首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Monthly mean sea surface temperature (SST) anomalies were computed for six 10°‐wide boxes stretching across the equatorial Atlantic Ocean for the period 1890–1979. These values were used to produce a time‐longitude section of the interannual SST variability along the equator. This section shows cycles of basin‐wide warming and cooling occurring with irregular periods that typically range between two and four years. The warming and cooling events in these cycles normally display some westward phase propagation. The peak magnitudes of the interannual SST anomalies are generally of the order of 1°C or less, except in the Gulf of Guinea where they can be somewhat larger.

An estimate was made of the basin‐wide equatorial SST anomaly in each month (excluding the Gulf of Guinea). This was composited around the times of the warm and cold extremes of the Pacific Southern Oscillation. This analysis revealed a detectable, but rather weak, tendency for phase locking of the interannual SST variations in the equatorial Pacific and Atlantic oceans.  相似文献   

2.
Sensitivity of the IAP two-level AGCM to surface albedo variations   总被引:3,自引:0,他引:3  
Summary Two numerical experiments were performed for sensitivity study of surface albedo, one was a control run in which the albedo values for snow-free surfaces were prescribed as constant; the other was a sensitivity run in which an albedo with seasonal variation was incorporated into the model show that the simulation of precipitation is sensitive to the surface albedo variations, especially those over Eastern Asia and the Sahara. Changes in surface albedo also have an impact on the monthly mean sea level pressure, especially on the July-mean Western Pacific subtropical high. Surface air temperature decreased over most of the Eastern Asia but increases over most of the Antarctica in July.With 6 Figures  相似文献   

3.
Abstract

The measurement of radiation fluxes suffers from inaccuracies at low solar elevations and this poses a problem for determining the snow albedo at high latitudes. From the data of Resolute, NWT, three situations were observed: (1) an often‐reported situation when albedo decreases with increasing solar elevation, (2) an inverse situation when albedo increases with increasing solar elevation and (3) no obvious relationship. There were also cases when albedo exceeded 100%. The possible causes for such anomalous conditions or for erroneous albedos include instrument response deviating from the cosine law, instrument tilt, sensing of the sun by the inverted pyranometer and change in the spectral quality of incoming radiation with changing solar height. However, omission of the radiation values measured during the period of low solar elevation will not seriously affect the prediction of snowmelt. In this note, we have identified the anomalies and suggested possible causes; but further investigations are required to verify the causative mechanisms.  相似文献   

4.
多年冻土区与季节冻土区地表反照率对比观测研究   总被引:3,自引:0,他引:3  
利用多年冻土区唐古拉气象站与季节冻土区那曲毕节气象站2008年辐射、土壤未冻水含量及积雪等数据,对两种冻土类型下垫面上的地表反照率进行分析研究,得出两站地表反照率均呈现冬春季较大,夏秋季较小的规律,并且,积雪使地表反照率形成极大值,最大极值接近0.9。唐古拉站的地表反照率整体上比毕节站大,年平均地表反照率分别为0.38和0.31。地表反照率月较差(每月日平均地表反照率最大值与最小值的差值)冬季毕节站高于唐古拉站,而夏秋季节则相反。晴天,两站地表反照率均呈现"U"形,表现出早晚大、中午小,春、夏、秋、冬各季节典型晴天的地表反照率日平均值唐古拉站分别为0.23、0.20、0.20和0.25,毕节站为0.26、0.21、0.22和0.29。此外,讨论了两站太阳高度角和土壤湿度对地表反照率的影响,得出两站地表反照率随太阳高度角的增大均呈现e指数衰减趋势,土壤湿度与地表反照率呈负相关关系,且降雨对地表反照率的变化影响较大。  相似文献   

5.
Abstract

The effects of virtual temperature on parcel buoyancy are investigated and the following results obtained. For descent or unsaturated ascent, the buoyancy acceleration is enhanced if the mixing ratio increases with pressure. However, for saturated ascent, the buoyancy acceleration is inhibited unless the lapse rate of mixing ratio exceeds a value slightly greater than that along a moist adiabat. This criterion is evaluated for several mean soundings. For the case of Oklahoma supercells, the mixing ratio lapse rate is clearly large enough. However, for other cases it often is not. Horizontal gradients in water vapour and condensed water can have a significant influence on the thermal wind.  相似文献   

6.
Snow surface and sea-ice energy budgets were measured near 87.5°N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to ?7°C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between ?50 W m?2 and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m?2, except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area.  相似文献   

7.
Summary ?The dependence of global and diffuse radiation on surface albedo due to multiple reflection of radiation between the surface and the atmosphere (base of clouds) is found on the basis of data obtained at the Tartu–T?ravere Actinometric Station over the period 1955–2000. It is found that the monthly totals of global radiation increase by up to 1.38–1.88 times, particularly in the winter half-year between November and March, when snow cover albedo may be high. A semi-empirical formula is derived for calculating with sufficient accuracy the monthly totals of global radiation, considering the amount of cloudiness and the surface albedo. In the time series of the monthly total by global radiation a downward trend occurs in winter months. A decrease in global radiation by up to 20% in the past 46 years can be explained primarily by a relatively high negative trend in the snow cover duration and surface albedo (up to − 0.24). As a result, days are growing darker, a new phenomenon associated with climate change, which undoubtedly affects human mood to some extent. Received November 8, 2001; revised January 24, 2002; accepted February 2, 2002  相似文献   

8.
Abstract

Cloud‐motion winds measured from organized and disorganized cumulus cloud fields are compared with winds measured at collocated buoys in the northeast Pacific Ocean. Findings suggest that an automated tracking algorithm using GOES satellite imagery can measure cloud‐level winds at these latitudes. Comparisons with buoy wind measurements show that the influence of boundary‐layer stability should be included in estimates of surface winds from cloud‐motion data.  相似文献   

9.
Data concerning carbon cycle variations on the earth's surface during the past 200,000 years are reviewed.The variations of the surface temperature (T) and concentration of carbon dioxide (CO2) in the atmosphere of Antarctica are compared to those of the isotopic ratios of oxygen 18O/16O (δ18O) and of carbon 13C/12C (°13C) of waters in the deep oceans for the two last glacial cycles. This comparison shows that the decrease of the atmospheric CO2 concentration is accompanied by a carbon transferase from the continental biosphere to the oceanic deep waters. At the glacial maximum this transfer is estimated to be about 500 GtC (1 GtC = 1015g of carbon) equivalent to 25% of the carbon storage of the biosphere. It occurs mainly in the high latitudes of the Southern Hemisphere by incorporation of CO2 into particulate matter during photosynthesis. It is shown that the mean oceanic productivity does not increase with a supplementary supply of ions such as phosphate (PO43−) or nitrate (NO3) but that the intensity of the thermohaline circulation is certainly reduced. As the warming up of the oceans and the melting of the ice-sheet begin carbon transfer takes place to restore the continental biosphere.Another carbon transfer of a much more important intensity is also at work in the sea shore environment. Its intensity could be sufficient to renew the entire carbon of the continental biospheric, atmospheric and oceanic reservoirs in a length of time comparable to a glacial cycle. This fact shows the importance of studying the deposition of carbon in oceanic zones which are uncovered with drops in sea level. At the present time data on the coastal environment in relation to the global carbon cycle are very scarce and warrants more research in this area.  相似文献   

10.
Values of sea surface albedo estimated from a 3-day data set agree reasonably well with the findings of Payne (1972). However, when an oil slick moved over the observational site, the value of albedo suddenly jumped to 0.57. The effect of turbidity on the albedo over a lake has already been reported (Sadhuram et al., 1988).  相似文献   

11.
This study is based on ground-based measurements of downward surface shortwave irradiance (SW), columnar water vapour (wv), and aerosol optical depth (τ) obtained at Thule Air Base (Greenland) in 2007–2010, together with MODIS observations of the surface shortwave albedo (A). Radiative transfer model calculations are used in combination with measurements to separate the radiative effect of A (ΔSWA), wv (ΔSWwv), and aerosols (ΔSWτ) in modulating SW in cloud-free conditions. The shortwave radiation at the surface is mainly affected by water vapour absorption, which produces a reduction of SW as low as ?100 Wm?2 (?18%). The seasonal change of A produces an increase of SW by up to +25 Wm?2 (+4.5%). The annual mean radiative effect is estimated to be ?(21–22) Wm?2 for wv, and +(2–3) Wm?2 for A. An increase by +0.065 cm in the annual mean wv, to which corresponds an absolute increase in ΔSWwv by 0.93 Wm?2 (4.3%), has been observed to occur between 2007 and 2010. In the same period, the annual mean A has decreased by ?0.027, with a corresponding decrease in ΔSWA by 0.41 Wm?2 (?14.9%). Atmospheric aerosols produce a reduction of SW as low as ?32 Wm?2 (?6.7%). The instantaneous aerosol radiative forcing (RFτ) reaches values of ?28 Wm?2 and shows a strong dependency on surface albedo. The derived radiative forcing efficiency (FEτ) for solar zenith angles between 55° and 70° is estimated to be (?120.6 ± 4.3) for 0.1 < A < 0.2, and (?41.2 ± 1.6) Wm?2 for 0.5 < A < 0.6.  相似文献   

12.
Abstract

For a moderately large number of years of observations the quantiles of rainfall totals for individual months can be estimated from ranked values. With only a few years of observations it is necessary to estimate the quantiles from a distribution fitted to the data for all months.

The Compound‐Poisson distribution can utilise the information available in rainfall totals for all months to give reasonably precise parameter estimates for individual months. Representative parameters can be obtained from as few as 10 years of data. Quantiles are calculated from, and statistically qualified by, the estimated mean and covariance structure of the fitted parameters.  相似文献   

13.
The solution of the planetary boundary-layer equations by finite-difference methods has recently become very popular. Among recent papers using such methods, several use somewhat arbitrary finite-difference meshes and some do not make use of a constant flux or wall layer near the ground. It is shown that the use of finite differences right down to the ground can be a very inaccurate procedure when used in conjunction with an eddy viscosity or mixing length proportional to (z +z 0) orz near the ground. Such an approach can lead to results that are highly dependent on the finite-difference scheme used and virtually independent of the roughness length,z 0. A scheme using an expanding grid, based on the form chosen for mixing length or eddy viscosity, is proposed which gives good results with or without a surface layer in the case of a neutrally stratified atmosphere.  相似文献   

14.
使用鄱阳湖北部70 m气象塔湍流和梯度观测数据,分析了2011年6月6日夜间一次暴雨过程中近地面边界层特征.结果表明,此次过程是在高空低槽和西南急流的天气背景下,受鄱阳湖复杂地表影响产生的局地性强降水.强降水发生前受东南暖平流影响,近地面边界层中水汽累积,不稳定性增加;强降水过程中,近地层感热、潜热通量迅速增加,同时,近地面层湍流动量通量下传和水平输送增加,鄱阳湖的水汽输送加强降水强度.另外,强降水过程中,近地面湍流动能迅速增大并达到最大值,而平均动能的增大发生在强降水结束后,表明地表作用明显,近地面边界层的湍流场为暴雨提供动力条件.尺度分析表明,强降水前,中尺度动量通量占主要地位,降水过程中湍流动量通量显著加强.  相似文献   

15.
利用2007年锦州玉米农田生态系统野外观测站玉米生长季辐射资料,对地表反照率综合模型、半经验双层模型和简化双层模型模拟精度进行比较。结果表明:简化双层模型在玉米生育初期模拟能力较差,其他时段模拟能力都较强,尤其在玉米生育后期更为明显;半经验双层模型除在玉米叶面积指数处于最大时期模拟误差较小外,其他时段基本无法模拟。综合模型大部分时段模拟能力都较强,仅在玉米生育后期模拟能力稍差,该模型对实现玉米农田地表反照率动态参数化更为理想,可为改进陆面过程模型提供参考。  相似文献   

16.
Two surface layer parameterization schemes along with five planetary boundary layer (PBL) schemes in the Weather Research and Forecasting model (WRF) are analyzed in order to evaluate the performance of the WRF model in simulating the surface variables and turbulent fluxes over an Indian sub-continent region. These surface layer schemes are based on the fifth-generation Pennsylvania State University—National Center for Atmospheric Research Mesoscale Model (MM5) parameterization; (a) Old MM5 scheme having Businger-Dyer similarity functions and (b) revised MM5 scheme utilizing the functions that are valid for full ranges of atmospheric stabilities. The study suggests that each PBL scheme can reproduce the diurnal variation of 2 m temperature, momentum flux and sensible heat flux irrespective of the surface layer scheme used for the simulations. However, a comparison of model-simulated values of surface variables and turbulent fluxes with observed values suggests that each PBL scheme is found to systematically over-estimate the nocturnal 2 m temperature and 10 m wind speed with both the revised and old schemes during stable conditions.  相似文献   

17.
An ideal and simple formulation is successfully derived that well represents a quasi-linear relationship found between the domain-averaged water vapor, Q (mm), and temperature, T (K), fields for the three tropical oceans (i.e., the Pacific, Atlantic and Indian Oceans) based on eleven GEOS-3 [Goddard Earth Observing System (EOS) Version-3] global re-analysis monthly products. A Q ? T distribution analysis is also performed for the tropical and extra-tropical regions based on in-situ sounding data and numerical simulations [GEOS-3 and the Goddard Cumulus Ensemble (GCE) model]. A similar positively correlated Q ? T distribution is found over the entire oceanic and tropical regions; however, Q increases faster with T for the former region. It is suspected that the tropical oceans may possess a moister boundary layer than the Tropics. The oceanic regime falls within the lower bound of the tropical regime embedded in a global, curvilinear Q ? T relationship. A positive correlation is also found between T and sea surface temperature (SST); however, for one degree of increase in T, SST is found to increase 1.1 degrees for a warmer ocean, which is slightly less than an increase of 1.25 degrees for a colder ocean. This seemingly indicates that more (less) heat is needed for an open ocean to maintain an air mass above it with a same degree of temperature rise during a colder (warmer) season [or in a colder (warmer) region]. Q and SST are also found to be positively correlated. Relative humidity (RH) exhibits similar behaviors for oceanic and tropical regions. RH increases with increasing SST and T over oceans, while it increases with increasing T in the Tropics. RH, however, decreases with increasing temperature in the extratropics. It is suspected that the tropical and oceanic regions may possess a moister local boundary layer than the extratropics so that a faster moisture increase than a saturated moisture increase is favored for the former regions. T,Q, saturated water vapor, RH, and SST are also examined with regard to the warm and cold “seasons” over individual oceans. The Indian Ocean warm season dominates in each of the five quantities, while the Atlantic Ocean cold season has the lowest values in most categories. The higher values for the Indian Ocean may be due to its relatively high percentage of tropical coverage compared to the other two oceans. However, Q is found to increase faster for colder months from individual oceans, which differs from the general finding in the global Q?T relationship that Q increases slower for a colder climate. The modified relationship may be attributed to a possible seasonal (warm and cold) variability in boundary layer depth over oceans, or to the small sample size used in each individual oceanic group.  相似文献   

18.
Continuous observation data collected over the whole year of 2004 on a cropland surtace m Tongyu, a senti-arid area of northeastern China (44°25'N, 122°52'E), have been used to investigate the variations of surface albedo and soil thermal parameters, including heat capacity, thermal conductivity and thermal diffusivity, and their relationships to soil moisture. The diurnal variation of surface albedo appears as a U shape curve on sunny days. Surface albedo decreases with the increase of solar elevation angle, and it tends to be a constant when solar elevation angle is larger than 40°. So the daily average surface albedo was computed using the data when solar elevation angle is larger than 40° Mean daily surface albedo is found to decrease with the increase of soil moisture, showing an exponential dependence on soil moisture. The variations of soil heat capacity are small during Julian days 90 300. Compared with the heat capacity, soil thermal conductivity has very gentle variations during this period, but the soil thermal diffusivity has wide variations during the same period. The soil thermal conductivity is found to increase as a power function of soil moisture. The soil thermal diffusivity increases firstly and then decreases with the increase of soil moisture.  相似文献   

19.
20.
利用考虑了生物因子(叶面积指数)和环境因子(太阳高度角、表层土壤湿度)影响的地表反照率α动态参数化方案对BATS1e模型进行改进,基于2008年玉米农田生态系统的通量、气象及生物因子的连续观测资料,研究α动态参数化对玉米农田生态系统与大气间通量交换的影响.结果表明,引入α动态参数化方案后,模型实现了地表反照率α的日、季动态模拟,模型效率系数提高0.65,误差明显减小,使陆气通量交换热力作用的模拟准确性有所提高,其中,净入射短波辐射模拟改进最为明显,全年改进量为81772 kJ/m2,占年总辐射的1.7%;表层土壤温度的年均改进量为0.62 K,多数月份的改进量在1 K以上.另外,模型改进实现了叶面积指数和植被覆盖度等决定下垫面性质各参数的动态变化,使各种通量交换过程更接近于实际,感热和潜热模拟的模型效率系数分别提高0.516和0.1,模拟值对实测值的解释能力在生长季分别提高6%和9%,大于非生长季.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号