首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
《大气与海洋》2013,51(3):169-183
Abstract

Ice‐band characteristics for the region off East Queen Maud Land in Antarctica were examined and their relationship with the wind conditions was assessed using a large number of Marine Observation Satellite (MOS) Multispectral Electronic Self Scanning Radiometer (MESSR) images received at Syowa Station during the period 1989–93. Analyses from 43 examples of bands captured from August to December suggest that ice‐band formation and band scale are affected by both wind speed and direction over approximately the preceding four days (defined as the effective wind). Ice‐band width and spacing are significantly correlated with the effective wind speed and the maximum wind speed during that period. The long axis of ice bands tends to be oriented at 70°‐90° (mean of 75°) to the right of the effective wind direction. The band scales decrease from winter (August) to summer (December) with typical band spacing of 4–6 km in winter and 1–2 km in summer. This seems to be primarily due to a decrease in ice floe size and partly due to a decrease in the effective wind speed from winter to summer. Band scale decreases from the ice interior to the ice edge under conditions of off‐ice winds.  相似文献   

2.
Abstract

During moist weather under stably stratified and light wind conditions very often “dot” shaped echoes, either distributed randomly or arranged in a stratified layer, have been observed on sodar echograms. They last from a couple of hours to ten hours. Their horizontal widths are up to 200 m while their vertical sizes are up to 40 m. It is argued that dot echoes represent clusters of water vapour translated by the wind in the boundary layer, the back‐scattered acoustic energy being the contribution of correlated fluctuations in temperature and humidity (turbulent mixing) in the inertial subrange.  相似文献   

3.
《大气与海洋》2013,51(3):361-376
Abstract

The goal of this study is to evaluate the impact of incorporating the marine surface winds retrieved from the ERS‐2 scatterometer in the Canadian three‐dimensional variational analysis system, (3D‐var). The aspects of the 3D‐var most relevant to the assimilation of surface ‐wind observations and a general method for resolving the directional ambiguity of the retrieved scatterometer ‐winds are first described. A comparison ‐with 6‐h forecasted winds is then made to demonstrate that these data are of high quality, but exhibit a speed bias that can be removed by increasing their amplitudes by about 5%. The analysis increment from a single scatterometer wind observation is calculated to illustrate the response of the 3D‐var to surface wind observations. As a consequence of the forecast error covariance model, the assimilation of surface wind observations produces meteorologically consistent increments for both the rotational and divergent wind components and the mass field. The results from a series of cross‐validation experiments using ship‐based wind data demonstrate a positive impact of assimilating scatterometer winds and the effectiveness of a simple method for estimating and removing the speed bias. The impact of assimilating scatterometer data within a short assimilation cycle is also evaluated. Overall, the results show that including scatterometer data in the analysis decreases the 6‐h forecast error of surface wind by 13%. Over the northern extra‐tropics the improvement is only 4% and for the southern extra‐tropics it is 16%. Results from a series of two‐day forecasts produced using the analyses from the assimilation cycles with and without retrieved scatterometer winds included are also presented. Using radiosonde observations at 850 hPa, 500 hPa, 250 hPa and 100 hPafor verification, the impact on the forecasts is nearly neutral in the northern hemisphere and the tropics. Conversely, a significant positive impact is found on both wind and mass fields in the southern hemisphere over the entire two‐day forecast.  相似文献   

4.
Using the data from the Chernobyl meteorological station for 2000–2010 and the wavelet analysis, the seasonal variations are analyzed of the average daily wind speed, wind gusts, wind speed variability, and instability coefficient (the ratio of the maximum wind speed to the average wind speed for each measurement). It is revealed that all parameters have pronounced seasonal variations, and the positions of seasonal maximum and minimum values of all variables under study are shifted relative to each other. The mean values of the shift between the seasonal variations of maximum and the average wind speed amount to 60–70 days, and those of the shift between the average speed and the instability coefficient, to about 145 days. The mentioned peculiarities of the display of seasonal variations are explained by atmospheric turbulent conditions. Proposed is a model that interprets the variability of the parameters under consideration as the statistics of separate eddies in the atmosphere.  相似文献   

5.
S. Tabata 《大气与海洋》2013,51(3):237-247
Abstract

Observations of sea‐surface temperatures and salinities, made by a variety of methods during August and September 1975 in the northeast Pacifie Ocean, are examined to evaluate the quality of surface data. The bucket method is capable of providing sea‐surface temperatures to an accuracy (standard deviation) of ±0.15°C. The thermograph/salinograph when corrected by applying a “field‐calibration” value, gives temperatures with a standard deviation one half that obtained by the bucket method. Expendable bathythermograph temperatures were, on the average, 0.3°C urate as the true values. Were it not for this offset they would have been as accurate as those obtained with bucket thermometers. Engine‐intake temperatures observed by the engine‐room crew were, on the average, 0.3°C larger than the true values, but were characterized by large inaccuracies, with a standard deviation about an order of magnitude greater than those found for other methods. These variations are believed to be due to reading errors. Sea‐surface salinities observed with the bucket could be, with reasonable care, accurate within the limitation of the salinometer method used aboard ships. The quality of data has been found to vary significantly between observers. Results obtained from this cruise and from weathership data (1956–1976) suggest that the surface temperatures and salinities observed during the past, 1956–1962, in the northeast Pacific Ocean have generally been overestimated.  相似文献   

6.
Abstract

The most common method used to evaluate climate models involves spinning them up under perpetual present‐day forcing and comparing the model results with present‐day observations. This approach clearly ignores any potential long‐term memory of the model ocean to past climatic conditions. Here we examine the validity of this approach through the 6000‐year integration of a coupled atmosphere–ocean–sea‐ice model. The coupled model is initially spun‐up with atmospheric CO2 concentrations and orbital parameters applicable for 6KBP. The model is then integrated forward in time to 2100. Results from this transient coupled model simulation are compared with the results from two additional simulations, in which the model is spun up with perpetual 1850 (preindustrial) and 1998 (present‐day) atmospheric CO2 concentrations and orbital parameters. This comparison leads to substantial differences between the equilibrium climatologies and the transient simulation, even at 1850 (in weakly ventilated regions), prior to any significant changes in atmospheric CO2. When compared to the present‐day equilibrium climatology, differences are very large: the global mean surface air and sea surface temperatures are ,0.5°C and ,0.4°C colder, respectively, deep ocean temperatures are substantially cooler, Southern Hemisphere sea‐ice cover is 38% larger, and the North Atlantic conveyor 16% weaker in the transient case. These differences are due to the long timescale memory of the deep ocean to climatic conditions which prevailed throughout the late Holocene, as well as to its large thermal inertia. It is also demonstrated that a ‘cold start’ global warming simulation (one that starts from a 1998 equilibrium climatology) underestimates the global temperature increase at 2100 by ,10%. Our results question the accuracy of current techniques for climate model evaluation and underline the importance of using paleoclimatic simulations in parallel with present‐day simulations in this evaluation process.  相似文献   

7.
《大气与海洋》2013,51(4):325-338
Abstract

A portable ground‐based instrument has been constructed for the automated measurement of vertical column abundances of a number of gases pertinent to stratospheric ozone chemistry. The instrumentation is described in this paper and results are presented from the first set of field measurements, made during the Middle Atmosphere Nitrogen TRend Assessment (MANTRA) 1998 field campaign at Vanscoy, Saskatchewan, Canada. Zenith‐sky spectra in the near ultraviolet and visible wavelength regions were recorded for a period of seven days, prior to and following the launch of the MANTRA balloon on 24 August 1998. The spectra were then analysed using the differential optical absorption spectroscopy (DOAS) technique in conjunction with a radiative transfer model to determine vertical column amounts of ozone and NO2. Ozone measurements compared favourably with concurrent observations by ozonesondes, a Brewer spectrophotometer, and satellite instruments. Vertical NO2 columns were in broad agreement with those determined by the Global Ozone Monitoring Experiment (GOME) satellite instrument.  相似文献   

8.
《大气与海洋》2013,51(4):173-193
Abstract

New observations in the Strait of Georgia, British Columbia, Canada show that temperature and dissolved oxygen have a pronounced seasonal cycle, with a spatially varying phase. Phase lags in oscillating systems arise due to internal time scales which can be interpreted in fluid systems as residence times. Exploiting phase we construct a quantitative and internally consistent circulation scheme for this body of water after dividing it into four regions: the Fraser River plume, the surface waters down to 50 m, the intermediate waters down to 200 m, and the deep water. In this scheme the intermediate water, the largest region by volume, is continually renewed, and its characteristics change in response to continuous changes in the characteristics of source waters. The dependence of the estuarine circulation on variations in fresh inflow is weak. The deep water is volumetrically less important, but seasonal changes in the density of oceanic source waters can produce a variation in the overall circulation by driving an additional inflow which leads to both deep renewal and increased upwelling. In turn, this increased upwelling results in lower surface temperatures than might otherwise be expected. Intermediate water residence times are about 160 days. Deep water is renewed once per year in summer and is affected only by vertical diffusion during the rest of the year. Surface water residence times for the entire Strait are a few months at most, but the Fraser River plume has a freshwater residence time of approximately 1 day. In addition, we find that the residence time of oceanic source waters in the Strait is 1.7 years due to a substantial recirculation in Haro Strait. Other consequences of this scheme are consistent with independent estimates of horizontal transports, air‐sea heat fluxes, subsurface oxygen (O2) utilization, and primary production. Finally, analysis of the spatial phase variations suggests that the intermediate inflow enters the Strait as a boundary current along the slopes of the Fraser delta.  相似文献   

9.
 The total ozone column is well correlated with tropospheric fields such as the heights of the upper tropospheric geopotential surfaces and thus it can provide useful information on temporal variability in the troposphere. The global availability of long period satellite measurements of the total ozone column, taken by the TOMS instruments since 1978, provides a valuable and independent data set for use in studies of seasonal and interannual climate variability. In this study, the global low-frequency seasonal teleconnections in the observed TOMS data from 1979–91 have been investigated using seasonal teleconnectivity maps and empirical orthogonal function analysis. They have also been compared with the results from a simulation made with the atmospheric GCM at Météo-France, having prescribed observed sea surface temperatures for the same period. In the observed total ozone, strong ENSO-related wave number one longitudinal dipole patterns are seen in both the tropics and in the Southern Hemisphere extratropics. The model shows much weaker variability in total ozone yet appears to be able to capture similar teleconnection patterns in the tropics related to ENSO. In the SH extratropics, the model total ozone shows a strong wave number 3 response rather than the wave number one dipole seen in the observations. A wave number 3 response is also evident in the 200 hPa geopotential height simulated by the model and in the NCEP analysis, and is consistent with the response in a linearised barotropic model forced in the Indonesian region. The different responses in the modelled and observed total ozone, suggest that tropopause effect is not the major factor in the SH extratropics, and it is likely that horizontal ozone transport also plays a role in this region. Despite a generally poor simulation of the zonal mean total ozone, the model was able to capture the anomalous strengthening of the SH stationary waves during austral spring of 1988, related to an intense stratosphere sudden warming. Received: 21 October 1996 / Accepted: 11 September 1997  相似文献   

10.
Abstract

The results of a field test of time‐domain reflectometry (TDR) to measure apparent liquid soil water contents and to locate the unfrozen‐frozen interface during thawing conditions is presented. The apparent liquid water content was observed in the fall and through a late winter thaw on two sand sites, one with a natural snow cover and the other with snow removed throughout the winter. Temperatures were monitored at intervals throughout the profile. The results indicate that TDR provides a method for monitoring apparent liquid water content andfreeze‐thaw processes.  相似文献   

11.
Abstract

We examine Arctic sea‐ice concentration (SIC) and sea‐level pressure (SLP) data using principal oscillation pattern (POP) and neural network methods. The POP method extracts oscillating patterns from multivariate time series, each pattern being characterized by an oscillation period and a decay time. Predictions can be made for patterns whose decay time is comparable with the period. For both the SIC and SLP, however, the decay times are much shorter than the oscillation periods, and therefore the forcast skill is poor. A neural network is a model of the learning behaviour of a living neural system. Presented with training data, a neural network can learn the linear or non‐linear rules embedded in the data. We trained neural networks with sea‐ice and sea‐level pressure data, and estimated the forecast skill using a cross‐validation technique. The neural networks did not exhibit forecast skill significantly better than that of persistence. We contrast the Arctic situation with previous studies in which POP and neural networks were successfully used to forecast El Niño at lead times up to 6 months. Reasons for the lack of skill in both methods are discussed.  相似文献   

12.
Abstract

Two sets of Synthetic Aperture Radar (SAR) images were collected, as part of the Labrador Ice Margin Experiment (LIMEX), over the Newfoundland Shelf on consecutive days in April 1990. Ice movement is detected from the displacement of ice floes between the two images sets and compared with ice drift data from six satellite‐tracked beacons and in situ CTD data. The ice velocity data derived from the SAR images and the beacons are used to generate a map of ice velocity vectors. A streamfunction map of ocean currents is produced by removing the direct wind‐driven component in the ice movement data, and by using an objective analysis method. The resulting flow pattern contains the offshore branch of the Labrador Current with a speed of 30 to 50 cm s?1. The current closely follows the shelf break topography from north to south through the study area (47–50.5°N) as a continuous flow. In comparison, if the wind effect was not removed from the ice velocity data, the calculated Labrador Current north of 50°N would stray from the shelf break. The position of the current axis and the current speed derived from the ice movement data are in good agreement with the geostrophic current computed from the CTD data.  相似文献   

13.
Daily global solar irradiation (R s) is one of the main inputs in environmental modeling. Because of the lack of its measuring facilities, high-quality and long-term data are limited. In this research, R s values were estimated based on measured sunshine duration and cloud cover of our synoptic meteorological stations in central and southern Iran during 2008, 2009, and 2011. Clear sky solar irradiation was estimated from linear regression using extraterrestrial solar irradiation as the independent variable with normalized root mean square error (NRMSE) of 4.69 %. Daily R s was calibrated using measured sunshine duration and cloud cover data under different sky conditions during 2008 and 2009. The 2011 data were used for model validation. According to the results, in the presence of clouds, the R s model using sunshine duration data was more accurate when compared with the model using cloud cover data (NRMSE = 11. 69 %). In both models, with increasing sky cloudiness, the accuracy decreased. In the study region, more than 92 % of sunshine durations were clear or partly cloudy, which received close to 95 % of total solar irradiation. Hence, it was possible to estimate solar irradiation with a good accuracy in most days with the measurements of sunshine duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号