首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Storm surges in various Canadian waters are reviewed. Following a brief discussion of the weather systems that cause storm surges in Canadian coastal and inland waters, the mathematical formulations to describe the development of storm surges are given. In reviewing storm surges in the different Canadian waters, particular attention is given to describe the influence of the presence of sea ice on surge development and the impact of shallow coastal areas, where the coastline configuration is itself changed by the surge, on inland penetration of the storm surge. The Canadian waters that may be affected by storm surges include the east and west coasts, the Beaufort Sea, the Gulf of St. Lawrence and the St. Lawrence estuary, Hudson Bay and the Great Lakes.  相似文献   

2.
Abstract

The outflow from the lower St Lawrence Estuary (LSLE) is a major input to the Gulf of St Lawrence. The discharge of the St Lawrence River drives a pair of buoyant coastal jets in the estuary that combine to form the major part of the Gaspé Current, perhaps the dominant feature of the circulation in the Gulf. The dominant forcing agencies of the low‐frequency variability (aside from the seasonal freshwater discharge cycle) of motions in the LSLE and the Gaspé Current have not been definitively identified. Here we examine current data from the mouth of the estuary from two field programs (undertaken in 1962 and 1979) and use spectral and bulk correlation analyses to show that wind‐driven motions apparently exert a strong influence on the variability of the exchange between Gulf and estuarine waters. Meteorologically forced motions are shown to be most prominent in the 10‐ to 15‐d period range (corresponding to the typical interval between the passages of weather systems). The wind‐induced current field is shown to produce a counterflow at depth in the LSLE.  相似文献   

3.
Abstract

Sea-level allowances at 22 tide-gauge sites along the east coast of Canada are determined based on projections of regional sea-level rise for the Representative Concentration Pathway 8.5 (RCP8.5) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) and on the statistics of historical tides and storm surges (storm tides). The allowances, which may be used for coastal infrastructure planning, increase with time during the twenty-first century through a combination of mean sea-level rise and the increased uncertainty of future projections with time. The allowances show significant spatial variation, mainly a consequence of strong regionally varying relative sea-level change as a result of glacial isostatic adjustment (GIA). A methodology is described for replacement of the GIA component of the AR5 projection with global positioning system (GPS) measurements of vertical crustal motion; this significantly decreases allowances in regions where the uncertainty of the GIA models is large. For RCP8.5 with GPS data incorporated and for the 1995–2100 period, the sea-level allowances range from about 0.5?m along the north shore of the Gulf of St. Lawrence to more than 1?m along the coast of Nova Scotia and southern Newfoundland.  相似文献   

4.
Abstract

We present an analysis of current‐meter, sea‐level and hydrographic data collected in the Strait of Belle Isle and the northeastern Gulf of St Lawrence. From an array of moorings in the Strait from July to October 1980, we calculate a net transport into the Gulf of 0.13 × 106 m3 s?1 and show that the mean and eddy fluxes of heat through the Strait represented a net loss of heat to the northeastern Gulf. The estimated rate of loss of heat is less than the long‐term mean computed by Bugden (1981) but becomes comparable if adjusted for interannual changes of transport and water temperature. Moreover, the 1980 data permit the permanent tide‐gauge stations in the Strait at West Ste Modeste and Savage Cove to be levelled relative to one another, thus allowing surface currents to be calculated from sea‐level alone. Hence the long‐term wintertime transport into the Gulf can be calculated after fractional effects on the vertical structure of the flow are considered. During an average winter it appears that advection through the Strait can account for about 35% of the Gulf Intermediate Layer. A multiple regression involving average Intermediate Layer temperatures over 9 years suggests that winter air temperature in the Gulf, representative of atmospheric cooling, and sea‐level difference across the Strait, representative of advection, are equally important variables and together account for 50% of the Layer's temperature variability. Analysis of current‐meter, sea‐level and hydrographic data collected in 1975 supports earlier hypotheses that the strongest inflow of water with ? < 0° C and salinity between 32 and 3 3 should occur in winter. It appears that during the 1975 field program the inflow was about 0.6 × 106 m3 s?1, which is about twice the long‐term average for January to May.  相似文献   

5.
Abstract

The Geosat radar altimeter data from ~60 repeat cycles of the Exact Repeat Mission (ERM) over the period November 1986 to September 1989 have been analysed to show the annual variations of the sea‐surface slopes, corrected for ocean tides, over the Scotian Shelf and the Grand Banks. A coastal tidal model developed at the Bedford Institute of Oceanography, combined with the global tidal model of Schwiderski, is employed to remove the tidal signals from the sea‐surface heights over those regions. Linear regression is used to estimate the sea‐surface slopes over the inner shelf region, the outer shelf region, or a combination of the two along the Geosat ground tracks. Harmonic analysis is applied to the time series of sea‐surface slopes to derive the annual signals, showing that amplitudes are of order of 5 × 10‐7 (5 cm/100 km) with onshore slopes positive in winter and negative in summer.

The largest annual cycles occur over the outer portion of the Laurentian Channel and the southern Grand Banks. The annual cycles differ between the eastern and western portions of the Scotian Shelf: in the east, the signal is synchronized with that of the Laurentian Channel, whereas in the west, the phase of the signal is advanced by 2–3 months. The annual signals over the eastern Scotian Shelf are comparable and consistent with historical hydrographie data along the Halifax Hydrographie Section. The amplitude and phase over the western Scotian Shelf are consistent with the adjusted sea level at the Halifax Station. The annual variability of the sea‐surface slopes over the Scotian Shelf and the Grand Banks is thought to be induced by the seasonal outflow from the Gulf of St Lawrence through Cabot Strait, and possibly by an annual cycle in the Slope Water current.  相似文献   

6.
C.L. Tang 《大气与海洋》2013,51(2):135-156
Abstract

It is shown that inertial oscillations of significant magnitude can be generated by geostrophic adjustment in a shallow sea. Evidence of them in current‐meter data from the Gulf of St Lawrence is presented. The geostrophically unbalanced state required for the adjustment process is identified in the data by the occurrence of high accelerations of the currents. The difference between the inertial oscillations generated by different mechanisms, the intermittence and the frequency shift of the inertial waves are discussed.  相似文献   

7.
ABSTRACT

This study demonstrates that long-term climate model solutions can be efficiently converted to storm surge time series at points of interest (POIs) for the future. The all-source Green's function (ASGF) regression model is used for this conversion. In addition to being data assimilative, the ASGF regression model can also simulate storm surges at a POI faster than the traditional modelling approach by orders of magnitude. This is demonstrated using the tidal gauge at Sept-Îles (Quebec, Canada) in the Gulf of St. Lawrence as the POI. First the ASGF regression model is used to assimilate 32 years of tidal gauge data, producing a continuous hindcast of storm surges and a set of best-estimate regression parameters. Second, the ASGF regression model with the best-estimate parameters is used to convert a Canadian Regional Climate Model solution (CRCM/AHJ) to an hourly time series of storm surges from 1961 to 2100. Gumbel's extreme value analysis (EVA) is then applied to the time series as a whole and also to tri-decadal segments. The tri-decadal approach is used to investigate whether there is any progressive shortening or lengthening of storm surge return periods as a result of future climate change. A method for correcting for bias due to the forcing field at the EVA level is also demonstrated.  相似文献   

8.
渤海西岸致灾风暴潮的统计预报模型   总被引:2,自引:0,他引:2  
王月宾 《气象》2007,33(9):40-46
渤海西岸是风暴潮灾害多发区,1990年代以后发生几率和灾害损失明显增加。利用气象科学和海洋水文科学相结合的方法,依据黄骅港潮汐资料,对发生在渤海西岸的风暴潮进行统计分析。结果表明,台风和强冷空气配合气旋是造成渤海西岸风暴潮的主要天气系统,偏东大风增水和天文潮叠加是造成风暴潮的直接因素;风暴潮和天文潮汐都有半日潮现象。在此基础上,建立了渤海西岸风暴潮预报模型,通过台风或冷空气配合气旋影响时增水值的计算,结合天文潮汐资料,做出最高潮位预报。应用该预报方法对渤海西岸发生的7次风暴潮进行回报,预报值与实测值基本相当,是基层台站较实用的预报方法。  相似文献   

9.
The lateral motion of the Gulf Stream off the eastern seaboard of the United States during the winter season can act to dramatically enhance the low-level baroclinicity within the coastal zone during periods of offshore cold advection. The ralative close proximity of the Gulf Stream current off the mid-Atlantic coast can result in the rapid and intense destabilization of the marine atmospheric boundary layer directly above and shoreward of the Gulf Stream within this region. This airmass modification period often precedes either wintertime coastal cyclogenesis or the cyclonic re-development of existing mid-latitude cyclones. A climatological study investigating the relationship between the severity of the pre-storm, cold advection period and subsequent cyclogenic intensification was undertaken by Cione et al. in 1993. Findings from this study illustrate that the thermal structure of the continental airmass as well as the position of the Gulf Stream front relative to land during the pre-storm period (i.e., 24–48 h prior to the initial cyclonic intensification) are linked to the observed rate of surface cyclonic deepening for storms that either advected into or initially developed within the Carolina-southeast Virginia offshore coastal zone. It is a major objective of this research to test the potential operational utility of this pre-storm low level baroclinic linkage to subsequent cyclogenesis in an actual National Weather Service (NWS) coastal winter storm forecast setting.The ability to produce coastal surface cyclone intensity forecasts recently became available to North Carolina State University researchers and NWS forecasters. This statistical forecast guidance utilizes regression relationships derived from a nine-season (January 1982–April 1990), 116-storm study conducted previously. During the period between February 1994 and February 1996, the Atlantic Surface Cyclone Intensification Index (ASCII) was successfully implemented in an operational setting by the NWS at the Raleigh-Durham (RAH) forecast office for 10 winter storms. Analysis of these ASCII forecasts will be presented.  相似文献   

10.
Abstract

Current and temperature measurements collected during the summers of 1974, 1975 and 1979 are used to investigate the wind‐induced response of St Georges Bay, Nova Scotia. A multivariate‐frequency response analysis shows that temperature and the along‐bay component of current in the lower layer are coherent with the local wind stress at periods of 2–6 d, with the wind stress accounting for 35–65% of the observed variances. Winds are also coherent with the surface currents but account for only 20–25% of the variance. Two dynamically different regions are identified. Near the entrance to the bay, cross‐bay wind stresses (τx) produce Ekman drift with compensating flow in the lower layer. In the interior of the bay, the near‐bottom currents are coherent with along‐bay (τy) wind stresses and are directed upwind. These currents are topographically steered and a response to surface pressure gradients set up by the wind. The surface gradients are believed to be part of the wind‐induced set‐up within the southern Gulf of St Lawrence.  相似文献   

11.
Summary A coastal ocean model capable of modelling tides, storm surge and the overland flow of floodwaters has been further developed to include the flux of water from tributaries and the forcing from wave breaking that leads to wave setup in the nearshore zone. The model is set up over the Gold Coast Broadwater on the east coast of Australia. This complex region features a coastal lagoon into which five tributaries flow and is subject to flooding from extreme oceanic conditions such as storm surge and wave setup as well as terrestrial runoff. Weather conditions responsible for storm surge, waves and flooding include cyclones of both tropical and mid-latitude origin. Two events are modelled. The first is an east coast low event that occurred in April 1989. This event verified well against available observations and analysis of the model simulations revealed that wave setup produced a greater contribution to the elevated water levels than the storm surge. The second case to be modelled was tropical cyclone Wanda, responsible for the 1974 floods. Modelled water levels in the Broadwater were reasonably well captured. Sensitivity experiments showed that storm surge and wave setup were only minor contributors to the elevated sea levels and their contribution was confined to the earlier stage of the event before the runoff reached its peak. The contribution due solely to runoff exhibited a tidal-like oscillation that was 180° out-of-phase with the tide and this was attributed to the greater hydraulic resistance that occurs at high tide. A simulation of this event with present day bathymetry at the Seaway produced sea levels that were 0.3–0.4 m lower than the simulation with 1974 bathymetry highlighting the effectiveness of deepened Seaway channel to reduce the impact of severe runoff events in the Broadwater. Received October 16, 2001 Revised December 28, 2001  相似文献   

12.
Abstract

The action of tides on density‐driven circulation, internal gravity waves, and mixing was investigated in the St. Lawrence Estuary between Rimouski and Québec City. Time‐varying fields of water level, currents and density were computed under typical summer conditions using a three‐dimensional hydrostatic coastal ocean model that incorporates a second order turbulence closure submodel. These results are compared with current meter records and other observations. The model and the observations reveal buoyancy effects produced by tidal forcing. The semi‐diurnal tide raises the isopycnals over the sills at the head of the Laurentian Trough and English Bank, producing internal tides radiating seaward. Relatively dense intermediate waters rise from below 75‐m depth to the near surface over the sills, setting up gravity currents on the inner slopes. Internal hydraulic controls develop over the outer sills; during flood, surface flow separation occurs at the entrances of the Saguenay Fjord and the upper estuary west of Ilet Rouge Bank. Early during ebb flow (restratification), the surface layer deepens to encompass the tops of the sills. As the ebb current intensifies, the model predicts the formation of seaward internal jumps over the outer sills, which were confirmed from acoustic reflection observations. As the internal Froude number increases further, flow separation migrates up to sill height. As a result of these transitions, internal bores emanate from the head region one to two hours before low water. We find that the mixing of oceanic and surface waters near the sills is driven by the vertical shear produced during ebb in the channel south of Ilet Rouge, the shear produced in the bottom gravity flood currents, and, to a lesser extent, the processes over the sills.  相似文献   

13.
C.L. Tang  T. Yao 《大气与海洋》2013,51(2):270-296
Abstract

A coupled ice‐ocean dynamical model is applied to the simulation of sea‐ice motion and distribution off Newfoundland during the Labrador Ice Margin Experiment (LIMEX), March 1987. In the model, the ice is coupled to a barotropic ocean through an Ekman layer that deepens with increasing wind speed. A 6‐hourly gridded wind dataset was used as input to drive the ice and the ocean. The results show that ice velocities with ice‐ocean coupling are appreciably higher than those without coupling because of the generation of wind‐driven coastal currents. This suggests that coupled ice‐ocean dynamics should always be considered in short‐term sea‐ice models. The model gives reasonable agreement with the observed ice edge except in the southern boundary where ice‐melt has a strong influence on the ice‐edge position. Ocean currents, sea level and ice velocities computed from the model are in qualitative agreement with limited current‐meter, tide‐gauge, and ice drifter trajectory data.  相似文献   

14.
Abstract

The impacts of climate change on surface air temperature (SAT) and winds in the Gulf of St. Lawrence (GSL) are investigated by performing simulations from 1970 to 2099 with the Canadian Regional Climate Model (CRCM), driven by a five-member ensemble. Three members are from Canadian Global Climate Model (CGCM3) simulations following scenario A1B from the Intergovernmental Panel on Climate Change (IPCC); one member is from the Community Climate System Model, version 3 (CCSM3) simulation, also following the A1B scenario; and one member is from the CCSM4 (version 4) simulation following the Representative Concentration Pathway (RCP8.5) scenario. Compared with North America Regional Reanalysis (NARR) data, it is shown that CRCM can reproduce the observed SAT spatial patterns; for example, both CRCM simulations and NARR data show a warm SAT tongue along the eastern Gulf; CRCM simulations also capture the dominant northwesterly winds in January and the southwesterly winds in July. In terms of future climate scenarios, the spatial patterns of SAT show plausible seasonal variations. In January, the warming is 3°–3.5°C in the northern Gulf and 2.5°–3°C near Cabot Strait during 2040–2069, whereas the warming is more uniform during 2070–2099, with SAT increases of 4°–5°C. In summer, the warming gradually decreases from the western side of the GSL to the eastern side because of the different heat capacities between land and water. Moreover, the January winds increase by 0.2–0.4?m?s?1 during 2040–2069, related to weakening stability in the atmospheric planetary boundary layer. However, during 2070–2099, the winds decrease by 0.2–0.4?m?s?1 over the western Gulf, reflecting the northeastward shift in northwest Atlantic storm tracks. In July, enhanced baroclinicity along the east coast of North America dominates the wind changes, with increases of 0.2–0.4?m?s?1. On average, the variance for the SAT changes is about 10% of the SAT increase, and the variance for projected wind changes is the same magnitude as the projected changes, suggesting uncertainty in the latter.  相似文献   

15.
Two linear methods, including the simple linear addition and linear addition by expansion, and numerical simulations were employed to estimate storm surges and associated flooding caused by Hurricane Andrew for scenarios of sea level rise (SLR) from 0.15 m to 1.05 m with an interval of 0.15 m. The interaction between storm surge and SLR is almost linear at the open Atlantic Ocean outside Biscayne Bay, with slight reduction in peak storm surge heights as sea level rises. The nonlinear interaction between storm surges and SLR is weak in Biscayne Bay, leading to small differences in peak storm surge heights estimated by three methods. Therefore, it is appropriate to estimate elevated storm surges caused by SLR in these areas by adding the SLR magnitude to storm surge heights. However, the magnitude and extent of inundation at the mainland area by Biscayne Bay estimated by numerical simulations are, respectively, 22–24 % and 16–30 % larger on average than those generated by the linear addition by expansion and the simple linear addition methods, indicating a strong nonlinear interaction between storm surge and SLR. The population and property affected by the storm surge inundation estimated by numerical simulations differ up to 50–140 % from that estimated by two linear addition methods. Therefore, it is inappropriate to estimate the exacerbated magnitude and extent of storm surge flooding and affected population and property caused by SLR by using the linear addition methods. The strong nonlinear interaction between surge flooding and SLR at a specific location occurs at the initial stage of SLR when the water depth under an elevated sea level is less than 0.7 m, while the interaction becomes linear as the depth exceeds 0.7 m.  相似文献   

16.
Numerical experiments are performed to test one reasonably economical method of producing regional forecasts. Starting with initial conditions interpolated from a 20 hour coarse grid Northern Hemisphere forecast, a fine mesh model is integrated for a further period of 4 hours over a limited area. The fine mesh is located over the north‐eastern part of North America and its resolution is sufficient to re‐produce topographic features such as the St. Lawrence and Richelieu Valleys. The resulting forecast at hour 24 is then compared with the coarse mesh prediction for the same time. The comparison reveals how the horizontal and vertical components of the wind are affected by the small scale topography. In particular, the channelling effect of the main valleys is demonstrated.  相似文献   

17.
Abstract

Changes to the Beaufort Sea shoreline occur due to the impact of storms and rising relative sea level. During the open‐water season (June to October), storm winds predominantly from the north‐west generate waves and storm surges which are effective in eroding thawing ice‐rich cliffs and causing overwash of gravel beaches. Climate change is expected to be enhanced in Arctic regions relative to the global mean and include accelerated sea‐level rise, more frequent extreme storm winds, more frequent and extreme storm surge flooding, decreased sea‐ice extent, more frequent and higher waves, and increased temperatures. We investigate historical records of wind speeds and directions, water levels, sea‐ice extent and temperature to identify variability in past forcing and use the Canadian Global Coupled Model ensembles 1 and 2 (CGCM1 and CGCM2) climate modelling results to develop a scenario forcing future change of Beaufort Sea shorelines. This scenario and future return periods of peak storm wind speeds and water levels likely indicate increased forcing of coastal change during the next century resulting in increased rates of cliff erosion and beach migration, and more extreme flooding.  相似文献   

18.
《大气与海洋》2013,51(4):308-318
Abstract

Dissolved noble gas samples were taken during a pilot study in the Saguenay Fjord, Quebec, Canada, in order to determine the contribution of different air‐sea gas exchange mechanisms in an estuary and to assess the contribution of tidal fronts to the aeration of subsurface waters. The noble gases He, Ne, Ar, Kr, and Xe span a large range of molecular diffusivities and solubilities and hence constitute a useful probe of various gas exchange and bubble injection processes. Samples were taken at flood tide upstream and downstream of an energetic tidal front that is generated by a hydraulically controlled flow over a shallow sill at the entrance to the Fjord. The results are interpreted with the help of hydrographic measurements of density and currents along cross‐sill transects describing the physical forcing at the sill. High gas saturations downstream of the sill indicate the aeration of water within the frontal region. An inverse model is used to compare the contribution of bubble injection in the front to diffusion across the air‐sea interface. The large ratio of completely ‘trapped’ bubbles to diffusion suggests that bubbles injected by waves breaking in the front contribute significantly to air‐sea gas exchange with 76% for He, 79% for Ne, 56% for Ar, 47% for Kr, and 35% for Xe.

Water samples were analyzed for helium isotopes and tritium in order to explore the possibility of constraining ventilation time scales. The relationship between tritium and salinity revealed two end‐member waters: a freshwater component from the Saguenay River of 23.6 ± 0.5 TU, likely a residual of bomb‐produced tritium, and a seawater end‐member of approximately 1.5 TU originating in the subpolar Atlantic. An unexpected contribution of radiogenic 4He was detected in the deep waters of the St. Lawrence Estuary, likely a consequence of out‐gassing from old, uranium and thorium rich granitic terrain.  相似文献   

19.
Abstract

During November 1976 to February 1977 near‐surface wind, current and temperature measurements were made at three sites along the Strait of Juan de Fuca. Strong tidal currents and major intrusions of warmer, fresher offshore coastal water were superimposed upon the estuarine circulation of near‐surface seaward flow. The r.m.s. amplitudes of the diurnal and semidiurnal tidal currents were ~30 cms‐1 and 30–47 cm s‐1, respectively. The vector‐mean flow at 4 m‐depth was seaward and decreased in speed from 28 cm s‐1 at 74 km from the entrance to 9 cm s‐1 at 11 km from the entrance. On five occasions intrusions of 1–3 C warmer northeast Pacific coastal water occurred for durations of 1–10 days. The 25 cm s‐1 up‐strait speed of the intrusive lens agreed to within 20% of the gravity current speed computed from Benjamin's (1968) hydraulic model. The near‐surface currents associated with the intrusions and the southerly coastal winds were significantly correlated, indicating that the intrusions were initiated when shoreward Ekman currents advected Pacific coastal water into the Strait. The reversals were not significantly coherent with the along‐strait sea surface slope measured along the north side of the Strait nor were they strongly related to local wind forcing.  相似文献   

20.
基于城市内涝仿真模型,根据天津沿海地区的地形、地貌特征以及排水系统等对城市内涝仿真模型进行改进,在沿海边界和河口设置时变水位,使得模型拓展到既能模拟暴雨产生的内涝,也能模拟由于风暴潮侵袭造成的淹没情景。该模型对天津沿海地区历史上典型风暴潮个例以及10年、20年、50年、100年一遇重现期风暴潮产生的积水范围和积水深度进行了模拟,并对2012年8月3日台风达维 (1210) 造成的天津沿海风暴潮进行了业务试应用。将历史风暴潮个例模拟结果以及2012年8月3日的评估结果与实际灾情进行对比,结果显示模型具有较好的模拟能力,可应用于风暴潮灾害的评估和预估业务中,为相关部门和行业提供决策参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号