首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

We develop a wind‐driven depth‐averaged model of the circulation on the continental shelf around the Queen Charlotte Islands. The model captures a major feature of the winter current‐meter observations: a flow in Moresby Trough against the direction of the prevailing winds. Moresby Trough is a steep submarine canyon cutting across the shelf from the Pacific Ocean to the mainland. The flow patterns revealed by simulated drifters lead to four generalizations about the depth‐averaged, wind‐driven flow: (1) the flow is subject to strong topographic steering, (2) the exchange between Queen Charlotte Sound and the Pacific Ocean is limited to small regions near Cape St James and Cape Scott, (3) the exchange between Queen Charlotte Sound and Hecate Strait is controlled by Moresby Trough, and (4) the observed outflows past Cape St James are not explained by the dynamics of this model.  相似文献   

2.
Abstract

A westward current flows along the northern side of Lancaster Sound and an eastward current flows along the southern side. A cross‐channel flow is commonly observed to link them near the eastern entrance of Lancaster Sound; this flow is modelled assuming inviscid flow and conservation of potential vorticity. It is shown that the westward decrease in depth is sufficient to cause a cross‐channel flow that couples the inflow to the outflow. The modelled cross‐channel flow takes place at a distance inside the entrance that is less than that observed for the surface current. Obviously stratification reduces the coupling of the surface current to the bathymetry. A more realistic result is obtained with the barotropic model if the bottom slope is halved.

An inviscid mean barotropic flow out of the channel is also modelled and found to be concentrated on the southern bank in order to conserve potential vorticity. It seems that barotropic instability and friction would limit the narrowing of the flow.  相似文献   

3.
Abstract

Surface mesonet winds recorded at 10‐min intervals are used to estimate the propagation velocities of atmospheric fronts in East Coast winter storms during the Canadian Atlantic Storms Program (CASP). The frontal motion is modelled locally as the translation of a line across which there is an abrupt shift in wind direction. The mesonet is used to detect the propagation velocity of the windshift line.

Frontal velocities estimated using mesonet winds for all cases in which fronts passed through the mesonet (two cold fronts and three warm fronts) are in close agreement with those deduced from synoptic charts. Recommendations are given for using the method as a research tool to estimate frontal motions in oceanographic studies of wind‐driven circulation.  相似文献   

4.
Abstract

The existence and dynamics of the so‐called “Rose Spit Eddy” in Dixon Entrance, British Columbia, are investigated by (i) analysing published observations of low‐frequency Eulerian and Lagrangian currents in the region; (ii) interpreting tidal residuals produced by the Hecate Model (a non‐rotating hydraulic model of Hecate Strait and Dixon Entrance); and (iii) running a barotropic, non‐linear numerical tidal model over simplified topography to investigate residuals produced over the Rose Spit sill.

Observations have consistently revealed persistent basin‐wide, surface‐intensified cyclonic shears within central and eastern Dixon Entrance. The Hecate hydraulic tidal model also produced a tidal residual cyclonic gyre in central Dixon Entrance, but with velocities considerably larger than those observed. Barotropic numerical simulations of tidal streams flowing over a representation of the Rose Spit sill produced residual flows along the sill in reasonable agreement with observations and theory. A southward‐directed jet flow was produced off Cape Chacon. Elsewhere, tidal rectification was weak. Run without the Coriolis force, organized flow along the sill broke down, although the headland jet off Cape Chacon persisted.

We submit that the observed Rose Spit eddy results from interactions between buoyancy‐driven coastal currents and tidally rectified flows generated over the Rose Spit sill, and near Cape Chacon, and perhaps indirectly, over the western flank of Learmonth Bank (which although west of the Rose Spit eddy, contributes to the cross‐channel flow across the Entrance). These regions of localized tidal stress will each favour recirculation of a portion of the coastal current within the Entrance, helping to form the eddy.

We believe that the Hecate hydraulic model eddy was generated to a significant degree by phase errors introduced at the northern open boundary, where a rocking barrier was used to force currents. A second rocking barrier also produced a large cyclonic gyre, not supported by observations, near the model's southern boundary.  相似文献   

5.
《大气与海洋》2013,51(3):231-240
Abstract

A distinct change in the ocean circulation of the Gulf of Alaska after the 1976–77 climate shift is studied in an eddy‐permitting primitive equation model forced by observed wind stresses from 1951–99. When the Aleutian Low strengthens after 1976–77, strong changes occur in the mean velocity of the Alaskan Stream and in its associated mesoscale eddy field. In contrast, the Alaska Current and the eddy flows in the eastern Gulf remain relatively unchanged after the shift. Since mesoscale eddies provide a possible mechanism for transporting nutrient‐ rich open‐ocean waters to the productive shelf region, the flow of energy through the food web may have been altered by this physical oceanographic change. This climate‐driven mechanism, which has a characteristic eastwest spatial asymmetry, may potentially help to explain changes in forage fish quality in diet diversity of Steller sea lions whose populations have declined precipitously since the mid‐1970s in the western Gulf while remaining stable in the eastern Gulf.  相似文献   

6.
7.
Abstract

A realistic kinematic model of cloud microphysical processes is presented. Heat and water substances in various phases are transported in the model by specific horizontal and vertical velocities using a semi‐Lagrangian numerical transport scheme. The model is applied to a CASP case study with horizontal and vertical velocities consistent with radiosondes and radar observations. The model is shown to capture the general observed features of the cloud and precipitation fields. In particular, it is shown that for the case studied stratiform clouds extend much higher than the top of detectable precipitation. This numerical model constitutes a useful tool for understanding the life cycle of hydrometeors as a function of their position within the storm system.  相似文献   

8.
The effects of a building's density on urban flows are investigated using a CFD model with the RNG k-ε turbulence closure scheme. Twenty-seven cases with different building's density parameters (e.g., building and street-canyon aspect ratios) are numerically simulated. As the building's density parameters vary, different flow regimes appear. When the street canyon is relatively narrow and high, two counter-rotating vortices in the vertical direction are generated. The wind speed along streets is mainly affected by the building's length. However, it is very difficult to find or generalize the characteristics of the street-canyon flows in terms of a single building's density parameter. This is because the complicated flow patterns appear due to the variation of the vortex structure and vortex number. Volume-averaged vorticity magnitude is a very good indicator to reflect the flow characteristics despite the strong dependency of flows on the variation of the building's density parameters. Multi-linear regression shows that the volume-averaged vorticity magnitude is a strong function of the building's length and the street-canyon width. The increase in the building's length decreases the vorticity of the street-canyon flow, while, the increase in the street-canyon width increases the vorticity.  相似文献   

9.
Abstract

The morphology and time evolution of a winter storm is studied using radar data taken during the Canadian Atlantic Storms Program (CASP). The vertical motions that generate the snow are derived from reflectivity measurements. The study reveals a banded structure in the precipitation pattern with ascending and descending air associated with the bands. Vertical velocities averaged over the radar‐covered area reach values close to 1 m s‐1 . The region of large‐scale uplifting moves horizontally at about half the horizontal air velocity. A persistent precipitation pattern results from the continuously renewed air within the uplifting region.  相似文献   

10.
Abstract

Inertial oscillations in current records collected from May to September, 1977, at ten mooring sites 20–300 km apart in the semi‐enclosed sea off northwest British Columbia are analysed. Near‐surface oscillations were wind‐driven, clockwise rotary and circularly polarized; near‐bottom oscillations at depths of 155–330 m were clockwise rotary, less than 10% of near‐surface amplitudes, highly elliptical and poorly correlated with surface winds. In the open southwest sector of the region, near‐surface spectra possessed well‐defined peaks centred roughly 3.5% above the local inertial frequency (f), whereas spectra for the semi‐enclosed northern sector had broad peaks centred at f. The peak spectral frequency at the southeast corner of the mooring array was 6.5% below f and is linked to a Doppler shift by mean flow advection of comparatively high wavenumber inertial oscillations. A particularly vigorous wind‐generated surface “event” in mid‐June was coherent to 99% confidence over a distance of 300 km and persisted for more than 8 days at most locations and 11 days at a mooring at the edge of the continental shelf. (Typical durations for single wave groups were ~2 1/2 days.) This event, together with a similar less energetic event in August, was due to quasi‐resonant forcing by frontal winds associated with sequences of regularly spaced, eastward travelling extratropical cyclones. Estimated inertial wavelengths ranged from 300–700 km over the main portion of the sea to 85–95 km in the southeast corner.  相似文献   

11.
C.L. Tang  T. Yao 《大气与海洋》2013,51(2):270-296
Abstract

A coupled ice‐ocean dynamical model is applied to the simulation of sea‐ice motion and distribution off Newfoundland during the Labrador Ice Margin Experiment (LIMEX), March 1987. In the model, the ice is coupled to a barotropic ocean through an Ekman layer that deepens with increasing wind speed. A 6‐hourly gridded wind dataset was used as input to drive the ice and the ocean. The results show that ice velocities with ice‐ocean coupling are appreciably higher than those without coupling because of the generation of wind‐driven coastal currents. This suggests that coupled ice‐ocean dynamics should always be considered in short‐term sea‐ice models. The model gives reasonable agreement with the observed ice edge except in the southern boundary where ice‐melt has a strong influence on the ice‐edge position. Ocean currents, sea level and ice velocities computed from the model are in qualitative agreement with limited current‐meter, tide‐gauge, and ice drifter trajectory data.  相似文献   

12.
Abstract

Recent current measurements from the southern Labrador and northeastern Newfoundland shelves confirm the presence of inshore and offshore branches of the Labrador Current with high mean currents and low standard deviations. At mid‐shelf weaker and more variable currents occur over the banks, and cross‐shelf flows are found to be associated with the shelf topography. An annual cycle of the inshore branch, in phase with wind forcing, is significant on the NE Newfoundland Shelf but not detectable on Hamilton Bank. The phase of the annual cycle in the offshore branch is consistent with buoyancy, not wind forcing. The observations compare reasonably well with results from a barotropic model for the region and the International Ice Patrol (IIP) surface current map. Differences occur particularly in regions of high bathymetrie curvature or an ill‐defined shelf break. The model location of the Labrador Current lies inshore of that indicated by the data, suggesting the need for better definition of the northern inflow boundary condition and the inclusion of baroclinicity. The HP surface current map agrees well with observations offshore, but shows an unrealistic, broad inshore branch, especially on the Grand Bank These differences have important implications for the drift models.  相似文献   

13.
Abstract

The vertical structures of the mean and tidal flows in Hudson Strait are described from moored current‐meter data collected during an 8‐week period in August to October of 1982. The residual flow in the strongly stratified waters off Quebec is directed along the Strait to the southeast, is highly baroclinic and is concentrated near shore (within an offshore length scale of approximately an internal Rossby radius). Maximum mean speeds of 0.3 m s?1 were observed near‐surface (30 m). In the weakly stratified waters on the northern side of the Strait along Baffin Island the mean flow is northwestward. The maximum speeds are 0.1 m s?1 near‐surface (30 m) and the current amplitudes decrease to 0.05 m s?1 at 100 m. The mean southeastward transport is estimated to be 0.93 ±0.23 × 106 m3 s?1 with a northwestward transport of 0.82 ± 0.24 × 106 m3 s?1. Over most of the Strait the across‐channel residual currents are directed towards the Quebec shore with velocities ranging from 0.02 to 0.1 ms?1. Current variability is dominated by the tides, the M2 being the major tidal constituent. In the vicinity of the mooring the M2 tide is primarily barotropic, progressive in nature, and has along‐channel current amplitudes varying across the Strait from 0.20 to 0.45 m s?1. Observed differences in tidal sea‐level elevations across the Strait can be accounted for by the cross‐channel variations characteristic of Kelvin waves.  相似文献   

14.
Abstract

The development of a tidal model for the west coast of Canada is described. The model is intermediate in resolution between coarse‐gridded global models and fine‐gridded local models; it provides a good representation of the main shelf regions and also includes a substantial area of the neighbouring ocean. The physical processes relevant to tides in both deep and shallow water are included. Calculations have been carried out for the M2 and K1 constituents and the model results were compared with extensive tide‐gauge observations and empirically based charts. For M2, the agreement between model results and observations is generally excellent, but for K1, which contains more small‐scale variability, the model results are not quite so good. The variability in K1 is associated with tidally generated continental shelf waves. Examination of the computed currents and energy fluxes suggests that shelf‐wave components are present in the model solution but, for the Vancouver Island shelf, their propagation is not reproduced accurately. This may be due to deficiencies in the model and/or to the influences of stratification and mean currents, which are neglected here. The model predicts that shelf‐wave components should also occur in diurnal tides on the Alaskan shelf.

The significance of the tide‐generating potential and advection are also examined and further work proposed.  相似文献   

15.
Abstract

A major surface feature of the Greenland Sea during winter is the frequent eastward extension of sea ice south of 75°N and an associated embayment to the north. These features are nominally connected with the East Greenland Current, and both the promontory and the embayment are readily apparent on climatic ice charts. However, there are significant changes in these features on time‐scales as short as a few days. Using a combination of satellite microwave images (SSM/I) of ice cover, meteorological data and in situ velocity, temperature and salinity records, we relate the ice distribution and its changes to the developing structure and circulation of the upper ocean during winter 1988–1989. Our measurements illustrate the preconditioning that leads to convective overturn, which in turn brings warmer water to the surface and results in the rapid disappearance of ice. In particular, the surface was cooled to the freezing point by early December and the salinity then increased through ice formation (about 0.016 m d‐1) and brine rejection. Once the vertical density gradient was sufficiently eroded, a period of high heat flux (>300 W m‐2) in late January provided enough buoyancy loss to convectively mix the upper water column to at least 200 m. We estimate vertical velocities at about 3 cm s‐1 downward during the initial sinking. The deepening of the thermocline raised surface temperatures by over 1°C resulting in nearly 1.5 × 105 km2 of ice‐melt within two days. Average rates of ice retreat are about 11 km d‐1 southwestward, generally consistent with a wind‐driven flow. Comparison of hydrographic surveys from before and after the overturning indicate the fresh water was advected out of the area, possibly to the south and east of our moorings.  相似文献   

16.
Abstract

Baroclinic instability of zonal flows with different latitudinal structures is examined, using a linear, quasi‐geostrophic two‐level ß‐plane model. The flows have different amounts of skew, with respect to the channel centre, at different vertical levels. The results are interpreted in terms of the instability of the baroclinic components of the zonal flows. Because of the presence of latitudinal asymmetries, a spectrum of meridional modes is generated in the perturbation. In general, the meridional spectrum has two peaks: a primary peak at the planetary basic flow scale, and a secondary peak near the radius of deformation. As neutral stability is approached, the latter scale becomes more important, i.e. there is a tendency for more small‐scale structure near neutral stability. The perturbation zonal scale is close to the radius of deformation. The eddy amplitudes and momentum fluxes are also examined. The case that best applies to the atmosphere is also discussed.  相似文献   

17.
Abstract

The effect of an abrupt headland on a barotropic oceanic boundary current with variable bottom topography is investigated. The objective is to explore with a very simple model some of the observed features of flow past Brooks Peninsula, an obstacle to boundary currents on the west coast of Vancouver Island. It is shown that the seasonal variation in the background current field causes a large change in the response to the headland. The difference is both quantitative and qualitative and results from the ability of southward alongshore flows to support topographic Rossby lee waves.

As a result of the presence of the lee waves a strong offshore flow occurs just downstream of the Peninsula and this ejects water from the continental shelf into deep water producing features reminiscent of the so‐called “squirts” and “jets”.  相似文献   

18.
Abstract

The present study examines sources of the interannual variability in salinity on the Newfoundland continental shelf observed in a 40‐year time series from an oceanographic station known as Station 27. Specifically, we investigate, through lag‐correlation analysis, the a priori hypotheses that the salinity anomalies at Station 27 are determined by freshwater runoff anomalies from Hudson and Ungava bays and by ice‐melt anomalies in Hudson Bay and on the Labrador Shelf. Interannual variations of summer runoff into Hudson Bay were significantly negatively correlated with salinity anomalies on the Newfoundland Shelf with a lag (9 months) that is consistent with expected travel times based on known current velocities in Hudson Bay and along the Labrador Shelf. Sea‐ice extent over the Labrador and northern Newfoundland shelves was significantly negatively correlated with salinity at a lag of 3 to 4 months, corresponding to the time of minimum salinity at Station 27. It appears that ice‐melt over the Labrador‐northern Newfoundland Shelf is primarily responsible for the seasonal salinity minimum over the Newfoundland Shelf. Interannual variability in runoff into Ungava Bay and ice‐melt in Hudson Bay were not correlated with interannual salinity variations on the Newfoundland Shelf.  相似文献   

19.
Abstract

Two sets of Synthetic Aperture Radar (SAR) images were collected, as part of the Labrador Ice Margin Experiment (LIMEX), over the Newfoundland Shelf on consecutive days in April 1990. Ice movement is detected from the displacement of ice floes between the two images sets and compared with ice drift data from six satellite‐tracked beacons and in situ CTD data. The ice velocity data derived from the SAR images and the beacons are used to generate a map of ice velocity vectors. A streamfunction map of ocean currents is produced by removing the direct wind‐driven component in the ice movement data, and by using an objective analysis method. The resulting flow pattern contains the offshore branch of the Labrador Current with a speed of 30 to 50 cm s?1. The current closely follows the shelf break topography from north to south through the study area (47–50.5°N) as a continuous flow. In comparison, if the wind effect was not removed from the ice velocity data, the calculated Labrador Current north of 50°N would stray from the shelf break. The position of the current axis and the current speed derived from the ice movement data are in good agreement with the geostrophic current computed from the CTD data.  相似文献   

20.
Water tank experiments are carried out to investigate the convection flow induced by bottom heating and the effects of the ambient wind on the flow in non-symmetrical urban street canyons based on the PIV (Particle Image Visualization) technique. Fluid experiments show that with calm ambient wind,the flows in the street canyon are completely driven by thermal force, and the convection can reach the upper atmosphere of the street canyon. Horizontal and vertical motions also appear above the roofs of the buildings. These are the conditions which favor the exchange of momentum and air mass between the street canyon and its environment. More than two vortices are induced by the convection, and the complex circulation pattern will vary with time in a wider street canyon. However, in a narrow street canyon, just one vortex appears. With a light ambient wind, the bottom heating and the associated convection result in just one main vortex. As the ambient wind speed increases, the vortex becomes more organized and its center shifts closer to the leeward building.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号