias affects the distribution of time-mean convection over the tropical eastern hemisphere. Furthermore, the eastward propagation of MJO convection in this model is not as coherent as in the two models that used flux adjustment or when compared to an integration of ECHAM4 with prescribed observed SST. This result suggests that simulating a realistic basic state is at least as important as air–sea interaction for organizing the MJO. While all of the coupled models simulate the warm (cold) SST anomalies that precede (succeed) the MJO convection, the interaction of the components of the net surface heat flux that lead to these anomalies are different over the Indian Ocean. The ECHAM4/OPYC model in which the atmospheric model is run at a horizontal resolution of T42, has eastward propagating zonal wind anomalies and latent heat flux anomalies. However, the integrations with ECHO-G and SINTEX, which used T30 atmospheres, produce westward propagation of the latent heat flux anomalies, contrary to reanalysis. It is suggested that the differing ability of the models to represent the near-surface westerlies over the Indian Ocean is related to the different horizontal resolutions of the atmospheric model employed.  相似文献   

13.
Madden-Julian variability in NCAR CAM2.0 and CCSM2.0   总被引:1,自引:0,他引:1  
The Madden-Julian Oscillation (MJO) dominates tropical variability on time scales of 30–70 days. During the boreal winter/spring it is manifested as an eastward propagating disturbance, with a strong convective signature over the eastern hemisphere. Here, 20–100 day bandpass filtered outgoing longwave radiation (OLR) for the months of November–March from the National Center for Atmospheric Research Community Atmospheric Model Version 2.0 (NCAR CAM2.0) and the Community Coupled System Model Version 2.0 (CCSM2.0) models is projected onto the observed patterns of MJO convection. This provides for the analysis of the models within a standard framework. Additionally, only analyzing years when the lead/lag relationship of the simulated principal components lie in the observed phase-space better isolates the simulated MJO signal. CCSM2.0 yields a better representation of the MJO than CAM2.0 due to the presence of air-sea interaction. Even so, the amplitude and spatial extent of the intraseasonal convection are underestimated relative to observed OLR, with a pronounced underestimate of the near-equatorial convection. Due to the development of a split inter-tropical convergence zone in the western Pacific, which is independent of the MJO, the models are precluded from representing the low-level moisture convergence that is central to the eastward propagation of the MJO. Once the systematic model error is remedied the underlying capability of the models to simulate the MJO will be possible.  相似文献   

14.
The influence of ocean–atmosphere coupling on the simulation and prediction of the boreal winter Madden–Julian Oscillation (MJO) is examined using the Seoul National University coupled general circulation model (CGCM) and atmospheric—only model (AGCM). The AGCM is forced with daily SSTs interpolated from pentad mean CGCM SSTs. Forecast skill is examined using serial extended simulations spanning 26 different winter seasons with 30-day forecasts commencing every 5 days providing a total of 598 30-day simulations. By comparing both sets of experiments, which share the same atmospheric components, the influence of coupled ocean–atmosphere processes on the simulation and prediction of MJO can be studied. The mean MJO intensity possesses more realistic amplitude in the CGCM than in AGCM. In general, the ocean–atmosphere coupling acts to improve the simulation of the spatio-temporal evolution of the eastward propagating MJO and the phase relationship between convection (OLR) and SST over the equatorial Indian Ocean and the western Pacific. Both the CGCM and observations exhibit a near-quadrature relationship between OLR and SST, with the former lagging by about two pentads. However, the AGCM shows a less realistic phase relationship. As the initial conditions are the same in both models, the additional forcing by SST anomalies in the CGCM extends the prediction skill beyond that of the AGCM. To test the applicability of the CGCM to real-time prediction, we compute the Real-time Multivariate MJO (RMM) index and compared it with the index computed from observations. RMM1 (RMM2) falls away rapidly to 0.5 after 17–18 (15–16) days in the AGCM and 18–19 (16–17) days in the CGCM. The prediction skill is phase dependent in both the CGCM and AGCM.  相似文献   

15.
This study evaluates performance of Madden–Julian oscillation (MJO) prediction in the Beijing Climate Center Atmospheric General Circulation Model (BCC_AGCM2.2). By using the real-time multivariate MJO (RMM) indices, it is shown that the MJO prediction skill of BCC_AGCM2.2 extends to about 16–17 days before the bivariate anomaly correlation coefficient drops to 0.5 and the root-mean-square error increases to the level of the climatological prediction. The prediction skill showed a seasonal dependence, with the highest skill occurring in boreal autumn, and a phase dependence with higher skill for predictions initiated from phases 2–4. The results of the MJO predictability analysis showed that the upper bounds of the prediction skill can be extended to 26 days by using a single-member estimate, and to 42 days by using the ensemble-mean estimate, which also exhibited an initial amplitude and phase dependence. The observed relationship between the MJO and the North Atlantic Oscillation was accurately reproduced by BCC_AGCM2.2 for most initial phases of the MJO, accompanied with the Rossby wave trains in the Northern Hemisphere extratropics driven by MJO convection forcing. Overall, BCC_AGCM2.2 displayed a significant ability to predict the MJO and its teleconnections without interacting with the ocean, which provided a useful tool for fully extracting the predictability source of subseasonal prediction.  相似文献   

16.
The extra-tropical response to El Niño in a “low” horizontal resolution coupled climate model, typical of the Intergovernmental Panel on Climate Change fourth assessment report simulations, is shown to have serious systematic errors. A high resolution configuration of the same model has a much improved response that is similar to observations. The errors in the low resolution model are traced to an incorrect representation of the atmospheric teleconnection mechanism that controls the extra-tropical sea surface temperatures (SSTs) during El Niño. This is due to an unrealistic atmospheric mean state, which changes the propagation characteristics of Rossby waves. These erroneous upper tropospheric circulation anomalies then induce erroneous surface circulation features over the North Pacific. The associated surface wind speed and direction errors create erroneous surface flux and upwelling anomalies which finally lead to the incorrect extra-tropical SST response to El Niño in the low resolution model. This highlights the sensitivity of the climate response to a single link in a chain of complex climatic processes. The correct representation of these processes in the high resolution model indicates the importance of horizontal resolution in resolving such processes.  相似文献   

17.
Idealized forcing experiments with 1% per year CO2 increase to stabilized doubled and quadrupled CO2, twenty-first century transient scenario experiments (SRES scenarios A1B and B1), and stabilized twenty-second century A1B and B1 experiments with two global coupled climate models (PCM and CCSM3) are analyzed for possible future changes of El Niño events. With increased CO2 in the models, there is a reduction of amplitude of El Niño events. This is particularly apparent with larger forcing in the stabilized 4×CO2 experiment in PCM and the stabilized greenhouse gas A1B experiment in CCSM3, where the reduction of amplitude is outside the range of the inherent multi-century variability of El Niño in the control runs of the models and is statistically significant. With moderately increased forcing (stabilized 2×CO2 in PCM and the stabilized B1 experiment in CCSM3), the reduction in amplitude is evident, but it is not significant. The change in El Niño behavior with larger forcing is attributed to the change in base state temperature in the equatorial Pacific, which is similar with increased greenhouse gases (GHGs) in both models. Positive temperature anomalies in and below the thermocline, associated with a reduction of the trade winds, and weakened Pacific Ocean subtropical cells, produce a less intense thermocline, and consequently lower amplitude El Niño events. The previously noted intensification of El Niño tropical precipitation anomalies in a warmer mean base state that applied when there was no appreciable change in El Niño amplitude does not hold in the present study where the El Niño events decrease in magnitude in a future warmer climate. North American surface temperature anomalies associated with El Niño are reduced and become less significant in the future events, with the anomalously deepened Aleutian low in the North Pacific weakened and moved eastward with greater radiative forcing. Part of this is attributed to the smaller amplitude events and thus lower amplitude teleconnections as indicated by contrasting composites of medium and high amplitude El Niño events from the control runs. The change in midlatitude base state circulation also contributes to the change in El Niño teleconnections. The effects of this change in base state on the weakened El Niño teleconnections over North America are confirmed in sensitivity experiments with a version of the atmospheric model in which heating anomalies are specified to mimic El Niño events in a base state changed due to increased GHGs.  相似文献   

18.
Tropical cloud regimes defined by cluster analysis of International Satellite Cloud Climatology Project (ISCCP) cloud top pressure (CTP)–optical thickness distributions and ISCCP-like Goddard Institute for Space Studies (GISS) general circulation model (GCM) output are analyzed in this study. The observations are evaluated against radar–lidar cloud-top profiles from the atmospheric radiation measurement (ARM) Program active remote sensing of cloud layers (ARSCL) product at two tropical locations and by placing them in the dynamical context of the Madden–Julian oscillation (MJO). ARSCL highest cloud-top profiles indicate that differences among some of the six ISCCP regimes may not be as prominent as suggested by ISCCP at the ARM tropical sites. An experimental adjustment of the ISCCP CTPs to produce cloud-top height profiles consistent with ARSCL eliminates the independence between those regimes. Despite these ambiguities, the ISCCP regime evolution over different phases of the MJO is consistent with existing MJO mechanisms, but with a greater mix of cloud types in each phase than is usually envisioned. The GISS Model E GCM produces two disturbed and two suppressed regimes when vertical convective condensate transport is included in the model’s cumulus parameterization. The primary model deficiencies are the absence of an isolated cirrus regime, a lack of mid-level cloud relative to ARSCL, and a tendency for occurrences of specific parameterized processes such as deep and shallow convection and stratiform low cloud formation to not be associated preferentially with any single cloud regime.  相似文献   

19.
夏季MJO持续异常的主要特征分析   总被引:1,自引:1,他引:1  
严欣  琚建华 《大气科学》2016,40(5):1048-1058
在MJO传播过程中,其活动中心并不总是规律地沿赤道东传。本文通过资料分析发现,夏季MJO的活动中心会出现东传停滞的情况,表现为MJO在赤道太平洋持续异常活跃或者在印度洋持续异常活跃两种形式。为更好描述MJO这种东传不明显的异常特征,本文定义了一个描述MJO持续异常的指数,并据此对夏季MJO持续异常的主要特征进行分析。通过小波分析的方法,发现夏季MJO持续异常时其振荡周期会出现缩短或变弱。通过对MJO持续异常状况下的大气环流进行合成对比分析后发现,夏季MJO的持续异常会对热带大气环流造成显著的影响。具体表现为:MJO夏季在赤道太平洋(印度洋)持续活跃的时候,赤道沃克环流减弱(增强),西太平洋哈得来环流增强(减弱),西太平洋副高位置偏北(偏南),赤道太平洋(印度洋)高层辐散且对流活跃。  相似文献   

20.
The Grid-point Atmospheric Model of IAP LASG version 2 (GAMIL2) has been developed through upgrading the deep convection parameterization, cumulus cloud fraction and two-moment cloud microphysical scheme, as well as changing some of the large uncertain parameters. In this paper, its performance is evaluated, and the results suggest that there are some significant improvements in GAMIL2 compared to the previous version GAMIL1, for example, the components of the energy budget at the top of atmosphere (TOA) and surface; the geographic distribution of shortwave cloud radiative forcing (SWCF); the ratio of stratiform versus total rainfall; the response of atmospheric circulation to the tropical ocean; and the eastward propagation and spatiotemporal structures of the Madden Julian Oscillation (MJO). Furthermore, the indirect aerosols effect (IAE) is -0.94 W m-2, within the range of 0 to -2 W m-2 given by the IPCC 4th Assessment Report (2007). The influence of uncertain parameters on the MJO and radiation fluxes is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号